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Abstract: 

Traffic prediction is an important management tool for traffic guidance and control 

and an effective decision-making tool to help travelers plan routes and avoid 

congested road sections. However, due to the transient and sudden nature of traffic 

bursts caused by events and data limitations, mainstream methods do not perform well 

in short-term traffic prediction for special events (SEs). To address this challenge, we 

propose a traffic burst-sensitive model (TBSM) for short-term traffic prediction. 

Specifically, we first define a new state unit with the short-term trend and observed 

state to represent both the burst case and usual case. Second, a state-and-trend unit 

similarity degree (SD) measurement method and increment-based prediction model 

are proposed. The key parameter of this model balances the weight of the short-term 

trend with the observed state. Finally, we use a deep deterministic policy gradient 

(DDPG) framework containing long short-term memory (LSTM) networks to realize 

the self-learning and adjustment of weights to ensure the generality and burst 

sensitivity of the model. The TBSM is implemented in the district of Beijing Workers' 

Stadium, where SEs occur frequently. The results demonstrate that the proposed 

model performs significantly better than other traditional machine learning 

approaches and deep learning approaches for SEs. Our TensorFlow implementation of 

the TBSM is available at 

https://github.com/buaajh/TBSM-Traffic-burst-sensitive-model-. 
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1. Introduction 

With the development of intelligent traffic systems, traffic prediction is receiving 

constant attention from researchers. Accurate traffic prediction can not only provide a 

scientific basis for traffic managers to sense traffic congestion and limit vehicles in 

advance but also help urban travelers choose appropriate travel routes and improve 

travel efficiency [1–3]. Benefiting from the massive amounts of available traffic data, 

data-driven methods, especially deep learning (DL) methods, have become the 

mainstream methods of traffic prediction. In recent years, a large number of DL 

models, including recurrent neural networks (RNNs) [4], convolutional neural 

networks (CNNs) [5], graph convolutional networks (GCNs) [6] and their variations 
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and combinations, have been employed for traffic prediction and have achieved 

excellent results. 

However, short-term traffic prediction under special events is still considered to 

be a serious challenge [7,8]. According to the National Highway Institute, U.S., a 

special event (SE) can be defined as an occurrence that abnormally increases traffic 

demand, including sporting events, concerts, traffic accidents and infrastructure 

failures [9]. These events are usually accompanied by ‘traffic bursts’ and cause a short 

time period of overload of road networks [10]. Combined with specific data, the 

difficulties of traffic prediction under the bursts caused by SEs are shown as follows: 

⚫ Traffic bursts are hard to capture: Since the time at which an SE occurs is 

unpredictable, forecasting models can be adjusted only after a burst is 

observed. As shown in Fig. 1(a), bursts caused by SEs generally occur many 

times and last for a short period. Thus, it would be difficult to capture traffic 

bursts without specifically characterizing them as new features, which leads 

to the accumulation of prediction errors. 

⚫ Data sparsity problem of traffic bursts: Data on traffic bursts are 

extremely scarce. According to [10] and [11], the proportion of burst data is 

less than 2% of the total data. Since the occurrence of bursts is rare, the 

prediction errors of the associated data points have a relatively minimal 

contribution to the total prediction errors, which makes it easy for prediction 

models to remember the patterns of usual data but not those of burst data. 

 

Figure 1. (a) shows the average speed of a link between 16:00 and 24:00 on July 11 (Saturday, with a 

concert) and July 18 (Saturday, without any planned SEs). (b) shows the visualization results for 

short-term prediction under SEs of the SRCN model. 

 

Therefore, the performance of mainstream methods tends to be dissatisfactory in 

traffic states under special events. The core of conventional traffic flow prediction 

methods is to appropriately establish a learnable mapping relation that links historical 

records and future traffic flow data. This phenomenon can be explained from a 

probabilistic perspective: traffic bursts caused by SEs result in observations that are 

far from others [12]. In the context of a sequence prediction problem, for similar 

historical records, the conditional probabilities of subsequent values in unusual cases 

are relatively low, so that traffic bursts caused by SEs are discarded as outliers in most 

of the previous works. Taking an advanced DL model, the spatiotemporal recurrent 

convolutional network (SRCN), as an example, in short-term prediction, the model 



 

 

will disregard these outlier traffic bursts, as shown in Fig. 1(b). Similar results have 

been obtained in models such as the temporal graph convolutional network (T-GCN) 

[6] and reinforced spatial-temporal attention graph (RSTAG) [13]. 

Researchers have made some attempts at short-term traffic prediction under SEs. 

Some hope to enhance their forecasts with data from other sources, such as social 

media [14]; this idea is ingenious but unstable because it cannot handle emergencies. 

Some previous works try to label collected traffic flow data to distinguish usual cases 

and bursts [15]. They train separate models dedicated to different traffic states. 

However, this kind of method relies too much on manually calibrated data, and 

severely imbalanced training samples cannot support them. In addition, for highly 

dynamic traffic flow, especially unexpected traffic busts, prediction models must have 

highly dynamic adaptation ability. Most models do not yet have this ability. 

Some studies show that traffic flow series collected from the same link over 

several consecutive days have similar trends; these trends are defined as intraday 

trends. In data-driven forecasting, traffic bursts are easy to disregard because they 

deviate too far from the intraday trend [10,16,17]. Inspired by this, we extract the 

short-term trends to characterize traffic bursts and fuse them with observed traffic 

states as a new feature to describe the evolution of traffic flow. Based on the 

abovementioned discussion, we propose a novel method referred to as the traffic 

burst-sensitive model (TBSM) for traffic forecasting tasks influenced by SEs. The 

TBSM applies state-and-trend units to conduct pattern recognition of traffic states and 

uses a new criterion of the similarity degree (SD) to mine ‘high-value’ data. In this 

way, the model can sensitively capture and characterize traffic bursts. Additionally, 

we use a deep deterministic policy gradient (DDPG) framework, which contains long 

short-term memory (LSTM) networks to realize the self-learning and adjustment of 

the TBSM to eliminate the dependence on massive annotated data [18]. Our 

contributions are threefold: 

1. A novel model is constructed for short-term traffic prediction under SEs. By 

considering both the observed traffic state and its short-term evolution trend, 

the model realizes traffic burst sensitivity. 

2. We formulate the traffic state prediction problem as a Markov decision 

process (MDP), in which the state space, action and reward function are 

skillfully designed. In addition, to maintain a real-time and self-adaptive 

model, we consider a continuous action space, and thus, a DDPG framework 

is proposed to solve the problem. To the best of our knowledge, similar 

modeling ideas and optimization methods have not been reported in traffic 

prediction problems. 

3. We evaluate our approach using a real-world traffic dataset. The results 

show that this method has significant advantages in 2- to 6-min short-term 

traffic prediction. Further analysis demonstrates that the proposed model can 

better capture brief bursts of traffic flow. 

The remainder of this paper is organized as follows. Section 2 reviews relevant 

research on traffic forecasting. In section 3, we describe the TBSM in detail. Section 4 

provides some numerical results to verify the effectiveness of the proposed method. 



 

 

Finally, we conclude the paper and discuss future work in section 5. The necessary 

proofs and algorithm details are available in the Appendix. 

 

2. Literature review 

Traffic flow prediction approaches can be divided into two major categories: 

model-based approaches and data-driven approaches [19]. Many model-based 

prediction approaches have emerged in previous years [20]. The representative 

methods include the traffic velocity model [21], cell transmission model [22], store 

and forward model [23], etc. Researchers have tried to explain the instantaneous and 

steady-state relationships among traffic volume, speed, and density through these 

models. However, the variations in traffic data in complex, real-world environments 

can rarely be described accurately, and the construction of these models is easily 

influenced by traffic disturbances and sampling point spacing. As a result, this kind of 

model has gradually fallen out of favor. 

