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ABSTRACT

Inspired by robust estimation, nonlinear denoising methods com-
bining the mean, the median, and the LogCauchy filters are pro-
posed. Some statistical and asymptotic properties are studied, and
comparisons with other nonlinear filtering schemes are performed.
Experimental results showing a much improved performance of
the proposed filters in the presence of Gaussian and heavy-tailed
noise are analyzed and illustrated.

1. INTRODUCTION

A variety of models have been sources in modeling impulsive noise
inluding the Laplacian model whose distribution has heavier tails
than the Gaussian. Examples of impulsive noise include atmo-
spheric noise, cellular communication, underwater acoustics, and
moving traffic. Recently, it has been shown thatα-stable (0 <
α ≤ 2) distributions can approximate impulsive noise more accu-
rately that other models [1]. The parameterα controls the degree
of impulsiveness (heaviness of the tails), and the impulsiveness in-
creases asα decreases. The Gaussian (α = 2) and the Cauchy
(α = 1) distributions are the onlysymmetricα-stable distributions
which have closed-form probability density functions. The two
most important properties ofα-stable distributions are thestability
propertyand theGeneralized Central Limit Theorem[1].

It is also known that in the presence of only Gaussian noise,
the efficiency of a median filter leaves room for much improve-
ment relative to that of a mean filter [2]. This led to a number of
other proposed nonlinear schemes to attain a balance between the
two. Among these proposed filters, figure Wilcoxon and Hodges-
Lehmann filters [2].

Approaches to wavelet-based denoising have generally relied
on the assumption on Gaussian noise, and are therefore sensitive
to outliers, i.e., to noise distributions whose tails are heavier than
the Gaussian distribution, such as Laplacian distribution. For in-
dependentε-contaminated Gaussian distributions of the wavelet
coefficients, Krim and Schick [4] derive a robust estimator of the
wavelet coefficients based on minimax description length.

In the next section, we provide a brief review of Huber min-
imax approach, some basic sliding window filters and symmetric
α-stable (SαS) distributions. In Section 3, a nonlinear filtering
structure calledMean-Medianfilter is introduced and its asymp-
totic analysis is performed. Section 4 is devoted to another class
of nonlinear denoising techniques calledMean-LogCauchyfilters.
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Finally, in Section 5, we provide experimental results to show
a much improved performance of the proposed filters at remov-
ing noise from images corrupted byε-contaminated Gaussian and
heavy tailed noise, while preserving well image structures.

2. BACKGROUND

Consider the additive noise model

Xi = Si + Vi, i ∈ Zm, (1)

where{Si} be a discretem-dimensional deterministic sequence
corrupted by the zero-mean noise sequence{Vi}, and{Xi} is the
observed sequence. The objective is to estimate the sequenceSi
based on a filtering outputYi = F(Xi), whereF is a filtering
operator.

Here, we assume that the noise probability distribution is a
scaled version of aknownmember of the family ofε-contaminated
normal neighborhood proposed by Huber [3]

Pε = {(1− ε)Φ + εH : H ∈ S},
whereΦ is the standard normal distribution,S is the set of all
probability distributions symmetric with respect to the origin (i.e.
such thatH(−x) = 1 −H(x)) andε ∈ [0, 1] is the known frac-
tion of “contamination”. The presence of outliers in a nominally
normal sample can be modeled here by a distributionH with tails
heavier than normal. Note that symmetry ensures the unbiased-
ness of the maximum likelihood estimator, making the expression
for its asymptotic variance considerably simpler. Krim and Schick
[4] proposed a robust wavelet thresholding technique based on the
minimax description length (MMDL) principle, determining the
least favorable distribution inPε family as the member that maxi-
mizes the entropy. The MMDL approach results in a thresholding
scheme that is resistant to heavy-tailed noise.

