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1 IntroductionParameter estimation techniques, particularly eigenstructure-based techniques, have beenthe focus of increased research activity because of their wide-ranging applications in anumber of �elds. Many of them, however, rely on prior knowledge of the number ofsignals whose parameters are of interest.Determining the actual number of signals impinging on an array of sensors - the detec-tion problem - is generally a critical �rst step in solving the source localization problem- estimating their Direction(s)-Of-Arrival (DOA). Two information theoretic criteria fororder estimation of an observed process, namely the Akaike Information Criterion (AIC)[1] and Rissanen's Minimum Description Length (MDL) principle [2], have inspired manysolutions to the aforementioned problem [11, 14, 9, 15, 16, 7, 5, 6, 17, 8]. Many of thealgorithms were derived under a \long data record" assumption and when simpli�ed, in-clude a test of equality of the smallest eigenvalues of the array covariance matrix for anobserved process. Most of the forementioned methods fail in (fully) correlated or coherentsignal environments, as some of the eigenvalues which would normally correspond to theeigenvectors spanning the signal subspace get confounded with those which correspond tothe noise subspace.1 The MDL-based algorithm as �rst proposed by Wax and Kailath [5],su�ered from this shortcoming. This de�ciency was later overcome by Wax and Ziskindin [6] and by Wax in [7]. Their solutions were based on a multidimensional search of aperformance surface, which for a large number of degrees of freedom can become com-putationally intensive. Moreover, the search may not necessarily converge to an absoluteextremum even in a moderately noisy environment.1The signal and the noise subspaces are respectively spanned by the eigenvectors of the array covariancematrix corresponding to the large and the small eigenvalues.2



When the array is uniform and linear, a computationally more attractive solution con-sists of �rst recovering the rank through a smoothing transformation applied to the arraycovariance matrix, and then applying a Smoothed Rank Pro�le (SRP)2 test [9, 8, 14].This entails tracking the increase and eventual stabilization of the rank as the rank of thesmoothing matrix varies. The point at which the rank stabilizes with probability 1 (w.p.1)[14], corresponds to the number of signals present in the observed process . In the pres-ence of closely spaced coherent signals, however, this techniques exhibits a performancethreshold which is due in part to the residual correlation among the averaged diagonalsubmatrices required by the smoothing transformation. As we later explain in section 3,this \vestigial" correlation, if unaccounted for, can further degrade the performance ofeven those algorithms which are applicable in a coherent signal environement.The purpose of this paper is to derive a new, data-domain based signals (possiblyfully correlated) enumeration method which ameliorates the above shortcoming(s) whenthe signals are assumed to impinge on a uniform linear array.3 This method applies theMDL algorithm to the prediction errors of a linear model which has been �tted to anappropriate data matrix.4 This is in contrast to the solutions in [9, 8, 14] which appplythe MDL to encode the data and ultimately include an equality test of eigenvalues of thesmoothed array covariance matrix. Simulation results which show improved performanceover existing similar approaches are included. This improvement is particularly demon-2The ranks of a sequence of smoothed covariance matrices is referred to as a smoothed rank pro�le.3A similar scalar problem was independently treated in [11].4Added in Proof: As pointed out by one of the reviewers, there is an alternative method due toRissanen [3, 4], called stochastic complexity which is also based on coding the prediction errors. It hasbeen shown to be optimal with respect to minimizing the codelength of the encoded observations, but itscomputational complexity exceeds that of MDL. 3



