
BAYESIAN APPROACH TO BEST BASIS SELECTIONJ.-C. Pesquet, H. Krimz, D. Leporini and E. HammanLaboratoire des Signaux et Syst�emes,CNRS/UPS and GDR ISIS, 91192 Gif sur Yvette C�edex, France,Email: pesquet@lss.supelec.fr,zStochastic Systems Group,LIDS, MIT, Cambridge, MA 02139, USAABSTRACTWavelet packets and local trigonometric bases providean e�cient framework and fast algorithms to obtaina \best basis" or \best representation" of determin-istic signals. Applying these deterministic techniquesto stochastic processes may, however, lead to variableresults. In this paper we revisit this problem and in-troduce a prior model on the underlying signal in noiseand account for the contaminating noise model as well.We thus develop a Bayesian-based approach to the bestbasis problem, while preserving the classical tree searche�ciency. 1. INTRODUCTIONResearch interest in a \best representation" of a signalx(t) when given a �nite dictionary of possible bases,has greatly increased recently [1, 2, 3, 4]. In [1], it wasestablished that wavelet packets and Malvar's wavelets(or local cosine bases) led to interesting choices of time-frequency dictionaries based on binary tree structures.These structures, in turn, allowed for a very e�cientand fast dynamic programmingmethodology in search-ing for a \Best Basis" (BB). The relevance of thesetechniques in many real-world applications togetherwith their highly variable performance in the presenceof noise were the primary impetus in investigating theirproperties in a stochastic setting.A few statistical approaches to the BB problem haverecently appeared [2, 3, 4]. Most adopt the followingmodel for the observed process,y(t) = x(t) +w(t);where w(t) is Gaussian, with zero mean and �nite vari-ance, and for which estimation/recovery of the underly-The work of the second author was in part supported bygrants from ARO(DAAL03-92-G-0115) (Center for IntellingentControl), AFOSR (F49620-95-1-0083).

ing unknown signal x(t) is of interest. In [5, 6], thresh-olding denoising techniques have been introduced usinga wavelet representation. More recently, other works[2, 3, 4] use the thresholding procedure as part of theBB search. It was shown in [7, 3] that the threshold-ing strategy was linked to the Minimum DescriptionLength (MDL) criterion in selecting a model for a givenset of observations. In [3], an analytical derivation ofthe statistical properties of the various existing criteriais also obtained and used to construct hypotheses teststo carry out the BB search. None of these BB searchtechniques, however, accounts for any potentially avail-able prior information about the signal. Accountingfor the prior information in the search algorithm mayprovide a solution to the asymptotic unboundedness ofthe optimal threshold [5]. The size of the threshold inlarge data sets may indeed be overwhelming for somefeatures of the signal of interest.In Section 2 of the paper, we give some relevant back-ground. In Section 3, we address the BB search of asignal in noise taking into account any available sta-tistical prior information. In Section 4, we propose aBernoulli-Gaussian model for the components of a sig-nal in its BB. In Section 5, we provide some simulationresults to substantiate the proposed method. Finally,some concluding remarks are given in Section 6.2. BB REPRESENTATIONSThe determination of the \best representation" of asignal in a wavelet packet or Malvar's wavelet basisgenerally relies on the minimization of an additive cri-terion. The unnormalized entropy is usually retainedas a cost function but, as will be shown later, crite-ria which are often more meaningful from a statisticalpoint of view can also be introduced. To obtain an ef-�cient search of the BB, the dictionary D of possiblebases is structured according to a binary tree. Eachnode (j;m) (with j 2 f0; : : : ; Jg and m 2 f0; : : : ; 2j �



1g) of the tree then corresponds to a given orthonor-mal basis Bj;m of a vector subspace of `2(f1; : : : ;Kg).1An orthonormal basis of `2(f1; : : : ;Kg) is then BP =[(j;m)=Ij;m2PBj;m where P is a partition of [0; 1[ in in-tervals Ij;m = [2�jm; 2�j(m+1)[. By taking advantageof the propertySpanfBj;mg = SpanfBj+1;2mg ?� SpanfBj+1;2m+1g;a fast bottom-up tree search algorithm was developedin [1] to optimize the partition P. For the sake of sim-plicity, we shall subsequently number each possible par-tition with an integer n 2 f1; : : : ; Ng.3. BAYESIAN APPROACH3.1. PROBLEM STATEMENTA natural way to incorporate available prior knowl-edge about an observed signal in noise is provided bythe Bayesian statistical framework. We should notethat this framework had previously been proposed in aplain wavelet estimation problem [8], and to the bestof our knowledge, is novel and original for BB searchtechniques. The BB search proposed here provides, ina sense, an adaptive representation selected from thedictionary of bases D = fB1; : : : ;BNg.Let Y n,Xn andW n respectively denote the K-dimen-sional vector of components of y(t), x(t) and w(t) (i.e.t = 1; 2; � � � ;K) in a basis Bn. Using the linearity prop-erty of wavelet packets and Malvar's wavelets trans-forms, we have Y n =Xn +W n:The signals x(t) and w(t) are assumed to be two mu-tually independent stochastic processes. We will fur-ther assume that there exists a n0 2 f1; : : : ; Ng suchthat the Probability Density Function (PDF) of Xn0is f(�) and that of W n0 is g(�). The integer n0 in thisprobabilistic model, which in fact indexes the BB Bn0 ,appears as a hyperparameter which must be estimatedfrom the observed data. Toward this end, we proposetwo possible approaches.3.2. MAXIMUM LIKELIHOOD METHODUsing the independence property of the processes XnandW n, we derive the law of the observations Y n. Wethus obtain an estimate of n0 asn̂0 = argmaxn (f � g)(yn) ; (1)1Discrete decompositions on the interval are used in thispaper.

where the symbol \*" stands for the convolution opera-tion and lower case yn denotes an observed realizationof Y n. An estimate of xn can subsequently be obtainedby the Maximum A Posteriori (MAP) estimatex̂n̂0 = argmaxxn̂0 g(yn̂0 � xn̂0) f(xn̂0) : (2)3.3. MAXIMUM GENERALIZEDLIKELIHOOD METHODThe principle of the Maximum Generalized Likelihood(MGL) method is to determine(n̂0; x̂n̂0) = argmaxn;xn pY n;Xn (yn;xn):If x̂n is the following MAP estimate,x̂n = argmaxxn pY n;Xn (yn;xn)= argmaxxn g(yn � xn) f(xn) ; (3)the resulting estimate of n0 is given byn̂0 = argmaxn g(yn � x̂n) f(x̂n) : (4)Unlike the Maximum Likelihood (ML) method, theMGL is not guaranteed to provide a convergent es-timate of n0 but its computational cost is generallylower, and it may lead to better estimates for data setsof relatively short size [9].4. BERNOULLI-GAUSSIAN PRIORSThe PDF f(�) re
ects our prior knowledge about thesignal x(t) represented in a basis Bn0 . In general, sucha prior is most simply expressed when Bn0 yields themost parsimonious representation (i.e. best matchedbasis) of the underlying signal x(t). To account forthe property of the expected energy concentration inthe BB, we select a distribution which would re
ecta certain amount of \spikyness" and thus be adaptedto a basis representation, e.g. a Bernoulli-Gaussiandistribution.The model forXn = (X1n; : : : ; XKn )T is used in tandemwith a hidden indicator vector Qn = (Q1n; : : : ; QKn )T ofindependent binary random variables. More speci�-cally, (Xkn0)1�k�K is an i.i.d. sequence whose condi-tional densities arepXkn0 jQkn0=0(xkn0) = �(xkn0) ; (5)pXkn0 jQkn0=1(xkn0) = 
(xkn0 j �2x) ; (6)where �(�) is the Dirac distribution, and 
(� j s2) de�nesthroughout the paper a Gaussian PDF with zero-mean



