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ABSTRACT

In this paper, we propose a novel method for the classification of 3D shapes, based on topo-geometric shape
descriptors. Topo-geometric models have an advantage over existing shape descriptors that they capture com-
plete shape information — capturing topology through skeletal graphs, and geometry via edge weights. The
resulting weighted graph representation allows shape classification by establishing error correcting subgraph
isomorphisms between the test graph and model graphs, where the best match is the one that corresponds
to largest subgraph isomorphism. We propose various cost assignments for graph edit operations for error
correction, which in turn takes into account any shape variations arising due to noise and measurement
errors.
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1. INTRODUCTION

Classification and recognition of 3D objects constitute an important problem in computer vision applications.
3D objects are usually represented by their surface boundaries, which in turn are normally parameterized
by triangulated meshes. This representation is, however, unsuitable for shape recognition. The idea is
then to extract some shape features, which form a characteristic of a shape, and subsequently employ them
for recognition. A number of techniques have been proposed in literature. Shinagawa et al.14 use height
function based Reeb graphs for shape representation. Ben et al.3 and Osada et al.12 represent 3D objects by
shape distributions and subsequently employ a dissimilarity measure on distributions for shape classification.
Lazarus et al.7 propose skeletonization based on geodesic distance from a manually chosen source point. The
graphs obtained this way are called level set diagrams. Hilaga et al.4 extend this approach by eliminating the
need of the manual selection of a source point and propose a matching algorithm based on multiresolution
Reeb graphs. Tung and Schmitt15 capitalized on this approach to present augmented multiresolution Reeb
graphs thereby capturing additional attribute features which yield better recognition rates. In Kazhdan
et al.,5 global properties of 3D objects are captured through the reflective symmetry descriptor that is
defined over a certain parameterization, which the authors term as canonical. Kazhdan and Funkhouser6

use rotation-invariant spherical harmonics as a shape descriptor for recognition purposes.

A limitation of these shape descriptors is that they do not represent a shape completely and, therefore,
fall short of a unique shape signature. This non-uniqueness motivates us to utilize a better shape model for
classification and recognition purposes. To that end, we propose to employ topo-geometric shape models
(TGSM),2 which take into account both topological as well as geometric information. These shape models
have already been employed in reconstruction and representation applications.2 In this paper, we exploit
their uniqueness of representation, and invariance to rigid body transformation for shape classification.

The paper is organized as follows. We start with a review of topo-geometric shape model given in Sec-
tion 1, along with a description of their construction, and their topology and geometry capturing capabilities.
Shape classification using weighted graph matching is discussed in Section 3. We conclude the chapter with
experimental results in Section 4.
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Figure 1. Skeletal graph of double torus: (a) Surface analyzed with an evolving sphere; (b) Intersections of the
sphere and the surface; (c) Node assignment in the graph.

2. TOPO-GEOMETRIC SHAPE MODEL

As mentioned earlier, topo-geometric shape model captures both topology and geometry of 3D shapes.
Topology is captured in a Morse theoretic framework,8, 10 where a distance function is employed as a Morse
function. This leads to a rigid transformation invariant topological graph of a given surface. Geometry on
the other hand is captured by parametrically modeling the evolution of level curves of the distance function
along topologically homogeneous parts of the surface. Curve evolution model parameters are then used to
learn some weights, which are eventually assigned to various graph edges.

2.1. Topological Model
Consider a smooth compact 2D manifold M embedded in R3, and parameterized as φ : Ω → M, where
Ω 3 u 7→ φ(u) ∈ M, with Ω ⊂ R2 being an open connected set representing the parameter space. For
capturing topology, TGSM capitalizes on Morse theory, which relates the topology of M with the number
of critical points of a Morse function f : M→ R ⊆ R. Specifically, TGSM employs distance function as a
Morse function, which makes it invariant to rigid body transformations.

2.1.1. The distance function

Distance function defined on a surface M maps each point p on a surface M to its distance from the origin,
i.e., d : p 7→ ‖p‖, ∀p ∈M. One can show that for generic surfaces M⊂ R3, the restriction of the distance
function d : M→ R ⊆ R+ on M is a Morse function. We, therefore, use it for constructing skeletal graphs.