strated with short data records and closely spaced signals at a moderate computationalcost of two Singular Value Decompositions (SVD)5. We also show that the technique isasymptotically consistent.1.1 Propagation ModelIn the following analysis, we shall consider a uniform linear array composed of L identical,equally spaced, omnidirectional sensors with sensor spacing d = �2 where � is the signalwavelength. We assume that M < L narrowband planewaves (centered about the knownfrequency !0) impinge on the array from (distinct) directions �1; �2; : : : ; �M . The (complexenvelopes of the) signals received by this array of sensors can then be expressed asxi(t) = MXk=1 ai(�k)sk(t) + ni(t); i = 1; : : : ; L; (1)where xi(t) is the output of the ith sensor, a(�k) = [1; ej!0�k ; : : : ; ej!0(L�1)�k]T, �k =(d=c) sin �k, is the L � 1 Direction Of Arrival (DOA) or steering vector of the kth sig-nal, sk(t) is the kth deterministic signal as received at the reference point, sensor 1, andni(t) is the noise at the ith sensor. The exponent `T' in the above expression for a(�k)denotes transposition, and �k represents the propagation delay between two successivesensors for a planar wavefront impinging on the array from the direction �k with propa-gation speed c. We assume that M � (M 0 � 1) signals are fully correlated. The e�ectiverank6 of the covariance matrix R = EfxHxg, where x = [x1; x2; � � � ; xL] is then M 0.5The computations may further be optimized through recursion.6Throughout the remainder of this paper, by the (e�ective) rank of R, we mean the number of \large"eigenvalues (or singular values) which is the rank of the noise-free matrix R. When the signals are notfully correlated, the e�ective rank corresponds to the number of signals present in the observed process.By abuse of terminology, we will often drop the adjective `e�ective'.4



We shall assume that the array outputs and the noise are stationary and ergodic,complex-valued normal random processes having zero mean, the noise is uncorrelated withthe signals, and the noise terms are mutually uncorrelated with unknown but identicalvariances, �2.The signal enumeration problem is to estimate the number of signals impinging onthe above array making a direct use of the data and avoiding to compute the second orhigher order statistics. Of greater interest to us is the case where the data record is short,i.e., has length N < 2L.2 A New Data-Domain Detection Algorithm2.1 Smoothing TransformationsIt is well known that signal correlation induces a rank de�ciency in the matrixX = 0BBBBBBBB@ xL(1) xL�1(1) � � � x1(1)xL(2) xL�1(2) � � � x1(2)... ... . . . ...xL(N) xL�1(N) � � � x1(N) 1CCCCCCCCA ; (2)where the ith column vector of X corresponds to a time record of the signal recorded atthe (L� i+1)th sensor, and that it is possible to \unfold" the collapsed column space byapplying an appropriate smoothing transformation to (2) (e.g., see [13]). Speci�cally, if pis a positive integer smaller than L, ns = L� p + 1, and F = [F1pjF2pj � � � jFnsp], is the p�nsL windowing matrix de�ned by Fip = [0p�(i�1)jIpj0p�(L�i�p+1)]; i = 1; 2; � � � ; ns,7 then7When i = 1 (ns), the �rst (last) zero matrix in Fip is not present.5



the smoothing transformation induced by (successive) p-element overlapping subarrays8is de�ned to be [Ins 
X]FT where 
 denotes the Kronecker product, Ins is the ns � nsidentity matrix and ns corresponds to the number of subarrays.It is easy to see that X(p) = [Ins 
X]FT; (3)= 0BBBBBBBB@ X(p; 1)X(p; 2)...X(p; ns) 1CCCCCCCCA ; (4)where X(p; i) = 0BBBBBBBB@ xp+i�1(1) xp+i�2(1) � � � xi(1)xp+i�1(2) xp+i�2(2) � � � xi(2)... ... . . . ...xp+i�1(N) xp+i�2(N) � � � xi(N) 1CCCCCCCCA ; i = 1; 2; � � � ; ns; (5)is the data matrix determined by the ith, p-element subarray comprised of sensors i; i+1; � � � ; p+i�1. Note that the above data matrix is related to the spatially smoothed arraycovariance matrix (determined by p-element subarrays), R(p), via the formula R(p) =1NnsX(p)HX(p). Since rank R(p)=rank X(p), we can adapt the methods described in [14]or [9] to unravel the signal structure from the observed process; equivalently, determineM . To this end, we need an e�ective way to compute rank X(p). One way to accomplishthis is to �t a linear model to the rank-enhanced matrix X(p), and then use the fact8These are comprised of the p successive sensors i; i+ 1; � � � ; p+ i � 1.6



