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ABSTRACT

A connection between the maximum a posteriori (MAP) estima-
tion and the variational formulation based on the minimization of
a given variational integral subject to some noise constraints is es-
tablished in this paper. A MAP estimator which uses a Markov
or a maximum entropy random field model for the prior distribu-
tion can be viewed as a minimizer of a variational problem. In-
spired by the maximum entropy principle, a nonlinear variational
filter called improved entropic gradient descent flow is proposed. It
minimizes a hybrid functional between the neg-entropy variational
integral and the total variation subject to some noise constraints.
Simulation results showing a much improved performance of the
proposed filter in the presence of Gaussian and Laplacian noise are
analyzed and illustrated.

1. INTRODUCTION

Linear filtering techniques have been used in many image process-
ing applications and their popularity mainly stems from their math-
ematical tractability and their efficiency in the presence of additive
Gaussian noise. Linear filters, however tend to blur sharp edges,
destroy lines and other fine image details, fail to effectively re-
move heavy tailed noise, and perform poorly in the presence of
signal-dependent noise. This led to a search for nonlinear filtering
alternatives. Among the class of Bayesian image estimation meth-
ods for example, the MAP estimator using Markov or maximum
entropy random field priors [1, 2] has proven to be a powerful ap-
proach to image restoration. However, a major limitation in the
use of MAP estimation is the lack of practical and robust method
for choosing the prior distribution and its corresponding energy
function.

In recent years, variational methods and partial differential
equations (PDE) based methods [3, 4, 5] have been introduced for
a variety of purposes inluding image segmentation, mathematical
morphology and image denoising. This last topic will be the focus
of the present paper. The problem of denoising has been addressed
using a number of different techniques including wavelets [6] and
nonlinear median based filters [7].

In this paper, we present a variational approach to MAP esti-
mation. The key idea behind this approach is to avoid assumptions
about the prior distribution in MAP estimation. Insipred by the
maximum entropy principle, we propose a nonlinear PDE based
filter called improved entropic gradient descent flow.

In the next section we outline the MAP estimation. In Sec-
tion 3, we formulate a variational approach to MAP estimation.
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In section 4, an entropic variational approach to MAP estimation
is given, and an improved entropic gradient descent flow is pro-
posed. Finally, in section 5, we provide experimental results to
show a much improved performance of the proposed gradient de-
scent flows in image denoising.

2. PROBLEM FORMULATION

Consider the additive noise model

�� � �� �� (1)

where � is the original image � � � � �, and � is a nonempty,
bounded, open set in�� (usually � is a rectangle in ��). The noise
process � is i.i.d., and �� is the observed image. The objective is
to recover �, knowing �� and also some statistics of �. Through-
out, � � ���� ��� denotes a pixel location in �, � � � denotes the
Euclidean norm and �� � �� denotes the ��-norm.

One commonly used Bayesian approach to estimate the image
� is the maximum a posteriori (MAP) estimation method which in-
corporates prior information. Denote by ���� the prior distribution
for the unknown image �. The MAP estimator is given by
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where ������� denotes the conditional probability of �� given �.
A general model for the prior distribution ���� is a Markov

random field which is characterized by its Gibbs distribution
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where � in the normalizing term called em partition function, � is
a constant known as the temperature in physical systems terminol-
ogy. For large �, the prior probability becomes flat, and for small
�, the prior probability has sharp modes. � is called the energy
function and has the form ���� �

�
���

	����, where � denotes
the set of cliques for the MRF, and 	� is a potential function de-
fined on a clique.

If the noise process � is i.i.d. Gaussian, then we have
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where 
 is a positive constant and �� is the noise variance. Thus,
the MAP estimator in (2) yields
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Image estimation using MRF priors has proven to be a powerful
approach to restoration and reconstruction of high-quality images.
However, a major problem limiting its utility is the lack of prac-
tical and robust method for selecting the prior distribution. The
Gibbs prior parameter � is also of particular importance since it
controls the balance of influence of the Gibbs prior and that of the
likelihood. If � is too small, the prior will tend to have an over-
smoothing effect on the solution. Conversely, if it is too large, the
MAP estimator may be unstable, reducing to the maximum like-
lihood solution as � goes to infinity. Another difficulty using the
MAP estimator is the lack of stability and uniqueness of the solu-
tion when the energy function � is not convex.