To analyze a compact surface with distance function as a Morse function, the surface is scanned with
the level sets of the distance function by gradually increasing it in K steps from 0 to a sufficiently large
value, say b. The integer K is, therefore, called the resolution of the skeletal graph. Since level sets of d are
concentric spheres, intersections of the surface with spheres of radii r, for all r ∈ [0, b], are evaluated and
a node is assigned to each connected component in each intersection as illustrated in Fig. 1. The skeletal
graph associated with the distance function may, hence, be described as a quotient space M/ ∼, where the
equivalence relation ∼ is defined as follows:

Definition 2.1. (Equivalence) Any two points p and q ∈ M are equivalent, i.e., p ∼ q, if they
belong to the same connected component of a level set of the function d, i.e., d(p) = d(q) and p ∈
ConnComp(LevelSet(q)).

Distance function based topological graph is, therefore, a quotient space M/ ∼:= {[p] | p ∈ M}, where
the equivalence class [p] of the point p ∈M is the set of all points q ∈M such that q ∼ p.

Note that the function d given above is not invariant with respect to translation and scaling. In order to
achieve this invariance, we take the origin at the centroid µ of the surface of interest and scale the surface
accordingly to get:

dµ(p) := ‖p− µ‖,

d̃µ(p) =
dµ(p)− dmin

dmax − dmin
. (1)

Proposition 2.2. (Invariance) The distance function d̃ given by Eq. (1) is rotation, translation and scale
invariant.

Proof. The proof follows trivially from the definition of distance function.



Figure 2. Skeletonization of a 3D surface M.

2.1.2. Algorithm

The definition of distance function based topological graph given above leads to the algorithm for its con-
struction, which is illustrated in Fig. 2 and given in Table 1.

Table 1. Algorithm for Constructing Topological Graph

• Find the centroid of the surface M as the arithmetic mean of the vertices of the triangulated mesh and place
the origin at the centroid

• Find dmax, the maximum distance from the centroid to M
• Given K, define:

rk := k
dmax

K
, k = 1, . . . , K

• Generate the spheres S1 and S2 with radii R = r1 and R = r2, respectively

• Find M̃p = M∩ (bS1c ∩ dS2e), where d.e and b.c identify the interior and exterior of a closed surface; M̃p is,
therefore, the part of M that lies between S1 and S2

• Assign a node NMp to each connected component Mp of M̃p at the centroid of Mp

• For k = 3 to K

– Generate the “current” sphere Sk with radius R = rk

– Find M̃c = M∩ (bSk−1c ∩ dSke). Hence, M̃c is the portion of M that lies in between Sk−1 and Sk

– Find the connected components Mc of M̃c

– For each Mc ∈ M̃c do

∗ Assign a node NMc at the centroid of Mc

∗ Find the connected region Mp ∈ M̃p such that Mc ∪Mp is a single connected region. Add an edge
segment between NMc and NMp

– end for

– M̃p = M̃c

• end for.

The algorithm yields a graph similar to the one shown in Fig. 3(a), which is composed of edge segments
between various nodes. Not all of these nodes correspond to critical points. We, therefore, simplify topological
graph by merging the nodes (and the edge segments), which lie on a topologically homogeneous path along
the graph as shown in Fig. 3(b). Note that vertices in a simplified graph correspond to critical points of
the distance function and mark a change in the topology of level curves. In subsequent discussion, we only
consider the simplified graph.

2.2. Geometric Model

Although the skeletal model described in Section 2.1 completely represents topology, it contains minimal
geometric information. In order to completely represent shape, we model the evolution of level curves along
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Figure 3. Simplification of a skeletal graph: (a) A graph learned by the algorithm of Section 2.1.2. ; (b) Simplified
graph. Note how a topologically homogeneous sequence of edge segments marked in (a) maps to an edge in (b).

Figure 4. Illustration of geometric modeling: (a) A 3D object; (b) Object sampled at levels r1, . . . , rm; (c) Inter-
sections C1, . . . , Cm embedded in Λ bounding box to compute the distance field; (d) Vectorizing the elements of the
distance field yields an n dimensional vector ρi for each Ci.

each graph edge to evaluate a weight vector, which is then assigned to the corresponding edge, thus capturing
geometry. Note that these level curves have already been extracted by the graph construction algorithm
given above.

These level curves are spatial curves, each of which is a subset of a sphere. Spherical coordinates,
therefore, map these level curves onto the curves in Λ = [−π, π] × [−π

2 , π
2 ]. Idea is, then, to view each

curve as a point in a high dimensional space, and fit a trajectory that passes through these points while
maintaining curve topology and surface smoothness.