that its order equals rank X(p). The remainder of this paper will show that this can bedone very e�ciently if we apply the MDL principle to the prediction errors instead of theentries of X(p).2.2 Computing the Density Function of the ModelThus, let X(p)0d + e = xp; (6)whereX(p) = [xp;X(p)0], xp, the �rst column of X(p), d is the (p�1)�1 linear predictionvector, and e = [e(p); e(p + 1); � � � ; e(L)]T is the nsN � 1 prediction error vector. Forj = 0; � � � ; L� p, the N � 1 subsvector e(p+ j) of e is induced by the N � p submatrixX(p; j + 1). Without loss of generality, we shall assume that nsN is large, so that theerrors (the individual components of e) can be assumed to be normally distributed withcovariance matrix � = E[eeH] having minimal \end e�ects" when using the conditionaldensity [18]. The components of an error N -dimensional subvector (e.g., e(p)) are clearlyuncorrelated since the time samples are assumed independent. There exists, however,correlation between the error subvectors since successive subblocks of data - elements ofX(p)0 - which are induced by the partitioning of e, have p� 2 columns in common as canbe seen from Eqs. (5) and (6). In order to apply the MDL principle, we need to computethe probability density function of the (�tted) model (e.g., see [6]).To simplify the computation of this density, we �rst whiten the model error. This, ofcourse, requires explicit knowledge of �. We accomplish this by �rst rewriting (6) asX(p)d0 = e;or d0TX(p)T = eT; (7)7



where d0 = [1; �dT]T.Recall that if Y is an m� n matrix, Vec(Y) is de�ned to be the mn� 1 (row) vector(y11; � � � ; ym1; � � � ; y1n; � � � ; ymn)T . Applying the Vec operator to both sides of (7), we obtainVec(d0TX(p)T) = Vec(eT) = e;or, (I 
 d0T)Vec(X(p)T) = e: (8)Each data point has a signal component contaminated with noise, namely,xi(j) = xsci(j) + ni(j); j = 1; : : : ; N; (9)where the subscript sc denotes \the signal component." Denoting the noise componentsof X(p) by N(p), we see that Vec(X(p)T) = Vec(X(p)Tsc) + Vec(N(p)T), from whiche � 0 + (I 
 d0T)Vec(N(p)T); (10)since the signal components (cisoids) theoretically �t the linear model perfectly. Usingthis expression for e, we can now express � as� = (I 
 d0T) E[Vec(N(p)T)Vec(N(p)T)H](I 
 d0T)H= �2(I 
 d0T) eI(p)(I 
 d0T)H = �2 e�; (11)where eI(p) is an nsNP � nsNP indicator matrix9 with 1 and 0 components which resultfrom the covariances of the noise components-e.g. eI(1; 1) = eI(1; Np + 2) = 1-.Premultiplying (7) by e�� 12 - whitening the term e - we obtain,e�� 12X(p)0d + e�� 12 e = e�� 12xp (12)9The matrix size depends on N and p and is, eI(p) = To[INp;SINp;S2INp � � �] where S is a rightshifting matrix and To is the block Toeplitz operator.8



or, Y(p)d + " = yp; (13)where E[""H] = �2I.Using the fact that " is Gaussian, it follows that the conditional probability densityfunction of yp is given byf(yp j �) = 1(��2)nsN exp �(yp � Y(p)d)H(yp � Y(p)d)�2 !; (14)where � = [dT; �2].2.3 The MDL-Based Signal Enumeration CriterionFitting an optimal linear model to the smoothed observed data is one way of succintlydescribing (or \best summarizing") the main (\signal") components. The optimality is aresult of accounting for the correlation among the data vectors of the various subarrays.Encoding the resulting error is then equivalent to encoding this \best" representationwe have of the data. It is thus natural to expect an improved performance when an\optimal" preprocessing of the data is performed, followed by an optimal encoding. Thelatter optimality is a�orded by the MDL principle [2] which intuitively states that theshortest code length which describes all of the relevant data is given by the optimal code.This is equivalent to saying that of all models which can describe an observed data, themost parsimonious one is optimal.The application of this principle to the prediction error can be expressed asL(�) = L(�) + 12� log (nsN); (15)9