3. A VARIATIONAL APPROACH TO MAP ESTIMATION

According to the noise model (1), the main goal of the image de-
noising problem is to estimate the original image � based on the
observed image �� and any knowledge of the noise statistics. This
leads to solve the following noise-constrained optimization prob-
lem
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s.t. 	�� ��	
� � ��

(4)

where � is a given functional which is often a criterion of smooth-
ness of the reconstructed image.

Using Lagrange’s theorem, the minimizer of (4) is given by
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where � is a nonnegative parameter chosen so that the constraint
	�� � �	� � �� is satisfied. In practice, the Lagrange multiplier
� is often estimated or chosen a prioiri.

Equations (3) and (5) show a close connection between image
recovery via MAP estimation and image recovery via optimized
variational integrals. Indeed, Eq. (3) can be written in integral
form as Eq. (5).

Much like the choice of the prior distribution in MAP estima-
tion, a critical issue in variational problems is the choice of the
functional � . In the latter case, much insight based on desired
physical average behavior has been developed. The classical func-
tionals (also called variational integrals) used in image denoising
are the Dirichlet and the total variation integrals defined respec-
tively as follows
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where �� stands for the gradient of the image �.
A generalization of these functionals is the variational integral

defined as
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where � � �� � � is a given smooth function called variational
integrand or Lagrangian

Using Eq. (7), we define the following functional
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thus, the optimization problem (5) becomes
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where � is an appropriate image space of smooth functions like
�����, or the space �	 ��� of image functions with bounded
variation, or the Sobolev space ����� � � ������.

The most important first-order necessary condition to be satis-
fied by any minimizer of the variational integral � is the vanishing
of its first variation Æ���� �� at � in direction of �, that is

Æ���� �� �
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and a solution � of (10) is called a weak extremal of �.
By means of the fundamental lemma of the calculus of varia-

tions, relation (10) yields the Euler-Lagrange equation as a neces-
sary condition to be satisfied by any minimizer of �. This Euler-
Lagrange equation is given by
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and an image � satisfying (11) (or equivalently ����� � �) is
called an extremal of �.

Proposition 1 Let � � �, and � be a convex set of image space
� . If the Lagrangian � is nonnegative convex and of class ��,
then every weak extremal of � is a minimizer of � on �.

Proof. The convexity of � yields

� ���  � ��� � � ������ � ��� ��� � � �� � (12)

By assumption � is a weak extremal of �, ie. Æ���� �� � � for all
� � �. This implies that � ������� � �. Therefore, using (12) we
obtain �

�
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�
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This concludes the proof.

Proposition 2 Let � � �, and � be a convex set of image space
� . If the Lagrangian � is nonegative convex and of class ��

such that � ����  �, then the global minimizer of � is a constant
image.

Proof. Using (12), it follows that � ������  � ���. Thus the con-
stant image is a minimizer of �. Since � is convex, it follows that
this minimizer is global.

Proposition 3 Let � � �, and � be a convex set of image space
� . If the Lagrangian � is nonnegative strictly convex and of class
��, then an extremal � of � is the unique minimizer of � on �.

Proof. Since � ��� �
�
�� � ���

� is strictly convex when � � �,
then the functional ���� is strictly convex on �, that is

���� � ���� ������ � �� � ���

By assumption � is an extremal of �, thus ���� � ����, for all
� �� �.

Using the Euler-Lagrange variational principle, the minimizer of
(9) can be interpreted as the steady state solution to the following
PDE called gradient descent flow

�� � � � ������������ ���� ���� in �� �� (13)

where � is the diffusion function given by ���� � � ������, with
� � �, and assuming homogeneous Neumann boundary condi-
tions.
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4. ENTROPIC VARIATIONAL APPROACH

The maximum entropy criterion is an important principle in statis-
tics for modeling the prior probability ����, and it has been used
with success in many applications of image processing [2]. Sup-
pose the available information by way of moments of some known
functions �����, where � � ��� � � � � ��. The maximum entropy
principle suggests that a good choice of the prior probability is the
one that has the maximum entropy or equivalently has the mini-
mum neg-entropy
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(14)

Using Lagrange’s theorem, the solution of (14) is given by
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where ��’s are the Lagrange multipliers, and � is the partition
function. Thus, the maximum entropy distribution ���� given by
Eq. (15) can be used as a model for the prior distribution in MAP
estimation.