and variance s2. We further de�ne a mixture param-eter " = P (Qkn0 = 1) 2 [0; 1]. The noise componentsare also assumed to be independent Gaussian randomvariables with zero-mean and variance �2. Under thesehypotheses, we obtain by using the unitary transformproperty E[W nW Tn ] = �2IK for all n;where IK denotes the K �K identity matrix.With these assumptions, it is more convenient to usea maximum generalized marginal likelihood approachthan a MGL one.We proceed to determine the MAP estimate q̂n of qnwhen n is guessed to be the true basis index n0. It canbe shown that this amounts to thresholding the com-ponents ykn of yn, by noting thatpY n;Qn(yn; q̂n)= KYk=1 Z 1�1 
(ykn � xkn j �2)pXkn jQkn=q̂kn (xkn)P (Qkn = q̂kn)dxkn= KYk=1 
(ykn j �2̂qkn )P (Qkn = q̂kn) ,where �2̂qkn = � �2 + �2x if q̂kn = 1;�2 if q̂kn = 0:The corresponding threshold value � � 0 is given by�2 = max(2�2(�2 + �2x)�2x ln p�2 + �2x(1� ")�" ! ; 0) :(7)Note that in contrast with the result in [5], this valueis independent of the data length K.The BB index n̂0 is then estimated as the integer nwhich maximizes the PDF pY n;Qn(yn; q̂n). Equiva-lently, n̂0 also results by minimizing the following cri-terion which is additive with respect to the componentsykn of yn,"(n) = � KXk=1 ln[
(ykn j �2̂qkn)P (Qkn = q̂kn)]: (8)This clearly preserves a fast tree search structure forboth wavelet packets and Malvar's wavelets.We subsequently obtain an estimate x̂n̂0 of the coe�-cients in the BB as the vector xn̂0 maximizing the jointPDFpY n̂0 ;Qn̂0 ;X n̂0 (yn̂0; q̂n̂0 ;xn̂0)= KYk=1
(yk̂n0�xk̂n0 j �2)pXk̂n0 jQk̂n0=q̂k̂n0 (xk̂n0)P (Qk̂n0 = q̂k̂n0):

The solution is given byx̂k̂n0 = 8<: �2x�2 + �2x yk̂n0 if q̂k̂n0 = 1;0 if q̂k̂n0 = 0:Note that this estimate is very reminiscent in form ofa Wiener estimate, albeit nonlinear.As previously noted, the ML approach can also be ap-plied. The selection of n0 is also carried out by theminimization of an additive criterion.5. SIMULATION RESULTS5.1. BERNOULLI-GAUSSIAN SIGNALSThe above procedure has been implemented for an ob-served noisy process of length 131072 samples and witha Signal to Noise ratio and mixture parameter " asindicated in Fig. 1. The original signal is Bernoulli-Gaussian in the wavelet basis. The resulting recon-struction error using the Bayesian BB approach is com-pared to the MDL-based BB search (see [6, 3]), and thesigni�cant gain in performance, nicely corroborates ouroriginal conjecture.
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Figure 1: Wavelet packet denoising with a Bernoulli-Gaussian model (� = 1, �x = 5 and " = 0:1).5.2. ARBITRARY SIGNALSIn our second example, we do not impose the statis-tical structure on the signal and choose an arbitrarynoisy process (e.g. we chose signals from Donoho andJohnstone's database of sample signals), for which weestimate the parameters.
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ML reconstructed signal, NMSE=0.0839Figure 2: Wavelet packet denoising of a doppler signalwith a 3-level tree search.The parameter vector �n = (�2x; ")n and the hiddenprocess qn have been estimated by a MGL method:(�̂n; q̂n) = arg max�n ;qn pY n;Qn(yn; qn j �n): (9)Starting from an initial guess �̂(0)n , a cross-optimizationtechnique provides the MGL estimate8><>: q̂(`)n = argmaxqn pY n;Qn(yn; qn j �̂(`�1)n );�̂(`)n = argmax�n pY n;Qn (yn; q̂(`)n j �n);which gives ("̂)(`)n = 1T q̂(`)nK ;(�̂2x)(`)n = yTn q̂(`)n1T q̂(`)n � �2:with 1T = [11 � � �1]:It should be noted that this method only guarantees theconvergence to a local optimum. This nevertheless re-sults in estimates which appear to be more robust thanthose based on an MDL criterion, particularly when alow Signal to Noise ratio prevails or when the numberof levels in the decomposition tree is limited (Fig. 2).This also may be of interest when dealing with arbi-trarily long signals.
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