where L(�) = � log f(yp j �); (16)� is the number of free parameters and nsN is the length of the vector. Minimizing thelength L(�) over the number of free parameters results in an MDL-based signal enumer-ation test. We refer to this test as Optimized Data Domain DETection test (ODDDET).We should also point out that a similar test, referred to as DDDET can also be basedon L(e). It can be derived by assuming that the error covariance matrix � is diagonal-i.e. the smoothed data vectors are uncorrelated10-, avoiding the whitening transforma-tion in Eq. (12) and using f(x(p) j �) for the conditional probability density function.The minimization of Eq. (15) entails the derivation of the Maximum Likelihood (ML)estimate of the parameter vector �, b� in Eq. (16). This can be achieved by maximizingthe log-likelihood function with respect to (w.r.t.) dT and �2. Di�erentiating L([dT; �2])w.r.t. dT and �2, and solving the equations obtained by setting these derivatives equalto zero, produces b�: c�2 = 1� k yp � Y(p)d k2; andbd = Y(p)#yp; (17)where � = ns � N and `#0 is a symbol used for the pseudo-inverse. Substituting thisresult back into (16) givesL( b�) = � log � + � log ( 1� k yp � Y(p)Y(p)#yp k2)+�: (18)10This is implicitly used in [9]. 10



Next, for 1 � k � L, we replace in the normed quantity in (18)Y(p) [21, 19] with itsrank-k approximation,11 thus obtaining a parameterized version of L( b�), L( b�; k). Recallthat if Y(p) = V�UH, is the SVD for Y(p), the rank-k approximation to Y(p), Y(p)k,is given by Y(p)k = V 264 �k 00 0 375UH, where the vectors V and U are, respectively, theleft and the right singular vectors ofY(p), and �k is the (k�k) diagonal matrix comprisedof the largest singular values. Substituting Y(p)k for Y(p) in the argument of the secondterm of (18) gives the parameterized version of this expression"k = nyp � Y(p)kY(p)#k ypo = yp � V 264 Ik 00 0 375 VHyp:12 (19)Since the norm of " is invariant under multiplication by the unitary matrix VH [19],the square of the norm of preceeding expression is equivalent to [11]k "k k2 = k VHyp � 264 Ik 00 0 375VHyp k2= nsNXi=k+1 k �i k2; (20)where � = VHyp and the superscript on "k represents the (assumed) model order (equiv-alently, e�ective rank).For a model order k - equivalently, that k signals are impinging on the array - theoptimal linear prediction vector d is obtained by minimizing k "k k2. Since only k entriesof the vector " are used in the minimization, and, given that complex signals are consideredherein, the number of adjustable parameters are the 2k entries of "k.11We set the smallest singular values by zero and result with the closest matrix in norm to the originalmatrix.12Note that 24 Ik 00 0 35 is an nsN � nsN matrix.11



By substituting the previous expression into Eq. (18) for L( b�; k), and attaching theappropriate penalty function to this expression, it is now possible to write down an MDL-based test which, when minimized over all possible k, provides the model order for thechosen subarray size p: bk = arg ( mink2f1;���;p�1gMDL(k)) ; whereMDL(k) = �� + � log � + � log f( 1�) k "k k2g+(k) log (nsN)g ; (21)where �, as previously de�ned, represents the length of the vector xp used in estimatingthe linear prediction model, and the constant independent of k was left out.The �nal step is to repeat this process, successively decreasing p from L to 2 (ifnecessary), obtaining each time, an order bk (one which minimizes the MDL(k)). If thenumber of degrees of freedom is su�cient, the resulting sequence of model orders willstabilize w.p.1 [14]. The value of bk at which stabilization takes place, is shown in the nextsection to be a consistent estimate of the number of signals.The resulting algorithm is summarized below:
12



