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ABSTRACT Finally, in Section 5, we provide experimental results to show
a much improved performance of the proposed filters at remov-
ing noise from images corrupted lycontaminated Gaussian and
(Ij]eavy tailed noise, while preserving well image structures.

Inspired by robust estimation, nonlinear denoising methods com-
bining the mean, the median, and the LogCauchy filters are pro-
posed. Some statistical and asymptotic properties are studied, an
comparisons with other nonlinear filtering schemes are performed.

Experimental results showing a much improved performance of 2. BACKGROUND
the proposed filters in the presence of Gaussian and heavy-tailed ) - )
noise are analyzed and illustrated. Consider the additive noise model
X; =8;+V;, 1eZ™, (1)

1. INTRODUCTION . . . N
where{S;} be a discreten-dimensional deterministic sequence

Avariety of models have been sources in modeling impulsive noise corrupted by the zero-mean noise sequeficg, and{ X;; } is the
inluding the Laplacian model whose distribution has heavier tails ©PServed sequence. The objective is to estimate the seqignce
than the Gaussian. Examples of impulsive noise include atmo-bPased on a filtering outpdt; = 7 (X;), whereF is a filtering
spheric noise, cellular communication, underwater acoustics, andoPerator. . L
moving traffic. Recently, it has been shown thastable ( < Here, we assume that the noise probability distribution is a
o < 2) distributions can approximate impulsive noise more accu- scaled version of enownmember of the family oé-contaminated
rately that other model4]. The parametes controls the degree ~ normal neighborhood proposed by Hub@ [
of impulsiveness (heaviness of the tails), and the impulsiveness in- Pe={(1-e)®+eH: HEeS}
creases a& decreases. The Gaussian £ 2) and the Cauchy
(a. = 1) distributions are the onlgymmetriax-stable distributions ~ where @ is the standard normal distributios, is the set of all
which have closed-form probability density functions. The two probability distributions symmetric with respect to the origin (i.e.
most important properties of-stable distributions are treability such thatd (—z) = 1 — H(z)) ande € [0, 1] is the known frac-
propertyand theGeneralized Central Limit Theoref]. tion of “contamination”. The presence of outliers in a nominally
It is also known that in the presence of only Gaussian noise, normal sample can be modeled here by a distributiowith tails
the efficiency of a median filter leaves room for much improve- heavier than normal. Note that symmetry ensures the unbiased-
ment relative to that of a mean filté2][ This led to a number of ~ ness of the maximum likelihood estimator, making the expression
other proposed nonlinear schemes to attain a balance between thtr its asymptotic variance considerably simpler. Krim and Schick
two. Among these proposed filters, figure Wilcoxon and Hodges- [4] proposed a robust wavelet thresholding technique based on the
Lehmann filters2]. minimax description length (MMDL) principle, determining the
Approaches to wavelet-based denoising have generally reliedleast favorable distribution i®. family as the member that maxi-
on the assumption on Gaussian noise, and are therefore sensitivénizes the entropy. The MMDL approach results in a thresholding
to outliers, i.e., to noise distributions whose tails are heavier than scheme that is resistant to heavy-tailed noise.
the Gaussian distribution, such as Laplacian distribution. For in- Let W be a sliding window of siz&N + 1. DefineW; =
dependent-contaminated Gaussian distributions of the wavelet {X;,,. : 7 € W} to be the window centered at locatién The
coefficients, Krim and Schick| derive a robust estimator of the  output of the mean filter is given by
wavelet coefficients based on minimax description length. - ) 9
In the next section, we provide a brief review of Huber min- Y; = W = argmin Z (Xipr —0)" )
imax approach, some basic sliding window filters and symmetric Tew
a-stable SaS) distributions. In Section 3, a nonlinear filtering whereWi is the sample mean of the winddw; .

str_ucture ca}llgdﬂean-Medlanfllter_ is mt_roduced and its asymp- Denote by[W-] the k-th order statistic of the samples ¥,
totic analysis is performed. Section 4 is devoted to another class ) (k) ?
of nonlinear denoising techniques callé@an-LogCauchfilters. that 'S[Wi]m < [W] @SS [Wi](2N+1)'

The output of the standard median (SM) filter is given by
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Such estimators are well founded and well known for a Gaussianat all pointsz where the limit exists, and\,, stands for delta dis-
and Laplacian distributions. Note that the mean and median filterstribution function, i.e. with unit mass at The influence function
are the maximum likelihood estimators of the location parameter gives the effect of an infinitesimal perturbation to the data at the
for the Gaussian and Laplacian distributions, respectively. pointz.

