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Abstract

The current and future challenge for BCI centers is to develop meth-
ods and systems to remove noise, extract meaningful features and learn
from big data [26]. Generally, there are three main steps to develop such
a system and to make biosignals useful in real-world settings. These in-
clude real-time data collection, data processing (e.g., feature extraction
and classification) by computer and biofeedback to apply the desired ac-
tion. The requirements of a practical BCI system include methods for
signal processing, machine learning and brain-state analysis in large data
sets collected from user populations in real-time and in combination with
their health records [25]. Learning applications of big data in the form
of real-time acquisition with the background of the electronic healthcare
record (EHR) provide for the generation of new knowledge that will aid
in detection of outcome and, therefore, prognosis [27]. This situation
calls for the safe storage of a large archive and for high computational
resources to process big data. Accordingly, next generation BCI systems
must be connected to high-performance computing servers in order to be
able to adopt predictive models and to execute computation in real-time
for large incoming datasets. Cloud computing and edge computing are
a new Information and Communications Technology (ICT) that enables
ubiquitous and on-demand access to healthcare databases and computa-
tional resources through the global Internet.

1 Medical Big Data
As technology gets more advanced throughout all industries, there is an increas-
ing interest to measure and analyze human behavior. Data mining in retail, 
finance, a nd medicine a re among t he i ndustries where i nformation a bout con-
sumers will have a huge impact on the way businesses operate. Whether this 
data will be used to increase profits or to better our quality of l ife, i t i s certain 
that all of this data will lead to changes in our society in every aspect.

In particular, big data in medicine has greatly changed the way in which 
we analyze and manage information. The advancements in the medical device 
industry has allowed physicians to collect vast amounts of data about our per-
sonal well being. The transformation and digitization of information drives a 
more proactive healthcare model creating more accessible information for both
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the patient and the physician. The generation of this data also comes from ad-
vances in the medical device industry as well as a shift in our culture and how 
we are choosing to manage our own health. Patient-generated health data is a 
large contributor to the amount of information that is being generated. This has 
been made possible by the growth in wearable technologies in recent years. This 
includes everyday lifestyle monitoring that tracks the number of steps taken in 
a day or monitors our blood pressure as we perform our normal daily func-
tions. As the number of wearable medical devices increases, individuals will 
have growing access to information on their own well-being.

Additionally, large amounts of data from medical equipment such as neu-
roimaging and electrodiagnostic analytic tasks provide a platform for deep learn-
ing techniques to be trained with a single model without the need for manual, 
labor-intensive screenings. Applications of big data in the healthcare can in-
crease our effectiveness in diagnosing disease and on the prediction of outcomes. 
Current computer applications available to physicians only allow for basic func-
tions such as context-sensitive warning messages, reminders, suggestions for 
economical prescribing, and results of quality improvement activities. The fol-
lowing five characteristics that will have to be differentiated in order to facilitate 
the use of big data: first, the standardize the patient groups that are being com-
pared; second, the analysis would have to be automated; third, the data analysis 
would have to happen rapidly to include new incoming data; fourth, perform-
ing the data analysis would have to be user-friendly; fifth, t he a nalysis result 
would be translated in a readable manner for both the clinician and patient [27]. 
These five characteristics are important in applying analytics to health datasets 
because of the wide variation that a single disease can have on different patients.

A potential issue in the field o f medical b ig data analysis i n the manner in 
which much of this data is stored [27] Because of privacy concerns, a patient’s 
information is distributed over several databases. For example, as genetic se-
quencing gets cheaper and more accessible, there would be an increasing number 
of individuals that choose to sequence their DNA. This detailed genetic infor-
mation, however, would not be included in their medical record. Having the 
ability to form connections between these datasets would allow a more informed 
analysis that can apply to a larger population across different geographical cul-
tures. Big data in medicine will provide a new frontier in healthcare; however, 
without the proper algorithms for analysis, this data will mean nothing.