With the development of data acquisition technology, data-driven approaches 

have been widely considered with the support of massive traffic-related big data [24–

26]. Compared with model-based approaches, such methods mainly infer the variation 

tendencies based on the statistical regularity of historical data and are universal and 

flexible. Over the past decade, there has been a proliferation of data-driven 

forecasting approaches; these methods can be divided into parametric models and 

nonparametric models [27,28]. Parametric models usually calibrate the parameters of 

the regression function through historical data to realize traffic state prediction. Due 

to the simplicity of the algorithms and convenient calculations, many parametric 

models have appeared. The autoregressive integrated moving average (ARIMA) 

model is the most representative. In 1995, Hamed et al. first used the ARIMA model 

to predict the traffic volume in urban arterials [29], and improvements based on this 

model have continuously emerged, including the Kohonen ARIMA [30], subset 

ARIMA [31] and seasonal ARIMA [32]. Although they are very easy to use, 

traditional parametric models can scarcely reflect the nonlinearities and uncertainties 

of traffic data, so their prediction accuracy is limited. The emergence of 

nonparametric models addresses these problems well. With enough historical data, the 

nonparametric models can learn statistical regularity and achieve higher accuracy. 

Common nonparametric models include K-nearest neighbor (KNN) models, support 

vector regression (SVR) models, and neural network models. 

Influenced by the technological advancement of natural language processing and 

computer vision, DL prediction models based on artificial neural networks (ANNs) 

are favored by scholars for their learning and generalization abilities. For example, in 

[33], Huang et al. developed a multitask deep structure based on the unsupervised 

learning method of a deep belief network and with a supervised learning regression 

layer at the top to predict short-term traffic flow. Compared with the prediction 

accuracy of traditional methods such as ARIMA, support vector machines (SVMs) 

and ANNs, the prediction accuracy is improved by approximately 5%. Similar 

modeling methods also appear in [34] and [35]. With the development of research, 

people have gradually realized the importance of modeling spatiotemporal 



 

 

dependence. In this process, deep hybrid architectures consisting of CNNs and LSTM 

have gained favor [5]. Lv et al. proposed a stacked autoencoder (SAE) model to 

capture the spatiotemporal features from traffic data and to realize short-term traffic 

flow prediction [36]. Yu et al. proposed an SRCN model that combines a deep CNN 

and LSTM and achieved accurate short-term and long-term traffic state prediction 

[37], and Yang et al. developed a convolutional long-term memory neural network 

based on critical road sections to overcome the problem of structural missing data 

[38]. However, the spatial relationship of spatial monitoring points in road networks is 

non-Euclidean, which leads to the failure of CNN-based methods to reflect 

spatiotemporal dependence in essence. Therefore, the GCN is developed to model the 

spatial relationship. In [6], Zhao et al. used the GCN to obtain the spatial dependence 

and the gated recurrent unit (GRU) to obtain the temporal dependence and to 

construct a T-GCN model. The success of the T-GCN model has attracted extensive 

attention. Recently, researchers have focused on using graph networks to improve 

traffic prediction [39–41]. A series of models, such as the graph multiattention 

network (GMAN) [42], optimized graph convolution RNN (OGCRNN) [43] and 

geographically weighted gamma regression (GWGR) [44], were developed and 

obtained advanced effects. 

Although short-term traffic state prediction has been a popular research topic for 

a long time, relatively few studies address prediction methods for traffic bursts caused 

by SEs. Some researchers tend to improve the quality of data. In [14], Ni et al. 

developed a short-term traffic flow model that incorporates features extracted from 

social media to forecast the incoming traffic flow prior to sport events. They extracted 

effective information from tweets to understand the attention and opinions of the 

public in relation to prior-event traffic prediction. However, since the judgment and 

classification of social media data are highly subjective, they are not persuasive 

enough. In addition, social data are prone to privacy and difficult to obtain. Therefore, 

the universality and real-time performance of this method are limited. In [16] and [45], 

detrending is employed in data processing to alleviate the influence of intraday trends 

on short-term prediction. This method removes long-term trends from the data input 

and improves the prediction accuracy to some extent, but it still cannot avoid the 

problem of ignoring transient traffic bursts. Other researchers try to use multiple 

models for both usual cases and special cases [8,15]. For example, in [15], the authors 

divide the data into usual case and accident data in advance, train two LSTM models 

and combine them. Such methods rely heavily on large amounts of preannotated data, 

and different event types degrade their performance. It can achieve good results only 

if we know which kind of SEs would take place and have enough sources to label the 

data. However, many types of SEs, such as traffic accidents and natural disasters, are 

unpredictable, leaving few options other than capturing them as they happen. 

In general, current traffic flow prediction models for SEs still have some 

limitations; specifically, they tend to ignore the traffic bursts caused by events, lack 

real-time data and are overly reliant on labeled data. Different from previous studies, 

we establish a state-and-trend unit and directly search for similar features based on it. 

In this way, the model can sensitively capture traffic bursts. After Gaussian weighting 



 

 

of the parameters, we treat the prediction problem as a sequential decision and apply 

the reinforcement learning method to optimize it. Reasonable reward function settings 

eliminate the dependence on labeled data. Most importantly, this model is 

self-learning in real time based on traffic conditions, which is more practical. 

 

3. Methodology 

3.1 Problem statement 

For the limitation of the existing models, we describe the concept and method 

introduced in the model and give the basic prediction form so that we can extract 

high-value data from sparse data and capture traffic bursts. 

3.1.1 Definitions 

1. Traffic state 𝑉𝑡: The goal of this paper is to predict the traffic state in a 

certain period based on historical data. The traffic state is a general concept 

that can be the traffic speed, flow, or density. We denote the traffic state of 

link 𝑙𝑖  at time 𝑡  as 𝑣𝑙𝑖
(𝑡) . Furthermore, for road network 𝐿 =

{𝑙1, 𝑙2, … , 𝑙𝑛} , its traffic state 𝑉𝑡  can be defined as 𝑉𝑡 =

{𝑣𝑙1
(𝑡), 𝑣𝑙2

(𝑡), … , 𝑣𝑙𝑛
(𝑡)}. 

2. Short-term trend 𝜏𝑡: As shown in Fig. 2(a), for the same traffic state 𝑉𝑡, 

different short-term trends may produce completely different evolutionary 

outcomes. Therefore, it is more advantageous to add further short-term 

trends than to use only state series for prediction under traffic bursts. 

Assume that 𝛿  is the time lag of prediction, and 𝜏𝑡  is introduced to 

describe the short-term evolution of the traffic state. This evolution can be 

viewed as the trend direction of the traffic state evolving from one time (𝑡 −

𝛿 + 1) to another time 𝑡 in the n-dimensional space where the state point 

is located as follows: 

 𝜏𝑡 = 𝑉𝑡−𝛿+1 − 𝑉𝑡 (1) 

The short-term trend is a high-dimensional vector with the same dimension 

as the number of road sections in the road network, and we only take its 

direction as a feature. 

3. State-and-trend unit 𝑋𝑡: To sensitively capture burst phenomena in traffic 

flow under the influence of SEs, we regard 𝑋𝑡 as the attribute feature of the 

road network at time 𝑡. On the basis of 𝑉𝑡 and 𝜏𝑡, the state-and-trend unit 

can be described as follows: 

 𝑋𝑡 = {𝑉𝑡 , 𝜏𝑡} (2) 

In this way, the traffic forecasting problem can be considered as learning the key 

parameters of prediction model 𝑃 on the premise of historical data and the observed 

state-and-trend unit 𝑋𝑡  and then calculating the traffic state 𝑉𝑡+𝑓  in the next 𝑓 

moments, as shown in (3). 