4.1. Entropic gradient descent flow

Motivated by the good performance of the maximum entropy method
in the probabilistic approach to image denoising, we define the
neg-entropy variational integral as
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where ���� � � �
���� �  �. Note that������ � as � � �.
It follows from the inequality � �
��� � �� that
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where 	 � 	
���� denotes the ��-norm. Thus the neg-entropy
variational integral � � ����� � � is well defined. Clearly, the
Lagrangian � is strictly convex, and coercive, i.e. ���� � ��
as ��� � ��. It follows from Proposition 3, that for � � �, the
minimization problem
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has a unique solution provided that ����  �.
Using the Euler-Lagrange variational principle, it follows that

the entropic gradient descent flow is given by
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assuming homogeneous Neumann boundary conditions.

Proposition 4 Let � be an image. The neg-entropy variational
integral and the total variation satisfy the following inequality

����  �	 ���� ��

Proof. Since the neg-entropy � is a convex function, the Jensen
inequality yields�

�

��������  �

��
�

�����

�
� �

�
�	 ���

�
� �	 ��� �
 �	 ����

and using the inequality � �
���  � � � for �  �, we conclude
the proof.

Fig. 1 illustrates a visual comparison between some of the varia-
tional integrands discussed in this paper.
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Fig. 1. Visual comparison of some variational integrands

4.2. Improved entropic gradient descent flow

From Fig. 1, one may define a hybrid functional between the ne-
gentropy variational integral and the total variation as follows

����� �

�
���� if ���� � "
�	 ��� otherwise.

Note that the functional �� is not differentiable when the Euclidean
norm of �� is equal to " ( i.e. Euler number: " � ������� �

��#�� � ����). This difficulty is overcome if we replace �� with
the following functional �� defined as

�� ��� �

�
���� if ���� � "
� �	 ���� ���" otherwise,

(18)

where ��� denotes the Lebesque measure of the image domain �.
In the numerical implementation of our algorithms, we may as-
sume without loss of generality that � � ��� �� � ��� ��, so that
��� � �. Note that �� � ����� � � is well defined, differ-
entiable, weakly lower semicontinuous, and coercive. Using the
Euler-Lagrange variational principle, it follows that the improved
entropic gradient descent flow is given by
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assuming homogeneous Neumann boundary conditions. ��� is
the derivative of the function �� � �� � � defined as

�� ��� �
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�� � " otherwise.
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5. SIMULATION RESULTS

This section presents simulation results where Huber, entropic,
total variation and improved entropic gradient descent flows are
applied to enhance images corrupted by Gaussian and Laplacian
noise [8]. The regularization parameter (or Lagrange multiplier)
� for the proposed gradient descent flows is chosen to be propor-
tional to signal-to-noise ratio (SNR) in all the experiments.

In order to evaluate the performance of the proposed gradi-
ent descent flows in the presence of Gaussian noise, the image
shown in Fig. 1(a) has been corrupted by Gaussian white noise
with ��� � ���� db. Fig. 2 displays the results of filtering the
noisy image shown in Fig. 2(b) by Huber, entropic, total variation
and improved entropic gradient descent flows. Qualitatively, we
observe that the proposed techniques are able to suppress Gaus-
sian noise while preserving important features in the image.

The Laplacian noise is somewhat heavier than the Gaussian
noise. Moreover, the Laplace distribution is similar to Huber’s
least favorable distribution [6] (for the no process noise case),
at least in the tails. To demonstrate the application of the pro-
posed gradient descent flows to image denoising, qualititive com-
parisons are performed to show a much improved performance of
these techniques. Fig. 3(b) shows a noisy image contaminated by
Laplacian white noise with ��� � ���� db. The filtered images
are shown in Fig. 3. Note that the improved entropic gradient
descent flow outperforms the other flows in removing Laplacian
noise. Comparison of these images clearly indicates that the im-
proved entropic gradient descent flow preserves well the image
structures while removing heavy tailed noise.

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Filtering results for Gaussian noise: (a) Original image, (b)
Noisy image, (c) Huber flow, (d) Entropic flow, (e) Total Variation
flow, and (f) Improved Entropic flow.

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Filtering results for Laplacian noise: (a) Original image, (b)
Noisy image, (c) Huber flow, (d) Entropic flow, (e) Total Variation
flow, and (f) Improved Entropic flow.
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