To preserve topology, we employ signed distance field, which is always bounded, since surfaces of interest
are compact. Signed distance field ρr : Λ → R for a closed curve Cr ∈ Λ corresponding to the r-level curve
of the distance function, is defined as:

ρr(x, y) =

{
+D((x, y), Cr) if (x, y) ∈ dCre
−D((x, y), Cr) if (x, y) ∈ bCrc,

(2)

where D((x, y), Cr) denotes the Euclidean distance from any point (x, y) ∈ Λ to the set Cr, and bCrc and
dCre represent the interior and exterior of Cr, respectively. Cr , itself, corresponds to the isoset ρ−1

r (0).

In practice, Λ is a discrete n1 × n2 grid, and vectorizing the n = n1n2 elements of the distance field
defined on Λ yields a function ρ : Λ → Rn whose components are (ρ1, . . . , ρn). This is illustrated in Fig. 4,
where a vase is sampled by m horizontal planes at levels r1, . . . , rm to get intersection curves C1, . . . , Cm

shown in Fig. 4(b) which are then embedded in the bounding box Λ as in Fig. 4(c) to compute the distance
field. Note that the choice of height function is only for illustration purposes, and in actual practice we use
the distance function. The vectorization of the corresponding distance fields yields a collection of m points,
ρ1, . . . , ρm in Rn as depicted in Fig. 4(d). Our goal is to model a trajectory that best fits these points in Rn

according to some criterion such that the original vase may be reconstructed from the level curves.

We adopt a piecewise interpolation approach, where for all i, we fit an arc ρ(i) between the points ρi and
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Figure 5. Optimal trajectory between each pair of curve vector: (a) Elasticæ fitted between ρ1 and ρ2 with
constraints end point constraints v1 and v2; (b) Problem transformed to R3, where tangential constraints become
w1 and w2 and the displacement between end points is mapped to w3.

ρi+1 in Rn subject to the constraints
ρ(i)(ri) = ρi,

ρ(i)′(ri) = vi,

ρ(i)(ri+1) = ρi+1,

ρ(i)′(ri+1) = vi+1.

(3)

where the end point tangent vectors vi and vi+1 are computed from the data, and where the arc ρ(i) is
parameterized by r. The purpose of introducing tangent constraints is to ensure smoothness at joints (end
points), when later we combine arcs for all such consecutive pair of points. The optimal arc, ρ(i)(r), is
the one that minimizes a certain energy functional subject to the stated constraints. We, thus, construct a
sequence of arcs between successive points which when put together yields a C1 trajectory from ρ1 to ρm,
passing through ρ2,ρ3, . . . , ρm−1.

Finding the optimal arc in Rn with n À 3 is computationally very intensive. This complexity may,
however, be greatly reduced by projecting the problem to R3 by a set of transformations, which are derived
by noting that the arc belongs to an affine subspace of Rn through the point ρi and spanned by vectors vi,
vi+1, and di := ρi+1 − ρi. These vectors are generically independent but not necessarily orthogonal. We,
therefore, employ Gram–Schmidt orthogonalization to get an orthogonal set of basis vectors {bk, k = 1, 2, 3}
spanning the above mentioned subspace. This allows us to map the vectors vi,vi+1,di ∈ Rn onto vectors:

w1 = e1,

w2 = 〈vi+1,b1〉e1 + 〈vi+1,b2〉e2 + 〈vi+1,b3〉e3, (4)
w3 = 〈di,b1〉e1 + 〈di,b2〉e2 + 〈di,b3〉e3,

where e1, e2, e3 form the canonical basis for R3 and wk ∈ R3, k = 1, 2, 3. The problem is now reduced to
finding elasticæ α(i) : I = [ri, ri+1] → R3 satisfying α(i)(ri) = 0, α(i)(ri+1) = w3 with starting and ending

tangents α(i)′(ri)

‖α(i)′(ri)‖ = w1 and α(i)′(ri+1)

‖α(i)′(ri+1)‖ = w2, respectively as shown in Fig. 5(b). The optimal solution to
the problem is the one that minimizes the bending energy:

E(α(i)) = (si+1 − si)
∫ si+1

si

κ2
α(i)(s) ds, (5)

where s is the arc length and κα(i) is the curvature. Since ds = ‖α(i)′(r)‖dr, we get:

E(α(i)) = (ri+1 − ri)
∫ ri+1

ri

‖α(i)′(r)×α(i)′′(r)‖
‖α(i)′(r)‖2 dr. (6)