 [𝑋𝑡−𝛿+1
 , 𝑋𝑡−𝛿+2

 , . . . , 𝑋𝑡]
𝑃
→ 𝑉𝑡+𝑓 (3) 

 



 

 

3.1.2 Similarity measurement of the state-and-trend units 

For traffic bursts, nearest neighbor analysis (NNA), which can directly select the 

samples most similar to the current state from the state space instead of disregarding it, 

is a more appropriate prediction form [8,10]. As mentioned in section 1, forecasting 

can be regarded as a process of recognizing natural groups or clusters in 

multidimensional data based on similarity measures. Therefore, a novel measure of 

the SD between historical data and observed values should be constructed based on 

the state-and-trend unit. In this process, we choose to measure the traffic state and 

short-term trend that constitute the state-and-trend unit and then fuse them. 

 

Figure 2. Graphic illustration of short-term trends. (a) describes the influence of short-term trends on the 

evolution of traffic states and (b) demonstrates the rationality of using cosine similarity to measure the 

similarity between short-term trends. 

Traditional NNA-based models usually employ Euclidean distance (ED) to 

measure the similarities between the predicted state series and the archived state series 

[46,47]. In the proposed model, we followed this approach to address traffic states 𝑉𝑡. 

The ED between 𝑉𝑡 and historical state 𝑉𝑡𝑖
 is calculated as follows: 

 ED𝑖 =∥ 𝑉𝑡 − 𝑉𝑡𝑖
∥2 (4) 

For short-term trends 𝜏𝑡 and 𝜏𝑡𝑖
, we can regard them as two vectors in state 

space, starting from the same origin and pointing in different directions, and an angle 

is formed between them, as shown in Fig. 2(b). If the angle is 0 degrees, the direction 

is the same, which means that the short-term trends of 𝑡 and 𝑡 + 1 are exactly equal, 

and vice versa. Therefore, we can judge the similarity of short-term trends by the size 

of the included angle. Cosine similarity measures the similarities between vectors by 

the cosine of their angle, which has been one of most practical similarity measures 

[48]. Nonpositive cosines usually exhibit opposite trends; thus, we define the cosine 

distance (CD) to reflect the similarity of traffic evolution trends, as shown in (5). 

 CD𝑖 = 1 −
�⃗⃗�𝑡⋅�⃗⃗�𝑡𝑖

∥�⃗⃗�𝑡∥∥�⃗⃗�𝑡𝑖
∥
 (5) 



 

 

CD takes 1 minus cosine similarity; thus, it is bounded by [0, 2]. When CD is equal 

to 0, the angle between 𝜏𝑡  and 𝜏𝑡𝑖
 is zero and these two short-term trends are 

regarded as identical. Meanwhile, when CD is 2, these two short-term trends are 

regarded as opposite. 

The EDs between the current benchmark state and historical states are mapped to 

the scale of [0, 2], the same as CD, using the min-max scaling method. Thus, the SD 

between samples is: 

 SD𝑖 = 𝛼
2(ED𝑖−min{ED})

max{ED}−min{ED}
+ (1 − 𝛼)CD𝑖 (6) 

where 𝛼 is the factor to balance the weight of ED𝑖 and CD𝑖 in the forecast and 𝛼 ∈

[0 , 1]. We define it as the equilibrium factor. When 𝛼 approaches 0, the short-term 

trend plays a decisive role in the measurement of state unit similarity. In contrast, the 

similarity of state units depends more on the similarity of reference state points when 

𝛼 approaches 1. Therefore, the dynamic property of 𝛼 better adapts the similarity 

measurement for urban traffic states under SEs. 

 

3.1.3 Foundational form of the prediction results 

Assume that the searched K-nearest neighbors of 𝑋𝑡  according to SD are 

[𝑋𝑡1
, 𝑋𝑡2

, ⋯ , 𝑋𝑡𝐾
]  and the corresponding traffic state is [𝑉𝑡1

, 𝑉𝑡2
, ⋯ , 𝑉𝑡𝐾

] . In the 

general form of NNA, the predicted value at 𝑡 + 𝑓 can be expressed as (7). 

 �̂�𝑡 =
1

𝐾
∑ 𝑉𝑡𝑖

𝐾
𝑖=1  (7) 

To reduce the interference of the difference caused by the randomness of different 

neighbors to the prediction, we choose to forecast the increments. We define the 

increment as the difference value between adjacent 𝑉𝑡𝑖
 and 𝑉𝑡𝑖+𝑓; then, the form of 

the predicted results is shown as follows: 

 {
△ 𝑦𝑡𝑖

= 𝑉𝑡𝑖+𝑓 − 𝑉𝑡𝑖

�̂�𝑡 = 𝑉𝑡 +
1

𝐾
∑ △ 𝑦𝑡𝑖

𝐾
𝑖=1

 (8) 

3.2 Problem transformation 

3.2.1 Gaussian weighted prediction mode 

In section 3.1, we present the form of the increment-based traffic prediction. 𝐾, 

the number of nearest neighbors, is undoubtedly the basis of the model. The 

parameter 𝛼 introduced in the new similarity determines whether the model can 

make predictions under traffic bursts. In [49], the authors point out that the Gaussian 

weighted prediction function integrates the generations of nearest neighbors so 

effectively that prediction accuracy will neither increase significantly nor decrease 

when 𝐾 increases by more than a certain value, as shown in Fig. 3. 

In other words, we can judiciously relax the constraint of 𝐾 in the proposed 

model by Gaussian weighting and concentrate on choosing an appropriate 𝛼 for the 

traffic state under SEs. The introduced Gaussian function is shown as follows: 

 𝑤𝑖 = 𝑒−2SD𝑖
2
 (9) 



 

 

and the relevant prediction model is transformed as (10). 

 �̂�𝑡 = 𝑉𝑡 + ∑
𝑤𝑖

∑ 𝑤𝑖
𝐾
𝑖=1

△ 𝑦𝑡𝑖

𝐾
𝑖=1  (10) 

 
Figure 3. MAPE changes with the K value before and after Gaussian weighting. 

 

3.2.2 MDP modeling of the prediction problem 

In (10), the optimal value of 𝐾 can be calibrated in advance through massive 

data, and we describe this process in Appendix A. However, for every observed 

state-and-trend unit 𝑋𝑡, there is a parameter 𝛼 that minimizes the prediction error. A 

fixed prediction model obviously does not satisfy the need to address the traffic state 

under both SEs and the usual case, and a model that can constantly adjust itself is 

necessary. With that as the motivation, the prediction problem is transformed into a 

sequential decision problem; i.e., in each prediction window, we calculate an optimal 

𝛼 value in real time based on the observed state units and historical sequence to 

minimize the prediction error. 