Summary of Algorithm1. For a subarray size p (usually chosen to be (L� 1), if one assumes there areat least two coherent signals, else choose L), obtain an estimate of the linearprediction vector d as in equation (6);2. Obtain an estimate of the error covariance matrix � as in (11)3. Whiten the noise via the inverse hermitian square root of e� as described inequation (13);4. Use the norm of � for di�erent model orders as they are tested to minimizethe MDL in equation (21) to obtain a model order estimate (or e�ective rankestimate of X(p)) bk;5. Increase (or decrease) p and repeat steps 2-4;6. If bk stabilizes for two or more consecutive subarray sizes (as p varies), itshould be picked as the number of signals; if the rank does not stabilize thenumber of degrees of freedom is not su�cient to obtain a solution (and thereis no solution).2.4 Consistency of the Detection SchemeAn important characteristic of a detection procedure lies in its ability to provide anunbiased estimate of the model order (or number of signals), as the length of the data13



vector used for prediction grows without bound (or is very large for practical purposes).Lemma 1 The order estimate bk obtained via the above algorithm is a consistent estimateof the number of signals incident on a uniform linear array, i.e.,argf lim�!1 MDL(bk)g = M w:p:1: (22)Proof: By the criterion developed by Cozzens, et al. [14], as p varies, the (e�ective) ranksof the X(p) stabilize w.p.1 to the number of signals if the number of degrees of freedom(number of sensors) is su�cient. Therefore, it su�ces to prove that the e�ective rank ofX(p) determined with the above procedure is asymptotically consistent; equivalently, thatthe length MDL(k) is always greater than the length given by the optimal or true orderM (or MDL(M)). This is equivalent to showing that M is the minimum value of thecurve described by the MDL function.In order to proceed, the following result is needed [10]: iflimN!1 CN=N ! 0; and limN!1CN !1; (23)then, log k "k kk "M k � �(k �M)CN=N;when k > M ;log k "k kk "M k > (M � k)CN=N;when k < M: (24)Clearly, log� satis�es the properties of CN given in equation (23). If we evaluate (21)at k and M , the following di�erence can be deduced:1�(MDL(k) � MDL(M)) = 1� log (�)(k�M) + log k "k kk "M k: (25)There are two distinct cases that one must consider in order to study the behavior ofthe expression given in equation (25). 14



Case 1: k > M : As �!1,log k "k kk "M k � �(k �M) log �� : (26)by the �rst relation in (24). Since k > M; k "k k < k "M k (recall that �� k < ��M),implying that log k "k kk "M k < 0;and hence, (k �M) log �� > 0 > log k "k kk "M k as �!1 (27)since lim�!1 log�� = 0+; (28)Eqs.(25), (27), and (28) thus show that(MDL(k) � MDL(M)) > 0: (29)Case 2: k < M : As �!1, the second relation in (24) is invoked, yieldinglog k "k kk "M k > (M � k) log�� : (30)Since k < M; one has k "k k > k "M k; (the same argument is used as in case 1), andhence, log k "k kk "M k > 0; (31)and it follows that log k "k kk "M k + (k �M) log�� > 0 as �!1: (32)Finally, (32) together with the result in (29), yield(MDL(k) � MDL(M)) > 0; (33)or a positive function, thus proving the consistency of the detection criterion.15



3 Simulations3.0.1 Example 1A 10 element array with equal spacing of �=2 is considered. Two coherent narrowbandsignals with a common normalized frequency of f1(2) = :25 Hz are assumed to impingeon the array from distinct directions (�1(2) = �2:5 deg). The data record length is N=15snapshots. A set of 100 random trials is used for each SNR to evaluate the detectionperformance for di�erent methods.The AIC and the MDL were the basis in the derivation of the algorithm described in[5] to detect the number of uncorrelated signals impinging on a uniform linear array. TheMDL-based test was later extended to detect coherent signals via a unidimensional search[9, 8]. The latter consisted of applying an MDL-based test on a sequence of smoothedcovariance matrices of di�erent subarray sizes p. This approach, as previously discussed,assumed a very similar derivation as that �rst given by Wax and Kailath [5]. We thereforecompare our proposed method to that solution and use the MDL and the AIC criteria inthe evaluation.For each p, an estimate of the e�ective rank is obtained. The principle of rank sta-bilization described earlier, is then applied to determine the rank which corresponds tothe number of sources. The DDDET (prior to optimization-i.e. without the additionalwhitening step) algorithm proposed in section 3 is �rst evaluated in this example. In Table1, the number of correct order estimates (out of 100) is listed in a column correspondingto each of the algorithms under study, for various subarray sizes. The AIC-based solutionturned out to be consistently overestimating the number of sources, and its performancefurther degrades as the subarray size increases (equivalently the number of subarrays de-creases). As the number of subarrays decreases, the averaging procedure which e�ects the16