The general class of-stable distributions has also been shown It can be shown that the influence function of the mean and the
to accurately model heavy-tailed nois}.[A symmetrica-stable median filters are given bi3[
(SaS) random variable is however only described by its charac- _

teristic function TF(x; Wy, Fo) =2 — 0,
= 0t — ~|t|™ and
@(t) = exp(jot — y[t|*), o . sign(z — )
wherej e Cis the imaginary unit9 € R is the location parameter BV, B0 = T gy
(centrality),y € R is the dispersion of the distribution amd € Then it follows that the influence function of the MEM filter is
(0, 2] which controls the heaviness of the tails, is the characteristic given by
exponent1].

Whena € (0,2), anSaS random variable has infinite variance,

and the Cauchy{ = 1) is the only distribution which has a closed-

form for the probability density function. This is in fact useful

when using the principle of maximum likelihood estimation.
The LogCauchylC, ) filter [5] is the maximum log-likelihood Proposition 1 The asymptotic variance (MEM, Fy) of the MEM

estimator of the location parameter for a Cauchy density, and yieldSgjjiar at the distributionF

the following

sign(z — 0)
TF (2 MEM, Fy) = (1= )@ = 6) + A=500

Using [5) and 6), the following result holds.

AZ
Y;=LC, (W;) =argmin’y_ log (’y + (X 9)2) ., (4 V(MEM, Fp) = (1= A)*p2 + @ TN fﬁé;y 7
rew

— koL
where~ is the dispersion, andis the estimation parameter. wherey, = E|X — 0",k =1,2.

Remark: While the independence assumption of the filter input
3. THE MEAN-MEDIAN FILTER simplifies the tractability of the problem, it is not strictly valid.

Minimizing (7) over\, we obtain the minimum attainable asymp-
totic variance, and the filter attaining that minimum asymptotic
varlance will then provide the best filtering performance.

From Egs. 2) and B), it can easily be seen that the mean filter is
optimal for Gaussian noise in the sense of mean square error while
the standard median filter for Laplacian noise in the sense of mean

absolute error. Assume that the noise probability distributtos Corollary 1 The minimum value of (MEM, F;) is attained at
a scaled version of a member Bf, i.e. P = (1 — ¢)G + €L, Amin given by

whereG is GaussianV (0, 0&) with variances?,, andL is Lapla-

cian (or double-exponential} (0, o7) with variances? (clearly A — M1 1 M1 8
L € 8). This assumption on the noise to beontaminated Gaus- min (”2 —2f( )) / (“2 + 4f(0)2 f(e)) - ®

sian and Laplacian distributed is motivated by the fact that heavier

tails than the Gaussian mixture are provided by the Laplace distri- Example: If the input is i.i.d. (6, %), then using/8), we obtain
bution, which is used as a contaminant of the Gaussian distribu- Amin = 2/(2 + 7).

tion. A convex combination of the mean and the median filters can

be defined as follows. 4. MEAN-LOGCAUCHY FILTERS
E;f'n't'on 1 The output of the Mean-MediaMEM) filter is given The LogCauchy filter has been shown to outperform the standard

=5 median filter in removing highly-stable noisej], then the MEM
Yi = =AW + AWilaven, A €00,1], filter can be improved replacing the median by the LogCauchy,
As a suitable performance measure for a robust estimator, Hu-and therefore a new class of nonlinear filters is derived.
ber suggests its asymptotic variance since the sample variance is Now we assume that the noise probability distributions a
strongly dependent on the tails of the distribution. Indeed, for any scaled version of a member @ such thatP = (1 — €)G +
estimator whose value is always contained within the convex hull €S, whereG is GaussianV'(0,0¢) and S is Sa.S with location
of the observations, the supremum of its actual variance is infinite. parameterf and dispersionys. The parametete controls how
For this and other reasons, the performance of the mean-mediarimpulsive the distribution is.

