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Abstract

We present a novel method for estimating the number of signals impinging on a
uniform linear array using observed sensor data. Unlike other algorithms which ap-
ply Rissanen’s Minimum Description Length (MDL) principle to the observed data
for source enumeration, this method applies it to the prediction errors of a linear
model which has been fitted to an appropriate data matrix. It is a one-dimensional
method which achieves improved performance even for fully correlated signals over
contemporary approaches, particularly with short data records and closely spaced
signals. Asymptotic consistency is shown and substantiating simulation examples

are included.

*This work was supported in part by NSF grant IJR 9102148.



1 Introduction

Parameter estimation techniques, particularly eigenstructure-based techniques, have been
the focus of increased research activity because of their wide-ranging applications in a
number of fields. Many of them, however, rely on prior knowledge of the number of
signals whose parameters are of interest.

Determining the actual number of signals impinging on an array of sensors - the detec-
tion problem - is generally a critical first step in solving the source localization problem
- estimating their Direction(s)-Of-Arrival (DOA). Two information theoretic criteria for
order estimation of an observed process, namely the Akaike Information Criterion (AIC)
[1] and Rissanen’s Minimum Description Length (MDL) principle [2], have inspired many
solutions to the aforementioned problem [11, 14, 9, 15, 16, 7, 5, 6, 17, 8]. Many of the
algorithms were derived under a “long data record” assumption and when simplified, in-
clude a test of equality of the smallest eigenvalues of the array covariance matrix for an
observed process. Most of the forementioned methods fail in (fully) correlated or coherent
signal environments, as some of the eigenvalues which would normally correspond to the
eigenvectors spanning the signal subspace get confounded with those which correspond to
the noise subspace.! The MDL-based algorithm as first proposed by Wax and Kailath [5],
suffered from this shortcoming. This deficiency was later overcome by Wax and Ziskind
in [6] and by Wax in [7]. Their solutions were based on a multidimensional search of a
performance surface, which for a large number of degrees of freedom can become com-
putationally intensive. Moreover, the search may not necessarily converge to an absolute

extremum even in a moderately noisy environment.

!The signal and the noise subspaces are respectively spanned by the eigenvectors of the array covariance

matrix corresponding to the large and the small eigenvalues.



When the array is uniform and linear, a computationally more attractive solution con-
sists of first recovering the rank through a smoothing transformation applied to the array
covariance matrix, and then applying a Smoothed Rank Profile (SRP)? test [9, 8, 14].
This entails tracking the increase and eventual stabilization of the rank as the rank of the
smoothing matrix varies. The point at which the rank stabilizes with probability 1 (w.p.1)
[14], corresponds to the number of signals present in the observed process . In the pres-
ence of closely spaced coherent signals, however, this techniques exhibits a performance
threshold which is due in part to the residual correlation among the averaged diagonal
submatrices required by the smoothing transformation. As we later explain in section 3,
this “vestigial” correlation, if unaccounted for, can further degrade the performance of
even those algorithms which are applicable in a coherent signal environement.

The purpose of this paper is to derive a new, data-domain based signals (possibly
fully correlated) enumeration method which ameliorates the above shortcoming(s) when
the signals are assumed to impinge on a uniform linear array.®> This method applies the
MDL algorithm to the prediction errors of a linear model which has been fitted to an
appropriate data matrix.* This is in contrast to the solutions in [9, 8, 14] which appply
the MDL to encode the data and ultimately include an equality test of eigenvalues of the
smoothed array covariance matrix. Simulation results which show improved performance

over existing similar approaches are included. This improvement is particularly demon-

2The ranks of a sequence of smoothed covariance matrices is referred to as a smoothed rank profile.

3A similar scalar problem was independently treated in [11].

4Added in Proof: As pointed out by one of the reviewers, there is an alternative method due to
Rissanen [3, 4], called stochastic complexily which is also based on coding the prediction errors. It has
been shown to be optimal with respect to minimizing the codelength of the encoded observations, but its

computational complexity exceeds that of MDL.



strated with short data records and closely spaced signals at a moderate computational
cost of two Singular Value Decompositions (SVD)?. We also show that the technique is

asymptotically consistent.