Using the absolute value of the prediction residual as the loss function, the 

problem can be expressed as follows: 

 min |𝑉𝑡+𝑓
 − (𝑉𝑡

 + ∑
𝑤𝑖

∑ 𝑤𝑖
𝐾
𝑖=1

(𝑉𝑡𝑖+𝑓
 − 𝑉𝑡𝑖

)𝐾
𝑖=1 )| (11) 

subject to: 

 {

𝑤𝑖 = 𝑒−2𝑆𝐷𝑖
2

SD𝑖 = 𝛼
2(ED𝑖−min{ED})

max{ED}−min{ED}
+ (1 − 𝛼)CD𝑖

𝛼 ∈ [0 , 1]

  

where 𝑉𝑡  is known. 𝑉𝑡𝑖
 and 𝑉𝑡𝑖+𝑓  are retrieved from the historical database 

according to SD, which only relates to 𝛼. However, 𝑉𝑡+𝑓 is completely unknown 

and can only be observed in the 𝑡 + 𝑓 moment, which makes it unsolvable with 

conventional optimization methods. Considering that the short-term traffic prediction 

task usually adopts the form of a rolling forecast, that is, when a prediction is 

completed and the duration of the prediction window is extended, the real-time traffic 

condition obtained by the perception method can be used for the next prediction as 



 

 

well as the evaluation of the original prediction. Within each prediction step, the 

decision-making process depends only on the observed state [𝑋𝑡−𝛿+1, 𝑋𝑡−𝛿+2, . . . , 𝑋𝑡], 

does not depend on the historical action of the model, and therefore conforms to the 

Markov property. In that case, the above sequential decision problem can be 

expressed as a continuous-time MDP. This modeling approach provides the possibility 

of using reinforcement learning (RL) to judge the state of the environment and to 

optimize the prediction model in real time. 

3.3 DDPG-enabled TBSM 

To adjust the model in real time and to effectively mitigate traffic bursts, we 

choose to design an agent to solve the MDP problem proposed in section 3.2. The 

agent aims to automatically provide the optimal prediction model configuration 

scheme according to the different short-term traffic state evolution scenarios and the 

prediction model's prediction effect evaluation in each prediction. Additionally, under 

the premise of fully learning the evolution characteristics of short-term traffic states, 

the model can fully evaluate the running state of the prediction model in real time, 

which is beneficial to real-time dynamic optimization of the prediction model and 

improves the prediction accuracy. In Fig. 4, we present an iteration of tasks in which 

an agent and an environment interact at discrete time steps. 

 
Figure 4. Iteration of prediction tasks. 

To apply the above framework to traffic prediction, we first need to define some 

features to represent the condition, a set of actions and a reward function. Then, we 

should choose an appropriate algorithm to establish the optimal policy to maximize 

the rewards in each time step. 

3.3.1 Design of deep reinforcement learning (DRL) components 

In our model, three key elements of RL can be expressed as follows: 

⚫ State 𝑆𝑡: To ensure that the RL agent can learn a proper policy, it needs 

inputs that are representative of the traffic state and are somewhat predictive 

in aggregate. Therefore, we set 𝑆𝑡 = {𝑋𝑡 , 𝑧𝑡} , where 𝑋𝑡  is the 

state-and-trend unit at time t and 𝑧𝑡 represents the state of the prediction 

model itself. We use the known residual of the last prediction at time 𝑡 to 

describe this parameter, i.e., 𝑧𝑡 = 𝑉𝑡 − �̂�𝑡−𝑓. 

⚫ Set of actions 𝑎𝑡: In the prediction problem presented in section 3.2, the 

equilibrium factor 𝛼 in (6) is the key element. Therefore, 𝑎𝑡 is defined as 

the process of choosing a value of 𝛼, where 𝛼 ∈ [0 , 1]. 



 

 

⚫ Reward 𝑟𝑡 : The reward of an agent is defined as the average index 

improvement rate; that is, when the index obtained by executing 𝑎𝑡  is 

smaller than that obtained by the precalibrated model 𝑃0, 𝑎𝑡 is considered 

valid; otherwise, the opposite is true. Thus, 𝑟𝑡 can be calculated as follows: 

 𝑟𝑡 = {
1

2
(

𝑀𝐴𝐸𝑡−𝑀𝐴𝐸𝑡
′

𝑀𝐴𝐸𝑡

 + 𝑀𝐴𝑃𝐸𝑡−𝑀𝐴𝑃𝐸𝑡
′

𝑀𝐴𝑃𝐸𝑡
) × 100%, 𝑎𝑡 is valid or invalid

0, 𝑎𝑡 is incompletely valid
 (12) 

where 𝑀𝐴𝐸𝑡 and 𝑀𝐴𝐸𝑡
′ are the average absolute value errors obtained by 𝑃0 

and using action 𝑎𝑡 , respectively. Similarly, 𝑀𝐴𝑃𝐸𝑡  and 𝑀𝐴𝑃𝐸𝑡
′  can be 

obtained. If the indexes obtained by executing action 𝑎𝑡 are all smaller than 

those obtained by 𝑃0, we can regard action 𝑎𝑡 as an effective optimization, and 

we define that 𝑟𝑡 > 0. Otherwise, 𝑎𝑡 is regarded as invalid optimization. To 

accelerate the convergence of the algorithm, we also define the actions with an 

optimization ratio less than 1% as ‘incomplete valid’; the reward for the action is 

0. Thus, the effect of prediction can be fed back to the agent with positive and 

negative real-time rewards so that the agent can learn how to select parameter 𝛼 

after repeated training to improve the prediction effect of the model. The 

acquisition process of 𝑃0 is shown in Appendix A. 

 

Figure 5. Framework of the proposed method. 

3.3.2 Optimal strategy search algorithm: DDPG 

Since the state is formulated by dynamic environmental information and the 



 

 

action space contains many continuous values, normal DRL methods such as a deep Q 

network (DQN) cannot handle this kind of problem. Suppose that DDPG is an 

actor-critic and model-free algorithm for RL over continuous action spaces and 

outputs deterministic actions in a stochastic environment to maximize cumulative 

rewards [50]. Therefore, we propose a DDPG-based method to maximize the reward 

function. The framework of the proposed method is shown in Fig. 5 and consists of an 

actor network, a critic network and a replay buffer. In addition, each network is 

constructed by two deep neural networks (DNNs), i.e., a primary network to select 

actions and a target network to evaluate actions. The detailed processes are introduced 

as follows: 

First, the agent collects information from the environment, including the traffic 

state 𝑥𝑡  and the model state 𝑧𝑡 . The actor network selects an action 𝑎𝑡  by 

substituting the current state 𝑆𝑡 into the behavior policy, as in (13). 

 𝑎𝑡 = 𝜇(𝑆𝑡|𝜃𝜇) + 휁𝑡 (13) 

where 𝜇 is the current primary policy and 휁𝑡 is stochastic noise. 

Second, the model obtains the prediction according to the 𝛼 given by 𝑎𝑡. We 

enter the next time step, update the state to 𝑆𝑡+1, and return the immediate reward 𝑟𝑡 

to the agent. Thereafter, (𝑆𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑆𝑡+1) represents tuples input into the replay buffer 

as training data for the primary network. 

Third, we use the mean square error (MSE) to construct the loss function of the 

critic network: 

 𝐿 =
1

𝒩
∑ (𝑞𝑖 − 𝑄𝜃𝑄(𝑆𝑖 , 𝑎𝑖)|𝑎𝑖=𝜇𝜃𝜇(𝑆𝑖))2

𝑖  (14) 

where 𝑞𝑖 can be regarded as a 'label' and depends on the target network; this term is 

defined as follows: 

 𝑞𝑖 = 𝑟𝑖 + 𝛾𝑄′
𝜃𝑄’ (𝑠𝑡+1

 , 𝜇𝜃𝜇’
 (𝑠𝑖+1)) (15) 

The policy gradient of the critic network is shown in (14), where 휀𝑖  is the 

temporal-difference error. 