filter is carried out using its asymptotic variance. Suppose that? andsS are the cumulative distribution functions
The asymptotic variancg (7, F') of an estimatof” at the dis- of two independent random variablé&: and Xs respectively,
tribution F' is then given by 3] then the characteristic functiop. of the random variablé1l —

€)Xa + eXs is given by
V(L F) = [1F@ T FYdr) ©) :
©e(t) = exp (je@t - (1- e)QCI—Gt2 - ea’ys\t|a> , €€10,1]

wherel F(z; T, F) is the influence function df’ at ' defined as 2

T((1 — t)F + tA,) — T(F) ~ Fora € (1,2], all SauS random variables have finite mean
given by their location parametér Moreover, it is shown ing]

IF(z;T,F) = lim

t—0 t ’



that anSa.S distribution with zero mean can be approximated by
a finite-Gaussian mixture. Assuming théitis zero meanSa.S

(1 < a<2),thenP = (1 — ¢)G + €S can be approximated by
a finite-Gaussian mixture, and hence the noise mdjed¢comes
ane-contaminated Gaussian mixture noise model.

Fora € (0,1], all SaS random variables have a median and
the only S«a.sS distribution having closed-form probability density
function is Cauchy distributiona( = 1), thus the maximum log-
likelihood principle can be applied to derivé)( A convex combi-

nation of the mean and the LogCauchy filters can then be defined

as follows.

Definition 2 The output of Mean-LogCauch¥I[L.C,) filter with
parametery is given by

Y; = MLC, (W;) = (1—=\)W; +ALC,(W;), A € [0,1], (9)

where~ is the dispersion of a Cauchy distribution.

The output of the LogCauchy filter is defined as a solution of the
following maximum log-likelihood estimation problem

05

argmax £,(0; W)

o
us

1
_ 10
(72+(Xi+r0)2)7( )

wherel,, (0; W;) is the log-likelihood function of a Cauchy distri-
butionC(~, 9).

Itis clear that for a givery, solving (L0) is equivalent to min-
imizing the functionp., (6; W;) given by

argmax log H
rew

p(0Wy) = TT (7 + (Xi 0 = 0)°)

rew

(11

as well as to solving the problerd)(since thelog(-) function

is strictly monotone. Thus the minimum ¢f)(is attained at the
same place as that of, (9; ;). This is very important because
p~(0; W;) is a polynomial of degre2(2/N +1) in § and its charac-
teristics can then be obtained easily. It can be showrpth@t 1W;)

is a convex function of) if v > [Wi](2N+1) — [Wi]m, and
therefore has a unique minimudg € [[W;]1y, [W;len 1] At

v = 0, the functiorp., (6; W) has distinct minima at all the points
X; . p- If yisincreased, the number of minima decreases. After a
certain limit ofy, there is only a unique minimum.

Proposition 2 Wheny — oo, the Mean-LogCauchy filter be-
comes the mean filter, i.e.

MLC,(W;) — W; as v — oo.

Proof.Using basic properties of thergmin function, the output
of the LogCauchy filter can be expressed as

. 2 2
LC,(W;) argmin Z log (7 + (X —0) )

rew
+r

(1+ X 3
v

(Xi+r -

0)?
72 )
9)2')”

. 2
argmin Z v log
Tew

argnin Z log
rew

Since

2

(1_‘_%’;2_0)2) :eXp{(Xi“«—e)Q}’

and the exponentionl functiarnp{-} is monotonically increasing,
it follows that

lim log
~y— 00

0)° as v — oo.

LC-(W;) — argmin > Ky —

rew
This concludes the proof using)(and 9). |

Note that asymptotically, the tuning parameteransforms a
nonlinear filter to a linear one.