2 Big Data Analysis with Machine Learning
Machine learning methods have been increasingly used in the medical imaging 
field for computer-aided analysis of diagnostics and prognostic m odels. Several 
of these methods such as supervised, unsupervised, and deep learning have more 
recently been employed to solve medical imaging related problems. Machine 
learning is a subset of artificial i ntelligence t hat a llows machine a lgorithms to 
be programmed to an optimized performance criterion with the use of a known 
training dataset. The learning happens when an algorithm is trained to go
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Figure 1: A representation of supervised learning compared to unsupervised 
learning. Supervised learning develops a model based on data from both the 
input and the output. Types of supervised learning include classification and 
regression. Unsupervised learning only depends on the input data. Clustering 
is an example of unsupervised learning.

through data and iterate through until it is able to correctly identify charac-
teristics an labels. This machine learning is used mostly in cases where human 
expertise does not exist or are unable to quickly process and understand data. 
The unique advantage to machine learning is the ability take in large amounts 
of data and be able to recognize patterns that are beyond the human ability.

Two main applications of machine learning are supervised and unsupervised 
learning. Supervised learning is when an algorithm or function is trained on 
a set of labeled data. The supervised learning algorithm analyzes a dataset 
and makes an inferred function from the generalized data. Classification and 
regression are two types of supervised learning. In classification, the algorithm 
attempts to separate the data into distinct groups. For example, classification 
is used in pattern recognition and facial recognition the lighting, hair style, pose 
and structure. In medical context, certain symptoms can be grouped together 
to and linked to a particular illness. Supervised learning is one of the basic 
learning methods that uses simple rules to predict an outcome from an input 
data set. A slightly more complicated concept is that of unsupervised learning. 
This method forms inferences without a labeled outcomes. An example of unsu-
pervised learning is anomaly detection and clustering. Objects that are similar 
to on another are grouped together. These types of methods are very common 
for pattern recognition, image and data analysis.

3



3 Multimodal Analysis
Multimodal imaging combines two or more imaging techniques in a single ex-
amination to allow for the integration of several analysis in order to have a 
better understanding of disease biology. A synchronous image acquisition is the 
best solution to achieve consistency in time and position of the scan. Com-
mon multimodal imaging techniques include SPECT-CT, PET-CT, and more 
recently PET-MR [21]. For example, one of the most common combinations 
is the PET-CT scan where the PET would provide information about how the 
body is functioning while the CT scan relays information about anatomical 
structure. This type of imaging acquisition allows physicians to better pinpoint 
any problems in the body. Additionally, EEG, MEG, and fMRI are used to 
study neural activity and interactions. EEG/MEG is know for it ability to have 
a high temporal resolution and fMRI is know for using blood oxygenation level 
dependent (BOLD) contrast that provides high spatial resolution. When these 
two modalities are combined, it has the potential to significantly i ncrease the 
spatial resolution of electromagnetic source imaging and to be able to pinpoint 
rapid neural responses in the brain [19].