1.1 Propagation Model

In the following analysis, we shall consider a uniform linear array composed of L identical,
equally spaced, omnidirectional sensors with sensor spacing d = % where A is the signal
wavelength. We assume that M < L narrowband planewaves (centered about the known
frequency wy) impinge on the array from (distinct) directions 6y, 6, ..., 60y The (complex

envelopes of the) signals received by this array of sensors can then be expressed as

M
zi(t) = Y ai(O)si(t) + ni(t), i=1,..., L, (1)
k=1
where (1) is the output of the i sensor, a(fy) = [1,e/* ... eioE=Dk|T 7 —

(d/c)sin by, is the L x 1 Direction Of Arrival (DOA) or steering vector of the k' sig-
nal, si(t) is the &' deterministic signal as received at the reference point, sensor 1, and
n;(t) is the noise at the " sensor. The exponent ‘T’ in the above expression for a(f})
denotes transposition, and 7 represents the propagation delay between two successive
sensors for a planar wavefront impinging on the array from the direction 8 with propa-
gation speed c. We assume that M — (M’ — 1) signals are fully correlated. The effective

rank® of the covariance matrix R = E{xx}, where x = [z, 29, -+, 2] is then M’

>The computations may further be optimized through recursion.

SThroughout the remainder of this paper, by the (effective) rank of R, we mean the number of “large”
eigenvalues (or singular values) which is the rank of the noise-free matrix R. When the signals are not
fully correlated, the effective rank corresponds to the number of signals present in the observed process.

By abuse of terminology, we will often drop the adjective ‘effective’.



We shall assume that the array outputs and the noise are stationary and ergodic,
complex-valued normal random processes having zero mean, the noise is uncorrelated with
the signals, and the noise terms are mutually uncorrelated with unknown but identical
variances, o2.

The signal enumeration problem is to estimate the number of signals impinging on
the above array making a direct use of the data and avoiding to compute the second or

higher order statistics. Of greater interest to us is the case where the data record is short,

i.e., has length N < 2L.

2 A New Data-Domain Detection Algorithm

2.1 Smoothing Transformations

It is well known that signal correlation induces a rank deficiency in the matrix

rr(1)  xp—a(1) - ay(1)
X _ J}L(Q) wL—l(Z) [ 1'1(2) 7 (2)
z(N) ap_1(N) -+ a1(N)

where the " column vector of X corresponds to a time record of the signal recorded at
the (L — 1+ 1) sensor, and that it is possible to “unfold” the collapsed column space by
applying an appropriate smoothing transformation to (2) (e.g., see [13]). Specifically, if p
is a positive integer smaller than L, ns = L —p+ 1, and F = [Fy,|Fg,|- - |F.,..,], is the px

nsL windowing matrix defined by Fi, = [0,xi—1)|Lp|0px(z—icpt1)], ¢ = 1,2, ,n,,” then

"When i = 1 (n,), the first (last) zero matrix in F;, is not present.



the smoothing transformation induced by (successive) p-element overlapping subarrays®
is defined to be [L,, ® X]FT where @ denotes the Kronecker product, I,,_ is the ng x n;
identity matrix and ng corresponds to the number of subarrays.

It is easy to see that

X(p) = [L.oX]F, (3)
X(p,1)
- )
X(p,ns)
where
Tpric1(1)  @pyiza(l) zi(1)
Xy | F® e @) | 5
tpria(N) 2pyia(N) oo alN)

is the data matrix determined by the ¢, p-element subarray comprised of sensors ¢, +
1,---,p+2—1. Note that the above data matrix is related to the spatially smoothed array
covariance matrix (determined by p-element subarrays), R(p), via the formula R(p) =
ﬁX(p)HX(p) Since rank R(p)=rank X(p), we can adapt the methods described in [14]
or [9] to unravel the signal structure from the observed process; equivalently, determine
M. To this end, we need an effective way to compute rank X(p). One way to accomplish

this is to fit a linear model to the rank-enhanced matrix X(p), and then use the fact

8These are comprised of the p successive sensors ¢, +1,---,p+¢— 1.



that its order equals rank X(p). The remainder of this paper will show that this can be
done very efficiently if we apply the MDL principle to the prediction errorsinstead of the
entries of X(p).