5. EXPERIMENTAL RESULTS

This section presents simulation results where the proposed filters
are applied to enhance images corrupted by mixed Gaussian and
heavy tailed noise. The performance of a filter clearly depends
on the filter type and its sliding window size, the properties of sig-
nals/images, and the characteristics of the noise. The choice of cri-
teria by which to measure the performance of a filter presents cer-
tain difficulties. In particular, it is clear that a global performance
measure such as the mean square error only gives a partial picture
of reality: for instance, one filter may do vary well at the nominal
model but badly at an outlier, while another do poorly at the nom-
inal model but well at an outlier, and yet the two could have the
same mean square value. Another important performance measure
in the mean absolute error which is obviously tend to downplay the
influence of large errors, compared to mean square error precisely
in the presence of heavy-tailed noise.

Mean square error (MSE) between the filtered and the original
image is evaluated to quantitatively compare the good performance
of the proposed filters with other filtering techniques.

The scale-contaminated Gaussian and Laplace distributions are
relatively light tailed. TheSa.S distributions are very heavy-tailed
noise distributions. The Cauchy distribution is a member of this
family (« = 1), whose variance is infinite. To assess the per-
formance of Mean-LogCauchy filters in mixed noise, the origi-
nal image in Fig. 1(a) was contaminated by both Gaussian white
noise g2 = 100) and a-stable noiseSaS(a = 0.5). Thee-
contaminated mixed noise corrupted image is shown in Fig. 1(b).
The visual comparison with other techniques is shown in Fig. 1.
The relaxed median filtel7] outperforms Wilcoxon and Hodges-
Lehmann in suppressing highlty-stable noise, while the Mean-
LogCauchy filter, with mixture parametar= = /(2 + 7) and op-
timal tuning parameter = 2.38, achieves the best performance.

In the simulation results of Fig.1, the contamination fractias
chosen to be equal ta.

The high sensitivity of many specific filters to an accurate
modeling of noise that is to be removed led us to investigate the
proposed new techniques that include a number of filters whose
optimality when given a specific noise distribution is attained by
merely adjusting or optimizing the parameterOn the other hand,
the filtering performance is also sensitive to the fraction of con-
taminatione. Whene = 0 the mixed noise is purely Gaussian, and
whene = 1 itis purelya-stable. Fig. 2 shows the influence of the
parametet on the filtering performance.
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Fig. 1. Filtering results in the presence efcontaminated Gaussian andstable noise, and using3ax 3 square window: (a) Original
image, (b)e-mixed noisy image witb\/(0, 100) andS«.S, (c) Output of the MLC filterA = 2/(2 + =), (d) Output of the relaxed median
filter, () Output of the Wilcoxon filter, and (f) Output of the Hodges-Lehmann filter.
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Fig. 2. Influence of the contamination fractienon filtering per-
formance: MSE vse.

(1]

(2]

(3]
(4]

(5]

(6]

(7]

6. REFERENCES

M. Shao and C.L. Nikias, “Signal Processing with fractional
lower order moments: Stable processes and their applica-
tions,” Proceedings of the IEER0I. 81, no. 7, pp. 986-1010,
July 1993.

J. Astola and P. Kuosmanefundamentals of Nonlinear
Digital Filtering, CRC Press LLC, 1997.

P. HuberRobust StatisticsJlohn Wiley, 1981.

H. Krim and I.C. Schick, “Minimax description length for
signal denoising and optimized representatidBEE Trans.
Information Theoryvol 45, no. 3, pp. 898-908, April, 1999.

S. Ambike and D. Hatzinakos, “A new filter for highly im-
pulsivea-stable noise,Proc. 1995 Int. Workshop Nonlinear
Signal Image Processingreece, 1995.

E.E. Kuruoglu, C. Molina, S.J. Gosdill and W.J. Fitzgerald,
“A new analytic representation of the-stable density func-
tion,” American Statistical Society Proceedin@997.

A.Ben Hamza, P.Luque, J.Martinez, and R. Roman “Remov-
ing noise and preserving details with relaxed median filters,”
Journal of Mathematical Imaging and Visipwol. 11, no. 2,

pp. 161-177, October 1999.