To reconstruct the part of the surface corresponding to the interval [ri, ri+1], we need to traverse this
trajectory. Hence, for any r ∈ [ri, ri+1], α(i)(r) ∈ R3 is mapped to a unique ρ(i)(r) ∈ Rn:

ρ(i)(r) = ρi + 〈α(i)(r), e1〉b1 + 〈α(i)(r), e2〉b2 + 〈α(i)(r), e3〉b3, (7)



Each ρ(i)(r), therefore, models the vectorized distance fields of the curves for r ∈ [ri, ri+1]. To recover a level
curve from ρ(i)(r), we first need to unvectorize it to get the corresponding distance field which is defined
on Λ, and then to find the zero level set of this distance field. For a complete representation of an entire
topologically homogenous part of a surface, we glue together the corresponding ρ(i)(r) to get a trajectory
ρ(r) ⊂ Rn, r ∈ [r1, rm], which is C1 smooth and in essence is a piecewise curve modeling approach. Each
graph edge is finally assigned a distance field trajectory ρ(r) ⊂ Rn.

2.3. Topo-Geometric Model

We now encode the trajectory ρ(r) by a finite dimensional weight vector. Note that segments of ρ(r) ∈ Rn

have one-to-one mapping with corresponding α(i)(r) ∈ R3. A smooth trajectory α in R3 corresponding
to ρ is obtained by gluing these α(i), while simultaneously translating and rotating them to have the end
points aligned.2 The coefficients of a polynomial approximation of this trajectory are then assigned as a
weight vector to each homogenous part of the graph. A skeletal graph equipped with such weights contains
sufficient information to reconstruct the original surface with desired precision. A weighted skeletal graph
may, therefore, be used for storage and classification of objects.

3. SHAPE CLASSIFICATION

For shape classification, we employ weighted graph matching, where we proceed to find the best match
of a test shape among model shapes using their skeletal representations. Note that an exact subgraph
isomorphism between test graph and model graphs may not exist, due to shape distortions arising from
noise or measurement errors. In order to account for such distortions, we distort model graphs by a sequence
of edit operations, such that a subgraph isomorphism is found between the test graph and the distorted
model graph. Each edit operation, however, has an associated cost and the optimal graph distortion is the
one that minimizes cumulative cost over all sequences of edit operations. The best match is the one, which
establishes largest subgraph isomorphism with minimal cost.

Edit operations that we are interested in are insertion and/or deletion of vertices and edges and modi-
fication of their weight attributes. One approach for cost assignment is to employ uniform cost for all edit
operations. Such an approach, however, fails to take into account likelihoods of individual edit operations.
Another approach is to assign variable cost to each edit operation. To that end, we derive our cost as a
weighted sum of three cost components, Cc, Cp and Cg, taking into account both topological and geometric
features of a surface:

C(δ) = αcCc(δ) + αpCp(δ) + αgCg(δ), (8)

where C is the cost of an edit operation δ, and αc, αp and αg are the weights corresponding to three costs
defined as follows. The first component, the component cost Cc, is defined as the fraction of edge segments
in an edge and reflects its relative importance:

Cc(δ) =
N

M
, (9)

where N is the number of edge segments in the edge and M is the total number of edge segments in the graph.
The second component, the proximity cost Cp, of an edit operation δ involving an edge between vertices vi

and vj is defined as the proximity of the vertices, i.e., the length of the edge, weighted by maximum of their
degrees:

Cp(δ) = max{Di, Dj}d(vi, vj), (10)

where d(vi, vj) is the Euclidean distance between the physical locations of vi and vj , and Di and Dj are
the degrees of vi and vj respectively. The third component, the geometric cost Cg, depends on geometric
attributes of edges and is defined as:

Cg(δ) = d(wi,wj), (11)

where wi and wj are geometric attribute vectors corresponding to ei and ej .
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Figure 6. First level search for input shape (a) resulted in two candidate shapes (b) and (c) with identical genus.

4. EXPERIMENTAL RESULTS

The results demonstrating topology capturing and surface reconstruction capabilities of the model have been
presented in Baloch et al.2 In this paper, we focus our attention towards classification of shapes. We employ
decomposition based error correcting subgraph isomorphism9 for finding similarities between test and model
shapes. Instead of using the variable cost, we employ a simplified matching criterion, which leads to a
hierarchical model search. The idea is to exploit the simplicity of the constant cost together with important
features of the variable cost, without enhancing complexity of the problem. This leads to the following
hierarchical approach:

1. The first step is to simplify a graph by eliminating two types of edges, (a) those are composed of one
edge segment even if the length of the edge is “too” large and (b) those with degree one vertices, and
whose removal does not produce additional degree one vertices. This effectively takes into account
low cost associated with the two types. The former compensates for component cost, while the latter
compensates for proximity cost, by removing spurious edges possibly arising from shape distortions.