smoothing is over fewer overlapping submatrices. This results in slower enhancement ofthe eigenvalues and makes their delineation more di�cult. This is particularly true whenthe coherent signals are closely spaced (spatial correlation), and this correlation is thus notadequately reduced. The MDL-based SRP test performs well at high SNR, and exhibitsa sharp and sudden drop in performance in a moderately noisy environment. This sharpdegradation in performance is partly due to an underlying asymptotic assumption whichclearly is not met, but also, as discussed earlier, to the subarrays correlation which is nottaken into account. The latter limiting factor clearly a�ects the performance of DDDET,which still, shows an improvement in performance through a smoother degradation inperformance at similar SNR. The unsatisfactory performance of the DDDET at low SNRmay thus be attributed to the invalidity of the assumed model error covariance matrix �.The e�ect becomes more pronounced for higher spatial correlation (more closely spacedsignals) as illustrated in Fig. 1, where the rank stabilization rule is applied at 17:5 dB tocompare the performances of the above methods as a function of spatial correlation.3.0.2 Example 2In this example we consider the same signal scenario as in example 1. By accounting for theexisting subarrays inter-correlation, we estimate the error covariance matrix and performthe additional processing to achieve the whitening of the modeling error. The resultingtest, referred to as ODDDET, leads to an improved detection breakdown threshold asillustrated in Fig. 2. The performance, as noted earlier, will be commensurate with thequality of the estimated noise covariance matrix and with the data record length.In Fig. 3, the rank stabilization criterion is applied at 15 dB to conclude a rankof 2, as the stabilization has taken place over 3 consecutive subarray sizes. We note17



that the spatial correlation combined with the temporal, increase the amount of requiredsmoothing to delineate the smallest signal eigenvalue from the largest noise eigenvalue.The stabilization, however, which holds w.p.1 as discussed in [14], is the signi�cant factoras it is used to determine the number of signals. The overall detection performance issummarized in Table 2.The e�ciency and robustness of signals enumeration (even if fully correlated) viacoding of the prediction errors of a model �tted to an appropriately constructed datamatrix, is re
ected by the performance improvement even for relatively short data records.3.0.3 Example 3In order to demonstrate the performance of the algorithm in an environment where onlya subgroup of the arriving signals are correlated, we consider a scenario with two closelyspaced coherent sources and one uncorrelated source. The coherent signals have a commonfrequency f1;2 = :25 Hz and arrive at �1;2 = �2:5 deg, while the uncorrelated signal hasa frequency f3 = :35 Hz and impinges from �3 = 7:5 deg. The SNR is taken to be 15 dBand the observation time is equivalent to N = 15 snapshots. In Table 3, the performanceof the algorithm in presence of this scenario of signals (correlated and uncorrelated) isshown. The ability of this algorithm to cope with di�erent signal scenarios and to resolveclosely spaced signals is nicely demonstrated.In Table 4, for the same signal scenario, the performance is monitored for several SNR.4 ConclusionIt was shown that the \vestigial" correlation of the signals following a smoothing trans-formation needs to be accounted for if a unidimensional signal enumeration technique is18



to be used. Encoding the resulting prediction errors results in a signi�cant performanceimprovement, with a modest computational requirement.AcknowledgementWe are greatful to the reviewers for all their comments which led to an improvement ofthis paper.
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Figure 1: Spacing threshold for detection of two coherent signals
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Figure 2: Performance improvement of ODDDET with two coherent signals
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