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ABSTRACT

Wavelet packets and local trigonometric bases provide
an efficient framework and fast algorithms to obtain
a “best basis” or “best representation” of determin-
istic signals. Applying these deterministic techniques
to stochastic processes may, however, lead to variable
results. In this paper we revisit this problem and in-
troduce a prior model on the underlying signal in noise
and account for the contaminating noise model as well.
We thus develop a Bayesian-based approach to the best
basis problem, while preserving the classical tree search
efficiency.

1. INTRODUCTION

Research interest in a “best representation” of a signal
z(t) when given a finite dictionary of possible bases,
has greatly increased recently [1, 2, 3, 4]. In [1], it was
established that wavelet packets and Malvar’s wavelets
(or local cosine bases) led to interesting choices of time-
frequency dictionaries based on binary tree structures.
These structures, in turn, allowed for a very efficient
and fast dynamic programming methodology in search-
ing for a “Best Basis” (BB). The relevance of these
techniques in many real-world applications together
with their highly variable performance in the presence
of noise were the primary impetus in investigating their
properties in a stochastic setting.

A few statistical approaches to the BB problem have
recently appeared [2, 3, 4]. Most adopt the following
model for the observed process,

y(t) = «(t) +w(t),

where w(t) is Gaussian, with zero mean and finite vari-
ance, and for which estimation/recovery of the underly-
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ing unknown signal x(t) is of interest. In [5, 6], thresh-
olding denoising techniques have been introduced using
a wavelet representation. More recently, other works
[2, 3, 4] use the thresholding procedure as part of the
BB search. It was shown in [7, 3] that the threshold-
ing strategy was linked to the Minimum Description
Length (MDL) criterion in selecting a model for a given
set of observations. In [3], an analytical derivation of
the statistical properties of the various existing criteria
1s also obtained and used to construct hypotheses tests
to carry out the BB search. None of these BB search
techniques, however, accounts for any potentially avail-
able prior information about the signal. Accounting
for the prior information in the search algorithm may
provide a solution to the asymptotic unboundedness of
the optimal threshold [5]. The size of the threshold in
large data sets may indeed be overwhelming for some
features of the signal of interest.

In Section 2 of the paper, we give some relevant back-
ground. In Section 3, we address the BB search of a
signal in noise taking into account any available sta-
tistical prior information. In Section 4, we propose a
Bernoulli-Gaussian model for the components of a sig-
nal in its BB. In Section 5, we provide some simulation
results to substantiate the proposed method. Finally,
some concluding remarks are given in Section 6.

2. BB REPRESENTATIONS

The determination of the “best representation” of a
signal in a wavelet packet or Malvar’s wavelet basis
generally relies on the minimization of an additive cri-
terion. The unnormalized entropy is usually retained
as a cost function but, as will be shown later, crite-
ria which are often more meaningful from a statistical
point of view can also be introduced. To obtain an ef-
ficient search of the BB, the dictionary D of possible
bases is structured according to a binary tree. Each

node (j,m) (with j € {0,...,J} and m € {0,...,2/ —



1}) of the tree then corresponds to a given orthonor-
mal basis B; ,,, of a vector subspace of £2({1,..., K}).!
An orthonormal basis of ¢2({1,..., K}) is then Bp =
U(j,m)/1;,merBjm where P is a partition of [0, 1] in in-
tervals I; ,, = [279m, 277 (m+1)[. By taking advantage
of the property

Span{B; m} = Span{Bj+1,2m} @ Span{Bj11 2m+1},

a fast bottom-up tree search algorithm was developed
in [1] to optimize the partition P. For the sake of sim-
plicity, we shall subsequently number each possible par-
tition with an integer n € {1,..., N}.