2.2 Computing the Density Function of the Model

Thus, let
X(p)d + e = x,, (6)
where X(p) = [x,, X(p)'], X;, the first column of X(p), d is the (p—1) x 1 linear prediction
vector, and e = [e(p),e(p+ 1),---,e(L)]T is the n,N x 1 prediction error vector. For
J=0,---,L—p, the N x 1 subsvector e(p + j) of e is induced by the N x p submatrix
X(p,7 +1). Without loss of generality, we shall assume that nyN is large, so that the
errors (the individual components of e) can be assumed to be normally distributed with
covariance matrix I' = Elee!'] having minimal “end effects” when using the conditional
density [18]. The components of an error N-dimensional subvector (e.g., e(p)) are clearly
uncorrelated since the time samples are assumed independent. There exists, however,
correlation between the error subvectors since successive subblocks of data - elements of
X(p)' - which are induced by the partitioning of e, have p — 2 columns in common as can
be seen from Eqs. (5) and (6). In order to apply the MDL principle, we need to compute
the probability density function of the (fitted) model (e.g., see [6]).
To simplify the computation of this density, we first whiten the model error. This, of

course, requires explicit knowledge of I'. We accomplish this by first rewriting (6) as

or



where d’' = [1, —d*]?.

Recall that if Y is an m x n matrix, Vec(Y) is defined to be the mn x 1 (row) vector
(Y11, > Ymls " s Yins "+ * s Ymn )L - Applying the Vec operator to both sides of (7), we obtain
Vec(d'"X(p)T) = Vec(e) = e,
or

(I @ d")Vec(X(p)") = e. (8)

Each data point has a signal component contaminated with noise, namely,

J}Z(j) = xsci(j) + nz(])v j: 17"'7N7 (9)

where the subscript sc denotes “the signal component.” Denoting the noise components

of X(p) by N(p), we see that Vec(X(p)T) = Vec(X(p)L) + Vec(N(p)'), from which
e~ 0+ (I®d") Vee(N(p)h), (10)

since the signal components (cisoids) theoretically fit the linear model perfectly. Using

this expression for e, we can now express I' as

I = (I®d?")E[Vec(N(p)H)Vee(N(p)H)H)(I @ d™HH
= (I odMI(p)dedH! = o1, (11)

where i(p) is an ns NP x n,NP indicator matrix? with 1 and 0 components which result
from the covariances of the noise components-e.g. i(l, 1) = i(l, Np+2)=1-.
Premultiplying (7) by ['~% - whitening the term e - we obtain,

I 2X(p)d 4+ I'"7e = I

[T

X, (12)

°The matrix size depends on N and p and is, i(p) = To[Iny, SIny, S?Inp - -] where S is a right
shifting matrix and To is the block Toeplitz operator.



or

Y(p)d +¢ =y, (13)

where Elzell] = o1
Using the fact that ¢ is Gaussian, it follows that the conditional probability density

function of y, is given by

f(Yp | ﬂ) — 1 exp (_ (YP — Y(p)d)H(YP — Y(p)d))7 (14)

(71-0-2)715]\7

where 3 = [dT, 0?].

2.3 The MDL-Based Signal Enumeration Criterion

Fitting an optimal linear model to the smoothed observed data is one way of succintly
describing (or “best summarizing”) the main (“signal”) components. The optimality is a
result of accounting for the correlation among the data vectors of the various subarrays.
Encoding the resulting error is then equivalent to encoding this “best” representation
we have of the data. It is thus natural to expect an improved performance when an
“optimal” preprocessing of the data is performed, followed by an optimal encoding. The
latter optimality is afforded by the MDL principle [2] which intuitively states that the
shortest code length which describes all of the relevant data is given by the optimal code.
This is equivalent to saying that of all models which can describe an observed data, the
most parsimonious one is optimal.

The application of this principle to the prediction error can be expressed as

L{e) = £(9) + 5vlog (n,N), (15)



where

L) = —logfy, | 5), (16)

v is the number of free parameters and n;/NV is the length of the vector. Minimizing the
length L(¢€) over the number of free parameters results in an MDL-based signal enumer-
ation test. We refer to this test as Optimized Data Domain DETection test (ODDDET).
We should also point out that a similar test, referred to as DDDET can also be based
on L(e). It can be derived by assuming that the error covariance matrix I' is diagonal
-i.e. the smoothed data vectors are uncorrelated!®-, avoiding the whitening transforma-
tion in Eq. (12) and using f(x(p) | ) for the conditional probability density function.
The minimization of Eq. (15) entails the derivation of the Maximum Likelihood (ML)
estimate of the parameter vector 3, B in Eq. (16). This can be achieved by maximizing
the log-likelihood function with respect to (w.r.t.) dT and o%. Differentiating £([dT, s?])
w.r.t. d and o2, and solving the equations obtained by setting these derivatives equal

to zero, produces [3:

1
7 = |y, -~ Y(pd|P, and

d = YY"y, (17)

where @ = ny X N and ‘#’ is a symbol used for the pseudo-inverse. Substituting this

result back into (16) gives

L) = alogr + alog(~ |y, — YOIY()*y, )

+ a. (18)

10This is implicitly used in [9].