 {
∇𝜃𝑄𝐿 =

2

𝒩
∑ 휀𝑖 ⋅ ∇𝜃𝑄𝑄𝜃𝑄(𝑆𝑖 , 𝑎𝑖)𝑖

휀𝑖 = 𝑞𝑖 − 𝑄(𝜃𝑄)(𝑆𝑖 , 𝑎𝑖)|(𝑎𝑖 = 𝜇(𝜃𝜇)(𝑆𝑖))
 (16) 

Based on the sampling transition tuples from the relay buffer and 𝜃𝑄, the actor 

network updates the behavior policy using (17), in which the Monte Carlo method is 

employed, i.e., we input minibatch-size data. 

 ∇𝜃𝜇𝐽 ≈
1

𝒩
∑ ∇𝜃𝜇𝜇𝜃𝜇(𝑆𝑖)𝑖 ⋅ ∇𝑎𝑖

𝑄𝜃𝑄(𝑆𝑖 , 𝑎𝑖)|𝑎𝑖=𝜇𝜃(𝑆𝑖) (17) 

Finally, we utilize the soft updating method to partially update the parameters of 

the target networks by online networks, which can be formulated as follows: 

 {
𝜃𝑄’ ← 𝜑𝜃𝑄 + (1 − 𝜑)𝜃𝑄’

𝜃𝜇’ ← 𝜑𝜃𝜇 + (1 − 𝜑)𝜃𝜇’
 (18) 

where 𝜑 is an updating coefficient. When the reward converges to a stable value, we 

consider the optimal solution of the problem to be obtained. 



 

 

3.3.3 Network structure 

The structural design of the critic and actor networks is very important since they 

are not only function approximators but also part of feature learning. As shown in Fig. 

5, the actor and critic each have a primary network and target network, and the latter 

can be considered a copy of the former. Therefore, they share the same network 

structure. 

The function of actor networks is to decide the corresponding action 𝑎𝑡 

according to the state 𝑆𝑡, guided by the behavioral strategy 𝛽. As shown in Fig. 6, the 

actor networks consider the state-and-trend unit 𝑋𝑡 and the prediction model state 𝑧𝑡 

as input and output continuous action values 𝛼 of the TBSM. Considering the 

complex and strong time-varying characteristics of short-term traffic evolution, 

LSTM is applied to combine the temporal features of the state-and-trend unit as a 

feature extraction layer. In LSTM, each memory cell has an input gate 𝐼𝑡, a forget 

gate 𝐹𝑡  and an output gate 𝑂𝑡  using a 𝑠𝑖𝑔𝑚𝑜𝑖𝑑  activation function. They are 

utilized to decide whether to accept the computation results of the preceding memory 

cell and add them to the cell state computation (19), whether to selectively forget the 

preceding information from the network (20), and whether to output its own 

computation results (21). 

 𝐼𝑡 = sigmoid(𝑤𝐼 ⋅ [𝒳𝑡
 , ℎ𝑡−1] + 𝑏𝐼) (19) 

 𝐹𝑡 = sigmoid(𝑤𝐹 ⋅ [𝒳𝑡
 , ℎ𝑡−1] + 𝑏𝐹) (20) 

 𝑂𝑡 = sigmoid(𝑤𝑂 ⋅ [𝒳𝑡
 , ℎ𝑡−1] + 𝑏𝑂) (21) 

where 𝑤𝑥 is the corresponding weight matrix and 𝑏𝑥 is the bias term. 𝒳𝑡 and ℎ𝑡 

are the input and output values of the memory cell at moment 𝑡, respectively. Assume 

that 𝐶𝑡 is the cell state, which can be represented as follows: 

 {

�̃�𝑡 = tanh(𝑤𝐶 ⋅ [𝒳𝑡
 , ℎ𝑡−1] + 𝑏𝐶)

𝐶𝑡 = 𝐶𝑡−1 ⊗ 𝐹𝑡 + �̃�𝑡 ⊗ 𝐼𝑡

ℎ𝑡 = 𝑂𝑡 ⊗ 𝑡𝑎𝑛ℎ(𝐶𝑡)

 (22) 

The application of LSTM can effectively cope with the strong time-varying 

feature of short-term traffic evolution and greatly improve the accuracy of the 

prediction task. In addition, a rectified linear unit (ReLU) is utilized as the activation 

function of the fully connected layer in the network to alleviate overfitting. 

 

Figure 6. Structure of actor and critic networks. 



 

 

The function of critic networks is to calculate the value of 𝑄 to evaluate the 

decisions of actor networks according to the system state 𝑆𝑡  and action 𝑎𝑡 . 

Considering that the critic network requires an additional input action value 𝑎𝑡, we 

employed a two-layer fusion layer, and the final network output layer outputs Q 

values through a neuron using a linear activation function, as shown in Fig. 6. 

At this point, we completed the construction of the DDPG-enabled TBSM. In 

each time step, the trained TBSM can choose an appropriate 𝛼 based on the observed 

state 𝑋𝑡  and historical data [𝑋𝑡−𝛿+1, 𝑋𝑡−𝛿+2, . . . , 𝑋𝑡−1]. This parameter 𝛼  always 

tends to improve the prediction accuracy relative to the precalibrated model 𝑃0. Then, 

the 𝑆𝐷𝑖 between the observed state 𝑋𝑡 and each historical state is calculated based 

on 𝛼, and the nearest 𝐾 of them are selected to obtain the predicted value 𝑉𝑡+𝑓 

according to (10). When SE-induced traffic bursts are generated, the model can 

identify them and adjust itself in time to ensure the accuracy of short-term prediction. 

The pseudocode of the proposed method is illustrated in Algorithm 1. 

 



 

 

4. Experiment 

In this section, the proposed model is evaluated based on a real-world dataset, and 

the results are analyzed. 

4.1 Data preparation 

4.1.1 Data source 

As one of the largest stadiums in Beijing, Beijing Workers’ Stadium holds 

hundreds of large-scale cultural activities every year and therefore is very popular and 

influential in Beijing. Therefore, this experiment employs a proprietary traffic dataset 

that contains global positioning system (GPS) trajectory data of vehicles, including 

speed and spatiotemporal information around the Beijing Workers’ stadium. This 

dataset is also used in [37] and [38]. The data were collected from June 30, 2015, to 

July 31, 2015, and the sampling frequency was 2 min (720 time steps in 1 day). 

The research area is the road network around the Beijing Workers’ Stadium, 

which encompasses 257 links and an area of 4.52 𝑘𝑚2 . In summer, SEs are 

frequently held in the stadium and gymnasium. Two football games and concerts were 

held at Beijing Workers’ Stadium and Gymnasium in July 2015, which increased the 

burden of this traffic network more frequently than the usual case. The dataset 

includes the observation of several SEs in the district of interest. We manually 

annotate contextual information regarding events, including the event venue, event 

category, event start time and end time, using information obtained via Web searches. 

Based on the retrieval results, the data are divided into historical, validation and test 

datasets at a ratio of 2:1:1, ensuring that each dataset contains SEs. Table 1 shows the 

dates and types of the selected samples. 

Table 1. The SEs contained in the dataset. 

Date Strat Date Event Dataset 

Jul. 11th 19:30 21:00 Concert 
Historical dataset 

Jul. 12th 19:35 21:25 Football game 

Jul. 17th 19:30 21:20 Concert 
Validation dataset 

Jul. 20th 19:35 21:25 Football game 

Jul. 25th 19:30 21:35 Concert Test dataset 

 

4.1.2 Data processing 

Unfavorable factors, such as outliers and missing values in original data, 

inevitably impact the performance of short-term traffic prediction models. In this 

paper, we define the time mean speed 𝑣𝑙(𝑡) at time 𝑡 as the traffic state of link 𝑙, 

which can be obtained by calculating the mean speed of all cars on link 𝑙 at this time, 

as shown in (23). 