Let W be a sliding window of size2N + 1. DefineWi =
{Xi+r : r ∈ W} to be the window centered at locationi. The
output of the mean filter is given by

Yi = Wi = argmin
θ

X
r∈W

(Xi+r − θ)2. (2)

whereWi is the sample mean of the windowWi.
Denote by

�
Wi
�
(k)

thek-th order statistic of the samples inWi,
that is

�
Wi
�
(1)
≤ �Wi�(2) ≤ · · · ≤ �Wi�(2N+1)

.
The output of the standard median (SM) filter is given by

Yi =
�
Wi
�
(N+1)

= argmin
θ

X
r∈W

|Xi+r − θ|. (3)



Such estimators are well founded and well known for a Gaussian
and Laplacian distributions. Note that the mean and median filters
are the maximum likelihood estimators of the location parameter
for the Gaussian and Laplacian distributions, respectively.

The general class ofα-stable distributions has also been shown
to accurately model heavy-tailed noise [1]. A symmetricα-stable
(SαS) random variable is however only described by its charac-
teristic function

ϕ(t) = exp(jθt− γ|t|α),

wherej ∈ C is the imaginary unit,θ ∈ R is the location parameter
(centrality),γ ∈ R is the dispersion of the distribution andα ∈
(0, 2] which controls the heaviness of the tails, is the characteristic
exponent [1].
Whenα ∈ (0, 2), anSαS random variable has infinite variance,
and the Cauchy (α = 1) is the only distribution which has a closed-
form for the probability density function. This is in fact useful
when using the principle of maximum likelihood estimation.

The LogCauchy (LCγ) filter [5] is the maximum log-likelihood
estimator of the location parameter for a Cauchy density, and yields
the following

Yi=LCγ(Wi)=argmin
θ

X
r∈W

log
�
γ2 + (Xi+r − θ)2

�
, (4)

whereγ is the dispersion, andθ is the estimation parameter.

3. THE MEAN-MEDIAN FILTER

From Eqs. (2) and (3), it can easily be seen that the mean filter is
optimal for Gaussian noise in the sense of mean square error while
the standard median filter for Laplacian noise in the sense of mean
absolute error. Assume that the noise probability distributionP is
a scaled version of a member ofPε, i.e. P = (1 − ε)G + εL,
whereG is GaussianN (0, σ2

G) with varianceσ2
G, andL is Lapla-

cian (or double-exponential)L(0, σ2
L) with varianceσ2

L (clearly
L ∈ S). This assumption on the noise to beε-contaminated Gaus-
sian and Laplacian distributed is motivated by the fact that heavier
tails than the Gaussian mixture are provided by the Laplace distri-
bution, which is used as a contaminant of the Gaussian distribu-
tion. A convex combination of the mean and the median filters can
be defined as follows.

Definition 1 The output of the Mean-Median (MEM) filter is given
by

Yi = (1− λ)Wi + λ[Wi](N+1), λ ∈ [0, 1].

As a suitable performance measure for a robust estimator, Hu-
ber suggests its asymptotic variance since the sample variance is
strongly dependent on the tails of the distribution. Indeed, for any
estimator whose value is always contained within the convex hull
of the observations, the supremum of its actual variance is infinite.
For this and other reasons, the performance of the mean-median
filter is carried out using its asymptotic variance.

The asymptotic varianceV (T, F ) of an estimatorT at the dis-
tributionF is then given by [3]

V (T, F ) =

Z
IF (x; T, F )2dF (x), (5)

whereIF (x; T, F ) is the influence function ofT atF defined as

IF (x; T, F ) = lim
t→0

T ((1− t)F + t∆x)− T (F )

t
,

at all pointsx where the limit exists, and∆x stands for delta dis-
tribution function, i.e. with unit mass atx. The influence function
gives the effect of an infinitesimal perturbation to the data at the
pointx.

It can be shown that the influence function of the mean and the
median filters are given by [3]

IF (x; Wi, Fθ) = x− θ,

and

IF (x; [Wi](N+1), Fθ) =
sign(x− θ)

2f(θ)
.

Then it follows that the influence function of the MEM filter is
given by

IF (x;MEM, Fθ) = (1− λ)(x− θ) + λ
sign(x− θ)

2f(θ)
. (6)

Using (5) and (6), the following result holds.