10



Next, for 1 < k < L, we replace in the normed quantity in (18)Y (p) [21, 19] with its
rank-k approximation,'! thus obtaining a parameterized version of /3(3), ,C(B, k). Recall

that if Y(p) = VEUY, is the SVD for Y(p), the rank-k approzimation to Y(p), Y(p),

¥, O
is given by Y(p)r = V * UM where the vectors V and U are, respectively, the
0 O

left and the right singular vectors of Y(p), and Xy, is the (k x k) diagonal matrix comprised
of the largest singular values. Substituting Y (p)r for Y(p) in the argument of the second

term of (18) gives the parameterized version of this expression

I, O
0 0

et = {YP - Y(p)kY(p)k#yZ?} =y, —V VHYp-12 (19)
Since the norm of ¢ is invariant under multiplication by the unitary matrix VI [19],

the square of the norm of preceeding expression is equivalent to [11]

nsIN

Vi, 7= >0 &I (20)

i=k+1

Fe | = I Viy, -

where ¢ = VHy and the superscript on e* represents the (assumed) model order (equiv-
alently, effective rank).

For a model order k£ - equivalently, that k signals are impinging on the array - the
optimal linear prediction vector d is obtained by minimizing || ¥ ||>. Since only k entries
of the vector ¢ are used in the minimization, and, given that complex signals are considered

herein, the number of adjustable parameters are the 2k entries of £*.

11'We set the smallest singular values by zero and result with the closest matrix in norm to the original
matrix.
I,

12Note that
0 0

0
] 1s an ny;N X n, N matrix.

11



By substituting the previous expression into Eq. (18) for ,C(B, k), and attaching the
appropriate penalty function to this expression, it is now possible to write down an MDL-
based test which, when minimized over all possible k, provides the model order for the

chosen subarray size p:

e
I

arg { min MDL(k)} , where

ke{lv"'vp_l}
1
MDL(k) = {a + alogr + alog{(=) || * |}

+ (k) log (ns N}, (21)

where «, as previously defined, represents the length of the vector x, used in estimating
the linear prediction model, and the constant independent of & was left out.

The final step is to repeat this process, successively decreasing p from L to 2 (if
necessary ), obtaining each time, an order k (one which minimizes the MDL(k)). If the
number of degrees of freedom is sufficient, the resulting sequence of model orders will
stabilize w.p.1 [14]. The value of k at which stabilization takes place, is shown in the next
section to be a consistent estimate of the number of signals.

The resulting algorithm is summarized below:

12



Summary of Algorithm

1. For a subarray size p (usually chosen to be (L — 1), if one assumes there are
at least two coherent signals, else choose L), obtain an estimate of the linear

prediction vector d as in equation (6);
2. Obtain an estimate of the error covariance matrix I' as in (11)

3. Whiten the noise via the inverse hermitian square root of T as described in

equation (13);

4. Use the norm of ¢ for different model orders as they are tested to minimize
the MDL in equation (21) to obtain a model order estimate (or effective rank

estimate of X(p)) k:
5. Increase (or decrease) p and repeat steps 2-4;

6. If k stabilizes for two or more consecutive subarray sizes (as p varies), it
should be picked as the number of signals; if the rank does not stabilize the
number of degrees of freedom is not sufficient to obtain a solution (and there

is no solution).

2.4 Consistency of the Detection Scheme

An important characteristic of a detection procedure lies in its ability to provide an

unbiased estimate of the model order (or number of signals), as the length of the data

13



vector used for prediction grows without bound (or is very large for practical purposes).