 𝑣𝑙(𝑡) =
1

𝑛
∑ 𝑣𝑖

𝑛
1  (23) 

We followed five steps to process the raw data. 

1. Data normalization: To eliminate the influence of the urban road hierarchy, 

we normalize 𝑣𝑙(𝑡) according to the speed limit of each level as follows: 

 𝑣𝑙(𝑡) = min (
𝑣𝑙(𝑡)

𝑣𝑙
max

 , 1) (24) 



 

 

where 𝑛 is the number of vehicles on link 𝑙 at time 𝑡, 𝑣𝑖 is the speed of 

each vehicle and 𝑣𝑙
𝑚𝑎𝑥 is the speed limit of road link 𝑙. 

2. Data completion: Due to limitations from objective factors such as the data 

acquisition and transmission conditions, the occurrence of missing data is 

generally difficult to avoid. In this paper, we employ linear interpolation to 

complete the missing data. Specifically, the mean value of the upstream and 

downstream data is utilized as the filling value when missing data occur in a 

certain link, and the mean value of data before and after the time is used as 

the filling value when missing data occur at a certain time. 

3. Data Filtering: Considering the merits of robustness to outliers, high 

flexibility and independence of any assumption, data denoising is carried out 

based on the locally weighted scatterplot smoothing (LOESS) filter to isolate 

the evolution trend of the traffic state. The specific processing flow refers to 

the past work of [48,51]. 

4. Intraday trend removal: Removing intraday trends is considered to be an 

effective method for improving the prediction accuracy. Concretely, all data 

are detrended by subtracting the average flow at the same time of the last 

few weeks, as suggested in [11] and [16]. 

5. Data dimensionality reduction: Due to the similarity of the traffic flow in 

the upstream and downstream roads, there is a strong correlation between 

the data characteristics of the traffic state in the complete road network. 

Therefore, the direct input of data leads to dimension redundancy. In this 

study, the Pearson correlation coefficient is used to describe the correlation 

of traffic state changes on each road section, and one of each pair of highly 

correlated links is eliminated. Assuming that the variation sequence of the 

traffic state on link 𝑖 is 𝑙𝑖 and that the Pearson correlation between link 𝑖 

and link 𝑗 is calculated as shown in (25), the calculation results yield the 

matrix shown in Fig. 7. We employ links with high correlation (𝜌𝑖𝑗 ⩾ 0.8) 

to retain and obtain representative sections [52,53]. As a result, 94 links are 

selected as the input of the road network, and the entire 257 links are output. 

 𝜌𝑖𝑗 =
𝑐𝑜𝑣(𝑙𝑖

 , 𝑙𝑗)

√𝐷(𝑙𝑖)√𝐷(𝑙𝑗)
 (25) 



 

 

 

Figure 7. Correlation matrix of the links. 

4.2 Experimental settings 

4.2.1 Metrics 

We use two metrics to evaluate the prediction performance of the proposed 

model. 

1. Mean absolute error (MAE): 

 MAE =
1

𝑁𝑛
∑ ∑ |�̂�𝑙

𝑖  − 𝑦𝑙
𝑖|𝑛

𝑙=1
𝑁
𝑖=1  (26) 

2. Mean absolute percentage error (MAPE): 

 MAPE =
1

𝑁𝑛
∑ ∑

|�̂�𝑙
𝑖  − 𝑦𝑙

𝑖
|

𝑦𝑙
𝑖 × 100%𝑛

𝑙=1
𝑁
𝑖=1  (27) 

where �̂�𝑙
𝑖 and 𝑦𝑙

𝑖 are the predicted value and actual value, respectively, at the 

𝑖-th time interval in the 𝑙-th link. 𝑁 denotes the number of samples in the validation 

or test dataset, and 𝑛 denotes the number of links in the road network. In this 

experiment, the values of these terms are 5760 and 257, respectively. 

4.2.2 Parameters 

In this study, the initial parameters are calibrated by a series of basic experiments, 

as detailed in Appendix A. In the multistep prediction, the initial values of 𝐾 and 𝛼 

in 𝑃0 are listed in Table 2 and the time lag 𝛿 is set to 6. 

Table 2. Parameter calibration results in each multistep prediction task. 

𝑓 𝐾 𝛼 

1 97 0.9 

2 57 0.9 

3 57 0.8 

4 54 0.8 

5 54 0.7 

 

The results of the precalibration reveal that 𝐾 and 𝛼 decrease with an increase 

in the prediction step 𝑓. These findings indicate that when the prediction steps 



 

 

increase, on the one hand, traffic states are more variable because of longer 

time-varying processes, and thus, it is more difficult to capture similar state units. On 

the other hand, the impact of the benchmark state weakens gradually, and thus, the 

distance metric is supposed to decrease the proportion of the benchmark state and 

increase the proportion of the trend vector by means of adjusting the value of 𝛼 

4.2.3 Benchmark methods 

Four mainstream machine learning models and two advanced DL models are 

employed as the benchmark methods. The implementation details are introduced 

briefly as follows: 

⚫ KNN: The original KNN method uses the ED as the similarity measure and 

takes the mean value of neighbor tags as the prediction result. K=14. 

⚫ SVR: SVR is a widely used machine learning model, and the parameters are 

determined with the kernel of the Gaussian radial basis function, where 

V=10 and x=0.01. 

⚫ RF: The random forest (RF) is a flexible and stable machine learning model 

based on the integration of multiple decision trees and the bagging algorithm. 

After numerical experiment calibration, we use the Scikit-Learn toolkit to 

build an RF comparison model with 100 decision trees. 

⚫ GBDT: The gradient boosted decision tree (GBDT) is an ensemble model of 

decision trees based on a boosting algorithm. The optimized parameter is 

adopted in experiments by the grid search method. The number of decision 

trees is 100; the depth of the trees is 5; and the learning rate is 0.01. 

⚫ SAE: The SAE is a depth structure for short-term traffic state prediction that 

adopts greedy layerwise pretraining. The SAE structure constructed in this 

paper is shown in Appendix B. 

⚫ SRCN: The SRCN has achieved a better prediction performance through the 

deep combination modeling of a CNN and LSTM. To ensure the intended 

effect, this paper uses the same processing method as the original. The 

details are shown in Appendix B. 

4.2.4 Computational process 

The DNNs in the actor-critic network are based on the Keras neural network 

library with the TensorFlow framework as the back end, and the optimizer is adaptive 

moment estimation (Adam). Experiments to evaluate the proposed model include one 

to five step-ahead predictions. All of these experiments are performed on a computing 

platform with an Intel Core i7-9700K CPU (3.60 GHz), NVIDIA GeForce RTX 

2080Ti graphics processing unit (GPU), with 32.0 GB memory. 

 

4.3 Results 

4.3.1 Training phase 

The reward and round average loss function values are usually used to reflect the 

training convergence level and learning effect. Fig. 8(a) shows that the reward 

increases with the episode. In the early stage of training, the cumulative rewards of 

the round are negative, and with the progress of the training, positive promotion 

occurs. Additionally, the average loss of the critic network decreases with the number 



 

 

of rounds of training and falls below 0.4, as shown in Fig. 8(b). It is apparent that both 

objective values of the two networks converge as the training iteration increases. 

 

Figure 8. Evolution of reward and average loss during the training phase. 