Proposition 1 The asymptotic varianceV (MEM, Fθ) of the MEM
filter at the distributionF

V (MEM, Fθ) = (1− λ)2µ2 +
λ2

4f(θ)2
+ λ(1− λ)

µ1

f(θ)
, (7)

whereµk = E|X − θ|k, k = 1, 2.

Remark: While the independence assumption of the filter input
simplifies the tractability of the problem, it is not strictly valid.

Minimizing (7) overλ, we obtain the minimum attainable asymp-
totic variance, and the filter attaining that minimum asymptotic
variance will then provide the best filtering performance.

Corollary 1 The minimum value ofV (MEM, Fθ) is attained at
λmin given by

λmin =

�
µ2 − µ1

2f(θ)

�
/

�
µ2 +

1

4f(θ)2
− µ1

f(θ)

�
. (8)

Example: If the input is i.i.d.N (θ, σ2), then using (8), we obtain
λmin ≈ 2/(2 + π).

4. MEAN-LOGCAUCHY FILTERS

The LogCauchy filter has been shown to outperform the standard
median filter in removing highlyα-stable noise [5], then the MEM
filter can be improved replacing the median by the LogCauchy,
and therefore a new class of nonlinear filters is derived.

Now we assume that the noise probability distributionP is a
scaled version of a member ofPε such thatP = (1 − ε)G +
εS, whereG is GaussianN (0, σ2

G) andS is SαS with location
parameterθ and dispersionγS . The parameterα controls how
impulsive the distribution is.

Suppose thatG andS are the cumulative distribution functions
of two independent random variablesXG and XS respectively,
then the characteristic functionϕε of the random variable(1 −
ε)XG + εXS is given by

ϕε(t) = exp

�
jεθt− (1− ε)2

σ2
G

2
t2 − εαγS |t|α

�
, ε ∈ [0, 1]

For α ∈ (1, 2], all SαS random variables have finite mean
given by their location parameterθ. Moreover, it is shown in [6]



that anSαS distribution with zero mean can be approximated by
a finite-Gaussian mixture. Assuming thatS is zero meanSαS
(1 < α ≤ 2), thenP = (1 − ε)G + εS can be approximated by
a finite-Gaussian mixture, and hence the noise model (1) becomes
anε-contaminated Gaussian mixture noise model.

For α ∈ (0, 1], all SαS random variables have a median and
the onlySαS distribution having closed-form probability density
function is Cauchy distribution (α = 1), thus the maximum log-
likelihood principle can be applied to derive (4). A convex combi-
nation of the mean and the LogCauchy filters can then be defined
as follows.

Definition 2 The output of Mean-LogCauchy (MLCγ) filter with
parameterγ is given by

Yi = MLCγ(Wi) = (1−λ)Wi+λ LCγ(Wi), λ ∈ [0, 1], (9)

whereγ is the dispersion of a Cauchy distribution.

The output of the LogCauchy filter is defined as a solution of the
following maximum log-likelihood estimation problem

θ̂i = argmax
θ

`γ(θ; Wi)

= argmax
θ

log
Y
r∈W

γ

π

 
1

γ2 + (Xi+r − θ)2

!
, (10)

where`γ(θ; Wi) is the log-likelihood function of a Cauchy distri-
butionC(γ, θ).

It is clear that for a givenγ, solving (10) is equivalent to min-
imizing the functionργ(θ; Wi) given by

ργ(θ; Wi) =
Y
r∈W

�
γ2 + (Xi+r − θ)2

�
, (11)

as well as to solving the problem (4) since thelog(·) function
is strictly monotone. Thus the minimum of (4) is attained at the
same place as that ofργ(θ; Wi). This is very important because
ργ(θ; Wi) is a polynomial of degree2(2N+1) in θ and its charac-
teristics can then be obtained easily. It can be shown thatργ(θ; Wi)
is a convex function ofθ if γ ≥ [Wi](2N+1) − [Wi](1), and
therefore has a unique minimumθ0 ∈ [[Wi](1), [Wi](2N+1)]. At
γ = 0, the functionργ(θ; Wi) has distinct minima at all the points
Xi+r . If γ is increased, the number of minima decreases. After a
certain limit ofγ, there is only a unique minimum.