Lemma 1 The order estimale k obtained via the above algorithm is a consistent estimate
of the number of signals incident on a uniform linear array, i.e.,

~

arg{ali_{%o MDL(k)} = M w.p.1. (22)

Proof: By the criterion developed by Cozzens, et al. [14], as p varies, the (effective) ranks
of the X(p) stabilize w.p.1 to the number of signals if the number of degrees of freedom
(number of sensors) is sufficient. Therefore, it suffices to prove that the effective rank of
X(p) determined with the above procedure is asymptotically consistent; equivalently, that
the length MDL(k) is always greater than the length given by the optimal or true order
M (or MDL(M)). This is equivalent to showing that M is the minimum value of the
curve described by the MDL function.

In order to proceed, the following result is needed [10]: if

Nlim Cy/N — 0, and Nlim Cn — o0, (23)
then,
=" —(k — M)Cx /N, when k > M ;
k
og |||| €M|||| > (M — k)Cn/N,when k < M. (24)
5

Clearly, log « satisfies the properties of Cy given in equation (23). If we evaluate (21)
at k and M, the following difference can be deduced:

1 1 _ || €k ||

There are two distinct cases that one must consider in order to study the behavior of

the expression given in equation (25).

14



Case 1: 'k > M : As o — o0,

el (k- M)ee (26)

e a

by the first relation in (24). Since k > M, || &* || < || e || (recall that o —k < o — M),

log

implying that

I e* |l
log < 0,
[
and hence,
1 k
(k—M) ogoz>0>10g ||€M|| as a — 00 (27)
a | &M ]
since
1
lim —2% = o+, (28)
a&— 00 a
Eqs.(25), (27), and (28) thus show that
(MDL(k) — MDL(M)) > 0. (29)
Case 2: k < M : As o — oo, the second relation in (24) is invoked, yielding
= log a
g > (M — k) . (30)
[ a

Since k < M, one has || &* || > || & ||, (the same argument is used as in case 1), and

hence,
" ]
> 0 31
and it follows that
k 1
log |||| - |||| F (k= M)—E2 S 0as o — . (32)
3 «

Finally, (32) together with the result in (29), yield
(MDL(k) — MDL(M)) > 0, (33)
or a positive function, thus proving the consistency of the detection criterion. Il

15



3 Simulations

3.0.1 Example 1

A 10 element array with equal spacing of A\/2 is considered. Two coherent narrowband
signals with a common normalized frequency of fi5) = .25 Hz are assumed to impinge
on the array from distinct directions (6;(3) = £2.5deg). The data record length is N=15
snapshots. A set of 100 random trials is used for each SNR to evaluate the detection
performance for different methods.

The AIC and the MDL were the basis in the derivation of the algorithm described in
[5] to detect the number of uncorrelated signals impinging on a uniform linear array. The
MDL-based test was later extended to detect coherent signals via a unidimensional search
[9, 8]. The latter consisted of applying an MDIL-based test on a sequence of smoothed
covariance matrices of different subarray sizes p. This approach, as previously discussed,
assumed a very similar derivation as that first given by Wax and Kailath [5]. We therefore
compare our proposed method to that solution and use the MDL and the AIC criteria in
the evaluation.

For each p, an estimate of the effective rank is obtained. The principle of rank sta-
bilization described earlier, is then applied to determine the rank which corresponds to
the number of sources. The DDDET (prior to optimization-i.e. without the additional
whitening step) algorithm proposed in section 3 is first evaluated in this example. In Table
1, the number of correct order estimates (out of 100) is listed in a column corresponding
to each of the algorithms under study, for various subarray sizes. The AIC-based solution
turned out to be consistently overestimating the number of sources, and its performance
further degrades as the subarray size increases (equivalently the number of subarrays de-

creases). As the number of subarrays decreases, the averaging procedure which effects the

16



smoothing is over fewer overlapping submatrices. This results in slower enhancement of
the eigenvalues and makes their delineation more difficult. This is particularly true when
the coherent signals are closely spaced (spatial correlation), and this correlation is thus not
adequately reduced. The MDL-based SRP test performs well at high SNR, and exhibits
a sharp and sudden drop in performance in a moderately noisy environment. This sharp
degradation in performance is partly due to an underlying asymptotic assumption which
clearly is not met, but also, as discussed earlier, to the subarrays correlation which is not
taken into account. The latter limiting factor clearly affects the performance of DDDET,
which still, shows an improvement in performance through a smoother degradation in
performance at similar SNR. The unsatisfactory performance of the DDDET at low SNR
may thus be attributed to the invalidity of the assumed model error covariance matrix I'.
The effect becomes more pronounced for higher spatial correlation (more closely spaced
signals) as illustrated in Fig. 1, where the rank stabilization rule is applied at 17.5 dB to

compare the performances of the above methods as a function of spatial correlation.