4.3.2 Overall evaluation 

Table 3 shows the overall performance of the proposed model and other baseline 

methods for the prediction step ranging from 1 to 5, and the improvement rate is 

shown in Table 4. The corner mark * means that the value is optimal. It is clear that 

the TBSM shows optimal performance in short-term prediction (𝑓 = 1,2,3) under the 

MAE and MAPE criteria. In particular, when 𝑓 = 1, it achieves a test error rate 

(MAPE) of 11.1%, which is almost 60% better than these conventional models. 

Table 3. Prediction error of the TBSM and the other baseline methods. 

Models 
𝑓 = 1 𝑓 = 2 𝑓 = 3 𝑓 = 4 𝑓 = 5 

MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE 

TBSM 2.48* 11.10* 4.13* 18.82* 4.84* 22.44* 5.16 24.35* 5.34 25.52* 

KNN 4.74 25.84 4.90 26.74 5.06 27.80 5.14* 28.41 5.19* 28.82 

SVR 4.17 21.31 5.06 26.07 5.30 27.60 5.42 28.37 5.48 28.99 

RF 5.31 29.13 5.37 29.66 5.41 30.10 5.42 30.26 5.43 30.52 

GBDT 3.99 23.79 4.79 27.97 5.08 29.80 5.21 30.80 5.29 31.42 

SAE 5.01 26.29 5.04 27.94 5.07 28.16 5.15 28.22 5.21 29.11 

SRCN 4.92 26.51 5.00 27.56 5.12 29.04 5.22 29.32 5.20 29.85 

 

In addition, it can be observed that the advantage of the TBSM gradually 

narrows with an increase in the number of prediction steps. When 𝑓 = 4 and 5, 

although the TBSM still shows relatively good performance in terms of MAPE, it 

does not differ considerably from the other models in terms of MAE. This can be 

explained as follows: on the one hand, with the increase in 𝑓, it was indeed difficult 

to predict because of the more complex and uncertain variation; on the other hand, the 

state-and-trend units constructed in the TBSM are more focused on capturing 

short-term trends and should be updated for traffic forecasts with longer steps. 

Table 4. The improvement of TBSM over benchmark methods. 



 

 

Models 
𝑓 = 1 𝑓 = 2 𝑓 = 3 𝑓 = 4 𝑓 = 5 

MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE 

TBSM - - - - - - - - - - 

KNN 47.68% 57.04% 15.71% 29.62% 4.35% 19.28% -0.39% 14.29% -2.89% 11.45% 

SVR 40.53% 47.91% 18.38% 27.81% 8.68% 18.70% 4.80% 14.17% 2.55% 11.97% 

RF 53.30% 61.89% 23.09% 36.55% 10.54% 25.45% 4.80% 19.53% 1.66% 16.38% 

GBDT 37.84% 53.34% 13.78% 32.71% 4.72% 24.70% 0.96% 20.94% -0.95% 18.78% 

SAE 50.50% 57.78% 18.06% 32.64% 4.54% 20.31% -0.19% 13.71% -2.50% 12.33% 

SRCN 49.59% 58.13% 17.40% 31.71% 5.47% 22.73% 1.15% 16.95% -2.69% 14.51% 

 

Another noteworthy consideration is that DL models, i.e., SAE and SRCN, 

seemed mediocre for this issue, although it has been indicated that high accuracy can 

be obtained in short-term traffic state prediction tasks under various scenarios. A 

possible reason is that the DL model is highly dependent on a large number of training 

samples and high-quality data, both of which are scarce in the SE scenario. 

Simultaneously, the construction mechanism of the DL model attempts to minimize 

the error between its output value and the real labeled value, and training with a 

mixture of data from the evolution of conventional traffic states and the evolution of 

traffic states under SE characteristics may produce a model that occupies the middle 

ground between the two scenarios, and this construction method causes the prediction 

accuracy to suffer in both scenarios. 

4.3.3 Performance in traffic bursts 

 
Figure 9. Average speed of link-12 on July 25th (with a concert). 

To further illustrate the performance of the TBSM under SEs, the performance of 

each model is analyzed by considering the evolution and prediction of the traffic state 

of a certain section of the West Road of Worker's Stadium (link-12) as an example. 

There was a concert that took place in this area between 19:30 and 21:35 on July 25, 

2015. Its real traffic state changes are shown in Fig. 9. In the afternoon of that day, the 

average speed of the section showed a relatively obvious decline, and the low speed 

lasted for a long time before the concert started (approximately 19:30). 



 

 

 
Figure 10. Action of the TBSM in single-step prediction under a SE. 

We observe bursts occurring from approximately 19:30 to 21:30. In response, in 

single-step prediction, the trained agent chooses 𝛼 values approaching 0, which 

makes the prediction model more sensitive to the trend, as shown in Fig. 10. Fig. 11 

shows the visualization of traffic forecasting on that day. Our TBSM captures almost 

all bursts, and the results are excellent, which means that the agent can meet our 

expectations; i.e., it can select the actions with the highest predicted accuracy for 

different observation states. 

 

Figure 11. Performance of the TBSM in single-step prediction under a SE. 

Residuals between 16:00 and 24:00 are selected for observation of specific 

prediction deviations, as shown in Fig. 12. In the face of bursts caused by a sharp 

increase in traffic demand, the prediction model often exhibits peak error at this time. 

In the short-term prediction (𝑓 = 1,2), the predicted residual of the TBSM is stable at 

a low level, which proves its superiority. With increasing 𝑓, the residual values 



 

 

predicted by each model fluctuate greatly, especially in the first hour after the concert 

(21:35-22:25). In the fluctuation of the prediction effect during this period, our model 

can be adjusted the fastest, and the residuals decline the most rapidly, showing more 

stable and reliable abilities than the other models. 

 
Figure 12. Prediction residuals of four prominent models after the concert. 

As a relative indicator, the MAPE can magnify the difference between the 

predicted and true values when the former is small. Therefore, the MAPE has more 

reference value in the low-speed state after the concert. In Fig. 13, we select four 



 

 

models with better performance in the overall evaluation to observe the changes in 

their MAPE values between 21:00 and 23:00. Compared to other models, especially 

the DL models, our TBSM (the black line) shows the lowest peak error and the fastest 

adjustment speed in all prediction step sizes, suggesting that it is more adaptable and 

accurate in short-term traffic prediction under SEs. 

 

Figure 13. MAPE values of four prominent models (GBDT, SAE, SRCN and TBSM) after the concert. 

4.3.4 Statistical tests 

To assess the accuracy of multistep forecasting, we analyze the residuals, namely, 

the difference between observed values and the predicted values. References [51] and 

[54] were mainly referred to for relevant experimental settings. The results of the 

Kolmogorov–Smirnov test suggest that the prediction residuals of all models do not 

follow a normal distribution, as shown in Table 5 [55]. Therefore, a nonparametric 

statistical hypothesis test, the Wilcoxon signed-rank test, is employed to further check 

if the proposed model is statistically better than all baselines [56]. 

In this experimental setting, we use MAE instead of residuals to avoid negative 

and positive differences. The null hypothesis for the Wilcoxon signed-rank test is that 

there is no difference in the forecast error between the proposed methods and 

baselines, while the alternative hypothesis is that relative to baseline methods, the 

reduction in the forecast error of the proposed model is greater than zero. The results 

in Table 6 indicate that when 𝑓 = 1,2, the reductions in forecast errors are found to 

be very statistically significant (𝑃 < 0.001), and thus, the null hypothesis is rejected, 

i.e., there are statistically significant differences between our method and all of the 

comparison methods. When 𝑓 = 3, except for SAE, the TBSM is significantly 

superior to any other model. When 𝑓 = 4, 5, although TBSM leads by a small margin 

with regard to the MAE and MAPE, it is not statistically optimal. 