Proposition 2 Whenγ → ∞, the Mean-LogCauchy filter be-
comes the mean filter, i.e.

MLCγ(Wi) → Wi as γ →∞.

Proof.Using basic properties of theargmin function, the output
of the LogCauchy filter can be expressed as

LCγ(Wi) = argmin
θ

X
r∈W

log
�
γ2 + (Xi+r − θ)2

�
= argmin

θ

X
r∈W

γ2 log

 
1 +

(Xi+r − θ)2

γ2

!
= argmin

θ

X
r∈W

log

 
1 +

(Xi+r − θ)2

γ2

!γ2

Since

lim
γ→∞

log

 
1 +

(Xi+r − θ)2

γ2

!γ2

= exp
n

(Xi+r − θ)2
o

,

and the exponentionl functionexp{·} is monotonically increasing,
it follows that

LCγ(Wi) → argmin
θ

X
r∈W

(Xi+r − θ)2 as γ →∞.

This concludes the proof using (2) and (9).

Note that asymptotically, the tuning parameterγ transforms a
nonlinear filter to a linear one.

5. EXPERIMENTAL RESULTS

This section presents simulation results where the proposed filters
are applied to enhance images corrupted by mixed Gaussian and
heavy tailed noise. The performance of a filter clearly depends
on the filter type and its sliding window size, the properties of sig-
nals/images, and the characteristics of the noise. The choice of cri-
teria by which to measure the performance of a filter presents cer-
tain difficulties. In particular, it is clear that a global performance
measure such as the mean square error only gives a partial picture
of reality: for instance, one filter may do vary well at the nominal
model but badly at an outlier, while another do poorly at the nom-
inal model but well at an outlier, and yet the two could have the
same mean square value. Another important performance measure
in the mean absolute error which is obviously tend to downplay the
influence of large errors, compared to mean square error precisely
in the presence of heavy-tailed noise.

Mean square error (MSE) between the filtered and the original
image is evaluated to quantitatively compare the good performance
of the proposed filters with other filtering techniques.

The scale-contaminated Gaussian and Laplace distributions are
relatively light tailed. TheSαS distributions are very heavy-tailed
noise distributions. The Cauchy distribution is a member of this
family (α = 1), whose variance is infinite. To assess the per-
formance of Mean-LogCauchy filters in mixed noise, the origi-
nal image in Fig. 1(a) was contaminated by both Gaussian white
noise (σ2 = 100) and α-stable noiseSαS(α = 0.5). The ε-
contaminated mixed noise corrupted image is shown in Fig. 1(b).
The visual comparison with other techniques is shown in Fig. 1.
The relaxed median filter [7] outperforms Wilcoxon and Hodges-
Lehmann in suppressing highlyα-stable noise, while the Mean-
LogCauchy filter, with mixture parameterλ = π/(2 + π) and op-
timal tuning parameterγ = 2.38, achieves the best performance.
In the simulation results of Fig.1, the contamination fractionε is
chosen to be equal toλ.

The high sensitivity of many specific filters to an accurate
modeling of noise that is to be removed led us to investigate the
proposed new techniques that include a number of filters whose
optimality when given a specific noise distribution is attained by
merely adjusting or optimizing the parameterλ. On the other hand,
the filtering performance is also sensitive to the fraction of con-
taminationε. Whenε = 0 the mixed noise is purely Gaussian, and
whenε = 1 it is purelyα-stable. Fig. 2 shows the influence of the
parameterε on the filtering performance.



(a) (b) (c)

(d) (e) (f)

Fig. 1. Filtering results in the presence ofε-contaminated Gaussian andα-stable noise, and using a3 × 3 square window: (a) Original
image, (b)ε-mixed noisy image withN (0, 100) andSαS, (c) Output of the MLC filter,λ = 2/(2 + π), (d) Output of the relaxed median
filter, (e) Output of the Wilcoxon filter, and (f) Output of the Hodges-Lehmann filter.
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Fig. 2. Influence of the contamination fractionε on filtering per-
formance: MSE vs.ε.
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