The use of machine learning in multimodal imaging aids in processing the 
data from systems that are able to detect two modality signals at the same 
time. Combination of methods involves the use of two or more of the ma-
chine learning algorithms to take advantage of the unique characteristics that 
each method possesses. This allows the multimodal algorithm to extract ad-
ditional desired features. The significance o f m ultimodal i ntegration i s that 
it allows high resolution classification u sing p rimarily a lready e xisting meth-
ods [?]. Additionally, this resolution will generally be higher than that of the 
individual methods separately. However, multimodal extraction is not without 
limitations. Due to the increased complexity of the algorithm, it may be diffi-
cult to determine the true accuracy as it is not directly comparable to existing 
methods. An example of this application in EEG is the diagnosis of multiple 
sclerosis patients. In the paper, T-test and Bhattacharyya were used for fea-
ture extraction as part of the preprocessing. Following this a combination of 
KNN and SVM as the primary classification a lgorithm. T his r esulted i n an 
total accuracy of 93% [?]. While other sections above have dedicated tables 
with reviewed literature, we wanted to bring attention to multimodal analysis 
as some literature above already demonstrated the application of the combina-
tion of methods. Multimodal imaging techniques are often differentiated into 
two categories: asymmetric and symmetric data analysis approaches. In an 
asymmetric approach, the analysis uses one modality to bias the estimates of 
another modality˜ []biessmann2011analysis. Many asymmetric analysis works 
similarly to the supervised learning method of regression where one modality is 
used to extract features of the other modality. For example, the amplitude of 
an ERP component from EEG/MEG data can be extracted and correlated with 
the fMRI data. Asymmetric analysis leverages one of the modalities to bias 
the other. By doing this, there is potential to lose information from the second 
modality. However, asymmetric analysis is advantageous in that one modality
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Figure 2: Multimodal methods usually have either a asymmetric or symmetric 
approach. In asymmetric analysis, features from one modality are used to im-
prove on the features of another modality. Symmetric approaches analyzes both 
modalities jointly. [3].

is able to create a model of measurement noise. This noise models allows for 
subtle artifacts to be removed from the analysis.

In contrast, symmetric analysis processes both modalities at the same time. 
Because they are done at the same time thy are able to reveal certain aspects 
that the other modalities are not able to catch. For symmetric analysis, there is 
careful consideration for some "pre-analysis" steps such as the feature selection 
in multimodal methods. An option would be to employ unsupervised methods in 
order to learn the important features rather than rely on the model assumptions 
or a manual feature selection. For example, unsupervised methods are able to 
learn features that are important for the neurovascular coupling process [2]. 
Unsupervised models are used to find s tructure i n t he d ata when n o stimulus 
variable exists.

There are several unsupervised learning models that are being used in mul-
timodal data analysis. This includes principal component analysis (PCA), inde-
pendent component analysis (ICA), functional connectivity analysis, and canon-
ical correlation analysis (CCA) [3]. Clustering has also been used in many mul-
timodal analysis. This is where groups of objects that are found similar to 
one another are grouped together. A well-known clustering analysis is called 
the k-means algorithm. In the k-means algorithm, each data point in the set 
is assigned a label (k) and assigned in groups where datapoints within each 
group have similarities. Clustering is commonly used for data exploration and 
to understand the structure of data.
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4 Multimodal Processing in Neuroscience
Functional changes in the brain may precede detectable structural changes [12] 
and may be detected by existing noninvasive modalities. Functional connectiv-
ity analysis through EEG and rs-fMRI [6], complemented by diffusion tensor 
imaging (DTI), has provided such meaningful input in cases of temporal lobe 
epilepsy (TLE) [17]. To this end, the brain is modeled as a connected network 
of nodes and connectivity matrices are estimated from EEG and rs-fMRI data. 
The nodes may be selected based on structural or functional parcellation of the 
brain using model-based or model-independent (data-driven) methods. The en-
tire connectivity matrix or specific connections between any two groups of nodes 
may be compared between two groups of subjects. Whole brain connectivity 
analysis can reveal major differences between the two groups and requires more 
samples and more complicated statistical analysis [31].

Multimodal analysis of brain images to diagnose neurological disorders can 
also be paired with nonimaging factors to discover underlying correlations be-
tween illnesses. Schizophrenia and bipolar disorder are genetically related and 
are leading causes of disability worldwide [30]. Multimodal imaging along with 
clinical and behavioral variables would need to be analyzed because a simple 
MRI signal can often be influenced b y l ifestyle c hoices ( smoking, substance 
abuse, etc.) [22]. Therefore multivariate covariation between nonimaging and 
imaging variables were analyzed to obtain measures of cortical thickness, subcor-
tical volume, task-related brain activation, resting-state functional connectivity 
and white matter fractional anisotropy (FA) [23]. Factors that were known 
to be associated with the MRI signal were included in the nonimaging data 
set. This included lifestyle factors, physical health, IQ, substance abuse, BMI, 
and medication. A sparse canonical correlation analysis (sCCA) was applied 
because of the varying sources of each data set. Canonical correlation analy-
sis (CCA) is a multimodal analysis method that is very useful in determining 
correlations between multiple sets of variables. The sCCA analysis between 
the imaging and non imaging data sets demonstrated a substantial covariation 
between the multiple variables. The results highlight the association between 
BMI and neuroimaging phenotypes. The relation of an individual’s lifestyle to 
the brain characteristics emphasize the importance of of these associations in 
possibly leading to early intervention that can mitigate risk.