Based on the above analysis, the developed model shows a significant 

improvement in performance compared to other models in short-term prediction (2 

min, 4 min and 6 min). 



 

 

Table 5. Results of the Kolmogorov–Smirnov test for the distribution: values of the corresponding 

test statistic and p value. 

Kolmogorov–

Smirnov Test 

𝑓 = 1 𝑓 = 2 𝑓 = 3 𝑓 = 4 𝑓 = 5 

Z P Z P Z P Z P Z P 

TBSM 0.208 0 0.179 0 0.079 0 0.076 0 0.074 0 

KNN 0.079 0 0.087 0 0.042 0.005 0.076 0 0.101 0 

SVR 0.138 0 0.103 0 0.107 0 0.106 0 0.12 0 

RF 0.045 0.001 0.071 0 0.088 0 0.066 0 0.072 0 

GBDT 0.056 0 0.044 0.002 0.046 0.001 0.055 0 0.065 0 

SAE 0.111 0 0.09 0 0.092 0 0.084 0 0.089 0 

SRCN 0.055 0 0.046 0.001 0.058 0 0.062 0 0.074 0 

 

Table 6. Results of the Wilcoxon signed-rank test. The table shows the value of the corresponding 

test statistic and p value. 

Wilcoxon 

Signed-Rank 

Test 

𝑓 = 1 𝑓 = 2 𝑓 = 3 𝑓 = 4 𝑓 = 5 

Z P Z P Z P Z P Z P 

TBSM -20.246 0 -19.393 0 -5.509 0 -2.347 0.019 -0.546 0.585 

KNN -20.274 0 -20.343 0 -10.685 0 -8.809 0 -8.879 0 

SVR -18.589 0 -18.142 0 -1.396 0.16 -0.656 0.512 -0.204 0.838 

RF -18.415 0 -18.897 0 -4.243 0 -1.704 0.088 -1.078 0.281 

GBDT -19.576 0 -19.694 0 -4.3337 0 -1.168 0.243 -0.329 0.742 

SAE -20.084 0 -20.157 0 -5.233 0 -2.073 0.038 -0.766 0.443 

SRCN -20.246 0 -19.393 0 -5.509 0 -2.347 0.019 -0.546 0.585 

 

5. Conclusion 

Due to the uncontrollable elements of SEs, it is difficult to obtain abundant data 

and the desired prediction accuracy under such conditions. In this paper, we present 

the TBSM to address this challenge. Different from the previous work, we construct 

state-and-trend units to capture traffic bursts and accordingly develop a novel 

expression for sample similarity. Furthermore, we propose an incremental prediction 

form and transform the short-term prediction problem into a parameter optimization 

problem based on historical data and observation states by Gaussian weighting. A 

DDPG framework with an LSTM is employed to dynamically adjust the model to 

solve this problem and realize generality and real-time behavior. The self-learning 

nature of RL can help the TBSM eliminate reliance on large amounts of labeled data 

while making accurate predictions. 

Note that the prediction of traffic flow under SEs is evidently more challenging 

than doing so under usual cases and, hence, much desired by operational agencies. 

The experimental results on a real-world dataset demonstrate that our proposed model 

can capture traffic bursts caused by SEs and significantly outperforms all baselines in 

short-term prediction (2 min, 4 min and 6 min). That is, the TBSM is found to be 

suitable and useful in real-world operations, for example, to guide traffic signal 

control after a concert and adjust evacuation plans for sports events. 



 

 

One limitation of this study is that the model is not as efficient for 

high-dimensional input. In future studies, distributed execution and multiagent 

strategies will be taken into account. 
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Appendix A. Hyperparameter search 

To accelerate the training and convergence of the model, the parameters of the 

initial model 𝑃0 need to be calibrated at each prediction step. The hyperparameters in 

the TBSM include the prediction time lag 𝛿, the number of nearest neighbors 𝐾 and 

the equilibrium factor 𝛼. 

Appendix A.1 Time lag𝜹 

The time lag 𝛿 is regarded as an important parameter to determine the input of 

the proposed model. It is generally recognized that significant changes in traffic states 

can occur within a few minutes. To determine which value of 𝛿 achieves the optimal 

performance, we observed the influence of different l values in a wider range with a 

maximum of 20 min (𝛿 = 1,2, . . . ,10) and discovered that 𝛿 = 6 has the least 

influence on MAE and MAPE. For example, Fig. A-14 shows the performance results 

when 𝑓 = 2 and other parameters are fixed. 

 

Figure A-14. Influence of 𝛿 on MAE and MAPE of the model when 𝑓 = 2. 

Appendix A.2 𝑲 and𝜶 

Considering the small number of hyperparameters contained in the TBSM, we 

use the grid search method to determine the values of 𝐾 and 𝛼 in the initial model 

𝑃0 [57]. The core idea is to construct and train a model for each pair of parameter 

combinations in the Cartesian product of the set of different parameter values and to 

evaluate the predictive effect of the resulting model on the validation set. This kind of 



 

 

exhaustive search optimization is straightforward but very useful and can be 

implemented through the Scikit-Learn package. 

In the experiments, the influence of both 𝐾 and 𝛼 on the root mean square 

error (RMSE), MAE and MAPE are taken into account, and we finally chose MAPE, 

which is the most sensitive to parameters, for reference. Fig. A-15 (b) to Fig. A-15 (f) 

show the results, and Fig. A-15 (a) shows the average program running time for each 

𝐾 value. The optimal parameter combination can be determined through the dotted 

line in the thermal diagram. For example, for a single-step prediction (𝑓 = 1), the 

optimal value of 𝐾 is 97, and 𝛼 is 0.9 to obtain the minimum MAPE. In this way, 

we obtain the parameter values of 𝑃0 for each prediction step, as listed in Table 2. 

 

Figure A-15. Influence of 𝐾 and 𝛼 on prediction performance in grid search. 

Appendix B. Details of neural network hyperparameters in SAE and SRCN 

We developed an SAE model according to the literature [36]. We added the 

dropout layer to prevent overfitting before the final output layer. The details of the 

SAE used in this paper are shown in Table B.7. 

Table B.7. Details of the SAE architecture. 

Layer Type Number of units 

0 Input 6 × 257 

1 Hidden layer 1 400 

 ReLU  

2 Hidden layer 2 400 

 ReLU  

3 Hidden layer 3 400 

 ReLU  

4 Dropout 0.2 

5 Output 257 

 

We developed an SRCN model according to the literature [37]. Two dropout 



 

 

layers were employed to prevent overfitting. Batch normalization was applied to 

accelerate training. The details of SRCN used in this paper are shown in Table B.8. 

Table B.8. Details of the SRCN architecture. 

Layer Type Channels Size 

0 Input 1 162 × 224 

1 Convolution 1 16 (3,3) 

2 Max-pooling 1 16 (2,2) 

 ReLU   

 Batch normalization   

3 Convolution 2 32 (3,3) 

4 Max-pooling 2 32 (2,2) 

 ReLU   

 Batch normalization   

5 Convolution 3 64 (3,3) 

 ReLU   

 Batch normalization   

6 Convolution 4 64 (3,3) 

 ReLU   

 Batch normalization   

7 Convolution 5 128 (3,3) 

8 Max-pooling 3 128 (2,2) 

 ReLU   

 Batch normalization   

9 Faltten   

10 Full connection  257 

11 LSTM 1 1 800 

 Tanh   

12 Dropout  0.2 

13 LSTM 2 1 800 

 Tanh   

14 Dropout  0.2 

15 Output 1 257 
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