2. The second step involves carrying out a first level search in the database for the best match on the
basis of genus of a test shape. This immediately prunes the set of shapes to those with topological
type similar to that of the test shape.

3. The third step is related to the second level search, where the optimal isomorphisms from the model
graphs to a test graph is found, assuming constant cost of an edit operation without considering edge
attributes. This consequently gives a model which is the closest match to the input graph in the graph
distance sense.

This strategy assumes zero geometric cost, corresponding to γ = 0 in Eq. (8), and considering all vertices
of degree two and above to be equally important. In addition, Step 1 is based on infinite cost for edit
operations that yield topological changes in a graph. In some cases, however, one may want to allow
topological changes at a relatively high but finite penalty. In such a case, another term should be included
in the total cost that takes topological changes into account.

For classification, test shapes are first represented by their simplified skeletal representation, before
carrying out the first level hierarchical search, where all shapes in the database with same genus are found.
In order to determine the genus, we adopt a depth-first-search based approach, thereby greatly reducing the
number of models in some cases that would eventually be considered as candidates for graph matching. For
instance, when searching a match for double torus, this strategy resulted in only two candidates as shown
in Fig. 6. Since graph matching procedure is quite expensive, the above scheme, therefore, considerably
speeded up search process.

Eventually, classification is carried out according to Step 3, with results presented in Fig. 7. Note that in
one experiment a pear was classified as a vase. The reason is that we have not invoked geometric information
and similar topological graphs for both shapes led to the ambiguity. This indicates that complete geometric
information is essential for correct recognition.
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Figure 7. Shape recognition: (a) Test shape; (b) Best match; (c)-(e) Other good matches.

5. CONCLUSIONS

In this paper, we presented an application of topo-geometric shape model for shape classification. The ideas
for shape classification via skeletal representations were borrowed from the rich field of graph theory, where
we employed error-correcting graph matching. We, however, fell short of utilizing comprehensive skeletal
models for recognition application, in spite of presenting a strategy that employs a variable cost function.
Although it allowed classification, correct recognition demands utilizing complete geometric information, for
which geometric component of variable cost seems to be of prime importance.

REFERENCES
1. S. H. Baloch, H. Krim, I. Kogan, and D. V. Zenkov, “Rotation invariant topology coding of 2D and 3D

objects using Morse theory”, Proc. ICIP 2005.
2. S. H. Baloch, H. Krim, I. Kogan, and D. Zenkov, “Topological-geometric shape model for object repre-

sentation”, IEEE Trans. on Image Processing, Under review.
3. A. B. Hamza, and H. Krim, “Geodesic object representation and recognition”, Proc. DGCI, pp. 378–387,

November 2003.
4. M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii, “Topology Matching for Fully Automatic Simi-

larity Estimation of 3D Shapes”, Proc. SIGGRAPH, pp. 203–212, August 2001.
5. M. Kazhdan, B. Chazelle, D. Dobkin, A. Finkelstein, and Thomas Funkhouser, “A Reflective Symmetry

Descriptor”, European Conference on Computer Vision, May 2002.
6. M. Kazhdan, and T. Funkhouser, “Harmonic 3D Shape Matching”, SIGGRAPH 2002 Technical Sketches,

pp. 191, July, 2002.
7. F. Lazarus, and A. Verroust, “Level set diagrams of polyheral objects”, Proc. Fifth ACM symposium on

Solid Modeling and Applications, pp. 130–140, June 1999.
8. Y. Matsumoto, An Introduction to Morse Theory, American Mathematical Society, 1997.
9. B. T. Messmer, and H. Bunke, “A New Algorithm for Error-Tolerant Subgraph Isomorphism Detection”,

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 5, pp. 493-504, May 1998.
10. J. Milnor, Morse Theory, Princeton University Press, Princeton, NJ, 1963.
11. W. Mio, A. Srivastava, and E. Klassen, Interpolations with elasticæ in Euclidean spaces, To appear in

Quarterly of Applied Mathematics.
12. R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin, “Shape Distributions”, ACM Transactions on

Graphics, 21(4), pp. 807–832, October 2002.
13. G. Reeb, “Sur les points singuliers d’une forme de pfaff complèment intégrable ou d’une fonction
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