3. BAYESIAN APPROACH

3.1. PROBLEM STATEMENT

A natural way to incorporate available prior knowl-
edge about an observed signal in noise is provided by
the Bayesian statistical framework. We should note
that this framework had previously been proposed in a
plain wavelet estimation problem [8], and to the best
of our knowledge, is novel and original for BB search
techniques. The BB search proposed here provides, in
a sense, an adaptive representation selected from the
dictionary of bases D = {By,..., By }.

Let Y,, X,, and W, respectively denote the K-dimen-
sional vector of components of y(¢), #(¢) and w(t) (i.e.
t=1,2,---,K)in a basis By,. Using the linearity prop-
erty of wavelet packets and Malvar’s wavelets trans-
forms, we have

Y, =X,+W,.

The signals z(¢) and w(t) are assumed to be two mu-
tually independent stochastic processes. We will fur-
ther assume that there exists a ng € {1,..., N} such
that the Probability Density Function (PDF) of X,
is f(-) and that of W, is g(-). The integer ng in this
probabilistic model, which in fact indexes the BB B,,,,
appears as a hyperparameter which must be estimated
from the observed data. Toward this end, we propose
two possible approaches.

3.2. MAXIMUM LIKELIHOOD METHOD

Using the independence property of the processes X,
and W, we derive the law of the observations Y,,. We

thus obtain an estimate of ng as

no = argmax(f * 9)(y,) , (1)

! Discrete decompositions on the interval are used in this
paper.

where the symbol “*” stands for the convolution opera-

tion and lower case y,, denotes an observed realization
of Y,,. An estimate of @,, can subsequently be obtained
by the Maximum A Posteriori (MAP) estimate

&4, = arg r&lgxg(yﬁo —®p,) fl®n,) - (2)

7o

3.3. MAXIMUM GENERALIZED
LIKELTHOOD METHOD

The principle of the Maximum Generalized Likelihood
(MGL) method is to determine

(0, ®a,) = argmaxpy  x (Yn,@n).

If @, is the following MAP estimate,

T, = aIg H:}gapran(yn, Xn)

= argr%axg(yn — @) f(xy) (3)
the resulting estimate of ng is given by
ng = arg mnaxg(yn — &) f(®,) . (4)

Unlike the Maximum Likelihood (ML) method, the
MGL is not guaranteed to provide a convergent es-
timate of ng but its computational cost is generally
lower, and it may lead to better estimates for data sets
of relatively short size [9].

4. BERNOULLI-GAUSSIAN PRIORS

The PDF f(-) reflects our prior knowledge about the
signal #(¢) represented in a basis B,,. In general, such
a prior is most simply expressed when B, yields the
most parsimonious representation (i.e. best matched
basis) of the underlying signal x(t). To account for
the property of the expected energy concentration in
the BB, we select a distribution which would reflect
a certain amount of “spikyness” and thus be adapted
to a basis representation, e.g. a Bernoulli-Gaussian
distribution.

The model for X,, = (X}, ..., XX)T is used in tandem
with a hidden indicator vector Q,, = (QL, ..., QE)T of
independent binary random variables. More specifi-
cally, (Xﬁu)lskSK Is an 1.1.d. sequence whose condi-
tional densities are

pxx ok =o(eh,) = (), (5)
pxxjer =1(@h,) = (@, [07) (6)

where () is the Dirac distribution, and (- | s?) defines
throughout the paper a Gaussian PDF with zero-mean



and variance s?>. We further define a mixture param-

eter e = P(Q¥ = 1) € [0,1]. The noise components
are also assumed to be independent Gaussian random
variables with zero-mean and variance ¢?. Under these
hypotheses, we obtain by using the unitary transform

property

EW, W1 =021k

where I'x denotes the K x K identity matrix.

With these assumptions, it is more convenient to use
a maximum generalized marginal likelihood approach
than a MGL one.

We proceed to determine the MAP estimate q,, of q,,
when n is guessed to be the true basis index ng. It can
be shown that this amounts to thresholding the com-
ponents y* of y,,, by noting that

Py, Q. Yn 4

for all n,

K o
11 / (o — 2 | o) pxnjon s (25)
k=1Y—°°

P(QY = ¢¥)dat

Y | o) P(Q = 03)
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where

o2 — o402 if ¢F =1,

= o? if g8 =0.