Multimodal analysis is also used in the diagnosis of Alzheimer’s disease for 
treatment and possibly delay of the illness. A deep polynomial network (DPN) 
is a deep learning algorithm that is able to perform well on both large data 
sets as well as being able to learn effective feature representations on small data 
sets [29]. This is a new concept that is able to provide better performance 
on large datasets compared to deep belief networks and stacked autoencoder 
algorithms [20]. A multimodal stacked DPN is able to fuse and learn features 
from multimodal neuroimaging data for Alzheimer’s disease diagnosis. The 
analysis first learns high level features of MRI and PET i mages. These features 
are extracted from only their corresponding imaging modality and therefore 
would not have any correlation between PET and MRI. Because of this, the

6



Figure 3: A representation of the multi-modality framework using stacked Deep
Polynomial Networks (S-DPN) for Alzheimer’s Disease classification with PET
and MRI features. Image adopted from Zheng et al. [32].

high-level features from PET and MRI are fed into another DPN network to
combine the two analysis algorithms. [28]. This creates a stacked, two staged
DPN network that is able to correlate information from features of both imaging
modalities. In the analysis done by Zheng et al. the stacked DPN network was
able to demonstrate superior performance over the original DPN algorithm for
both imaging modalities and achieved an accuracy of over 97% [32].

Before a deep learning algorithm is applied to the dataset, there is usually
some preprocessing steps that need to take place prior to the analysis. Neu-
roimaging data was taken from the Alzheimer’s disease Neuroimaging Initiative
(ADNI) [1]. These images from PET and MR scans were fused together in
order to align the different modalities and improve the overall quality of the
image. Noise reduction filters are applied such as the Wiener filter to reduce
the amount of additive noise in the PET and MR images [1]. After the filtering,
the images go through a feature extraction step then through the Elman Back
propagation Network for pattern classification [1]. Elman Back propagation
Networks are Recurrent Neural Networks that go through a supervised training
algorithm [24]. Feature extraction was performed on the MR and PET images
to classify the normal data set as "No disease" and the subjects with Alzheimer’s
disease as "Alzheimer’s disease." Because there is no single biomarker that can
predict Alzheimer’s disease with 100% certainty, image analysis from multiple
modalities increase the diagnosing accuracy for Alzheimer’s disease.

5 Multimodal Analysis in Epilepsy, An Applica-
tion

Functional changes in the brain may precede detectable structural changes [12] 
and may be detected by existing noninvasive modalities. Functional connectiv-
ity analysis through EEG and rs-fMRI [6], complemented by diffusion tensor 
imaging (DTI), has provided such meaningful input in cases of temporal lobe 
epilepsy (TLE) [17]. To this end, the brain is modeled as a connected network
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of nodes and connectivity matrices are estimated from EEG and rs-fMRI data. 
The nodes may be selected based on structural or functional parcellation of 
the brain using model-based or model-independent (data-driven) methods. The 
entire connectivity matrix or specific c onnections b etween a ny t wo g roups of 
nodes may be compared between two groups of subjects. Whole brain connec-
tivity analysis can reveal major differences between the two groups and requires 
more samples and more complicated statistical analysis [31]. In unilateral TLE 
patients, increased functional connectivity of the default mode network (DMN) 
with other brain regions has been shown in left TLE along with decreased con-
nectivity in right TLE.