3.0.2 Example 2

In this example we consider the same signal scenario as in example 1. By accounting for the
existing subarrays inter-correlation, we estimate the error covariance matrix and perform
the additional processing to achieve the whitening of the modeling error. The resulting
test, referred to as ODDDET, leads to an improved detection breakdown threshold as
illustrated in Fig. 2. The performance, as noted earlier, will be commensurate with the
quality of the estimated noise covariance matrix and with the data record length.

In Fig. 3, the rank stabilization criterion is applied at 15 dB to conclude a rank

of 2, as the stabilization has taken place over 3 consecutive subarray sizes. We note

17



that the spatial correlation combined with the temporal, increase the amount of required
smoothing to delineate the smallest signal eigenvalue from the largest noise eigenvalue.
The stabilization, however, which holds w.p.1 as discussed in [14], is the significant factor
as it is used to determine the number of signals. The overall detection performance is
summarized in Table 2.

The efficiency and robustness of signals enumeration (even if fully correlated) via
coding of the prediction errors of a model fitted to an appropriately constructed data

matrix, is reflected by the performance improvement even for relatively short data records.

3.0.3 Example 3

In order to demonstrate the performance of the algorithm in an environment where only
a subgroup of the arriving signals are correlated, we consider a scenario with two closely
spaced coherent sources and one uncorrelated source. The coherent signals have a common
frequency fi2 = .25 Hz and arrive at 64 3 = £2.5deg, while the uncorrelated signal has
a frequency f3 = .35 Hz and impinges from 63 = 7.5 deg. The SNR is taken to be 15 dB
and the observation time is equivalent to N = 15 snapshots. In Table 3, the performance
of the algorithm in presence of this scenario of signals (correlated and uncorrelated) is
shown. The ability of this algorithm to cope with different signal scenarios and to resolve
closely spaced signals is nicely demonstrated.

In Table 4, for the same signal scenario, the performance is monitored for several SNR.

4 Conclusion

It was shown that the “vestigial” correlation of the signals following a smoothing trans-

formation needs to be accounted for if a unidimensional signal enumeration technique is

18



to be used. Encoding the resulting prediction errors results in a significant performance

improvement, with a modest computational requirement.
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p=6
SNR (dB) | AIC | MDL | DDDET
20 63 100 100
17.5 61 98 95
15 63 20 91
12.5 63 0 81
10 58 0 30
=7
SNR (dB) | AIC | MDL | DDDET
20 20 100 100
17.5 26 94 100
15 22 10 91
12.5 23 0 78
10 26 0 28
p=8
SNR (dB) | AIC | MDL | DDDET
20 1 100 100
17.5 2 61 91
15 1 1 84
12.5 1 0 47
10 1 0 11

Table 1: Comparison of enumeration performances of MDL and AIC based SRP tests
on the array covariance matrix and of DDDET. Various subarray sizes (p = 6, 7, 8) and

SNR’s are looked at.
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Figure 1: Spacing threshold for detection of two coherent signals
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ODDDET
SNR (dB) | p=4 | p=5 | p=6 | p=T7 | p=8
20 100 | 100 | 100 | 100 | 100
17.5 100 | 100 | 100 | 100 | 98
15 95 94 97 93 84
12.5 92 93 95 92 66
10 91 81 79 53 16

Table 2: Detection performance of ODDDET with two coherent signals

ODDDET
SNR (dB) | p=4 | p=5 | p=6 | p=T7 | p=8
15 100 | 90 96 92 94

Table 3: Detection in presence of a coherent signal subgroup and an uncorrelated signal

at various subarray sizes and fixed SNR

SNR (dB) | ODDDET (p=6)
20 100
17.5 100
15 96
12.5 90
10 88

Table 4: Detection performance in presence of a coherent signal subgroup and an uncor-

related signal at various SNR
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Figure 2: Performance improvement of ODDDET with two coherent signals
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Figure 3: Rank stabilization for a two coherent signal scenario at a fixed SNR
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