The corresponding threshold value xy > 0 is given by

e max{za2(az +02) (\/02 +o2(1 _6)) ’0}.

2
lors o<

Note that in contrast with the result in [5], this value
is independent of the data length K.
The BB index ng is then estimated as the integer n
which maximizes the PDF Y, Q (Y, 4q,). Equiva-
lently, ng also results by minimizinng the following cri-
terion which is additive with respect to the components
Yn of Yy,
K
e(n) == In[y(yi | o2 P@ = b (3)
k=1
This clearly preserves a fast tree search structure for
both wavelet packets and Malvar’s wavelets.
We subsequently obtain an estimate &4, of the coeffi-
cients in the BB as the vector #;, maximizing the joint

PDF
PY .0.Q,. X, (Y4o> Big» o)

K
= H v(yéu—xﬁo | UQ)PX§D|Q’;LD:<§§D (l‘ZD)P(QZD = fﬁm)~
k=1

The solution is given by

2
i k e ok
— Y if q: =1
= 0-2_1_0.% No [ ’

0 it ¢5 =0.

a

Note that this estimate is very reminiscent in form of
a Wiener estimate, albeit nonlinear.

As previously noted, the ML approach can also be ap-
plied. The selection of ny is also carried out by the
minimization of an additive criterion.

5. SIMULATION RESULTS

5.1. BERNOULLI-GAUSSIAN SIGNALS

The above procedure has been implemented for an ob-
served noisy process of length 131072 samples and with
a Signal to Noise ratio and mixture parameter ¢ as
indicated in Fig. 1. The original signal is Bernoulli-
Gaussian in the wavelet basis. The resulting recon-
struction error using the Bayesian BB approach is com-
pared to the MDL-based BB search (see [6, 3]), and the
significant gain in performance, nicely corroborates our
original conjecture.
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Figure 1: Wavelet packet denoising with a Bernoulli-
Gaussian model (¢ =1, 0, =5 and ¢ = 0.1).

5.2. ARBITRARY SIGNALS

In our second example, we do not impose the statis-
tical structure on the signal and choose an arbitrary
noisy process (e.g. we chose signals from Donoho and
Johnstone’s database of sample signals), for which we
estimate the parameters.
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Figure 2: Wavelet packet denoising of a doppler signal
with a 3-level tree search.

The parameter vector 8, = (02 ¢), and the hidden
process q,, have been estimated by a MGL method:

(On, 4,) = arg gax py @ (Un: [ 0n)- (9)

(R £

. C ~(0 .o .
Starting from an initial guess 051 ), a cross-optimization
technique provides the MGL estimate

g PY ( | A(Z_l))
= arg max a4, |6, ,
g i Py, Q \Yn 4

én — arg maxp yn,c}%) 0,),
gy Y. Q. ( | 6:)

which gives

(@) = 17q,
n [{ I
(5_2)(2) — ygég) _
o 174
with
17 =[11---1].

It should be noted that this method only guarantees the
convergence to a local optimum. This nevertheless re-
sults in estimates which appear to be more robust than
those based on an MDL criterion, particularly when a
low Signal to Noise ratio prevails or when the number
of levels in the decomposition tree is limited (Fig. 2).
This also may be of interest when dealing with arbi-
trarily long signals.

6. CONCLUSION

The issue of finding a “best representation” for stochas-
tic signals has been considered in a Bayesian framework
using “spikyness” priors via Bernoulli-Gaussian mix-
tures. Both MGL and ML methods lead to the classi-
cal tree search algorithm developed for wavelet packets
and Malvar’s wavelets, allowing a fast computation of
the BB. Several extensions addressing alternative ap-
proaches for estimating the model parameters can be
envisaged and addressed in [10].
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