A means of therapeutic interaction with an area of epileptogenicity, that does 
not entail removal of a portion of the brain, first requires adequate detection of 
ictal onset. The use of computers to help physicians in the acquisition, man-
agement, storage, and reporting of brain (i.e., EEG) signals is well established. 
To this end, there are computer-aided detection applications that use a BCI. In 
order for an autonomic computing system to work effectively, computational al-
gorithms must reliably identify periods of increased probability of an impending 
ictal occurrence in order to abort its development. Such preictal periods may 
be of variable duration and may not afford suitable latency to provide current 
methodologies with sufficient time for signal deployment to achieve control in 
all circumstances. The development of an autonomic method for detection and 
epileptogenicity localizing would optimize seizure control and bring about an 
improved quality of life.

Efficiently handling and processing of medical big data can provide use-
ful information about a patient and about diseases. To understand the task 
at hand, it is useful to review the current investigational aspects involved in 
elucidating the patient’s epilepsy. In those patients declared to have an epilep-
togenicity that can be further investigated to establish its location in the brain, 
a number of standard neuroimaging, functional and electroencephalographic 
studies are undertaken. These include magnetic resonance imaging (MRI), sin-
gle photon emission computed tomography (SPECT), positron emission tomog-
raphy (PET), inpatient scalp EEG and video monitoring (phase I), sodium 
amobarbital study and a neuropsychological profile. In select cases, a  variety of 
further MR postprocessing applications and magnetoencephalography (MEG) 
are applied. Several quantitative neuroimaging metrics have been applied to 
provide greater precision and reproducibitlity in defining putative sites of epilep-
togenicity particularly as it applies to the most common area of involvement, 
the mesial temporal lobe. These are correlated with EEG data to render an ini-
tial assumption of the site of epileptogenicity and these may be reported with 
varying degrees of certainty.

Based upon our previous studies [7–11, 13–16], definitive t herapy m ay be 
decided in the form of resective surgery or entirely discounted on the basis of 
multifocality suggesting greater than two sites of independent epileptogenicity. 
When uncertainty exists regarding the location of a particular focality or a need 
exists to establish the eloquence of cerebral function in the vicinity of a puta-
tive site, then intracranial electrographic investigation (i.e., phase II) is required
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in the form of extraoperative electrocorticography (eECoG). This requires the
intracranial placement of surface and/or depth electrode arrays in specific lo-
cations of the brain to better understand the distribution of the epileoptogenic
network and a further admission to the Epilepsy Monitoring Unit (EMU). The
results will often declare the approach to be taken therapeutically.

The shape of the brain network using rs-fMRI and EEG data is shown in
recent publications such as [5] and [4]. The rs-fMRI data can determine the
temporal dynamic of functional connectivity, which is limited to the scanning
time which is usually less than 10 minutes. In contrast, EEG/iEEG can be used
for long-term analysis of dynamic changes in functional connectivity and finding
IED. Also, temporal sampling rate of EEG is higher than rs-fMRI. Therefore,
the combination of rs-fMRI and EEG/iEEG can reveal more information about
dynamic functional connectivity. However, simultaneous fMRI imaging and
EEG data acquisition present challenges [18].

6 Conclusion
Multimodal anaysis of big data in healthcare will continue to grow and un-
veil more efficient diagnostics and evaluation of many difficult to treat diseases.
Neuroimaging is an example where machine learning analysis has made a lasting
impact on the way we are able to diagnosis disease. Neurological disorders are
very difficult to treat which makes early diagnosis even more important. There
are many different imaging techniques that are available (ie. EEG, fMRI, MEG).
By incorporating multiple different imaging techniques into the same analysis,
it is likely that there are certain features that will not be able to be recognized
by one modality. As more images are fed into machine learning algorithms, it
is able to learn rules from the data. The algorithms are able to combine and
correlate predictors in interactive and nonlinear ways. As more data gets gen-
erated, machine learning will become indispensible in solving complex problems
in medical disgnostics.
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