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ABSTRACT

Three dimensional objects viewed as surfaces or volumes em-
bedded inR3, are usually sampled along the z-dimension by
planes for rendering or modeling purposes. The resulting in-
tersections are curves or planar shapes which may in turn be
modeled for parsimony of representation. Each curve or planar
shape may be viewed as a point in a high dimensional man-
ifold, thereby providing the notion of interpolation between
two curves or two points on this manifold to reconstruct the
subsurface that lies between the two slices. We exploit some
recent results in formulating this interpolation problem as an
optimization problem inR3 to yield a simple interpolating
spline, known as elasticæ, which when evaluated at interme-
diate points yields curves which can in turn be instrumental
in 3D reconstruction. The approach is particularly suited for
interpolation between MRI slices and for modeling and recon-
struction of 3D shapes.

1. INTRODUCTION

Interpolation has long been of interest in Signal Processing,
since it is the very basis of signal reconstruction from discrete
sampled data. Linear and nonlinear interpolation have wit-
nessed a development of a wealth of techniques using wavelets
and splines[1, 3] just to name a few. In all these studies, thein-
terpolation was point-wise and the local inter-sample correla-
tion was to a large extent overlooked. A natural generalization
of this approach may for instance, define an algebraically cou-
pled set of samples (e.g. forming a curve) as a starting point,
to be interpolated to another similarly defined set of samples
(i.e. a curve to another). Such curves are typically the result
of sampling a surface embedded inR

3 along thez-dimension
with a flat plane, as shown in Fig. 1. They are, hence, inter-
sections of parallel planes with a surface. Applications where
such cross-sectional data arise, include medical imaging,mi-
croscopy, manufacturing, geology and more.

In particular, digital 3D reconstruction techniques based
on interpolating 2D slices are not only encountered in Mag-
netic Resonance Imaging applications but also in terrain mod-
eling from topographic elevation contour information [2].A
myriad of methods addressing different aspects of these prob-
lems have been proposed in the literature[11, 2]. In trying to
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Fig. 1. Vertical sampling of a surface.

contiguously connect various curves and to allow for possible
topological changes, one is indeed faced with physical branch-
ing and bifurcation of a surface referred to as thecorrespon-
denceandbranchingproblems.

In [6], Jones and Chen proposed a reconstruction tech-
nique that solves these problems in a simple and elegant way.
They subsequently proceed to linearly interpolate the distance
of various slices to obtain a functionF defined on a 3D space.
The desired 3D model is then obtained as the 0-level set ofF .

Many good 3D models in surface/object reconstruction have
been proposed in the literature [4, 11] and their overlooking
of other than adjacent slices which ignores information about
the overall shape causes severe artifacts (sharp edges and ar-
tifacts). In this paper, we seek to refine existing methods and
using [6] as an inspiration, we exploit recent results in Mioet.
al.[8] and propose the notion ofelasticæto naturally describe
the evolution of two curves. In addition, this proposed tech-
nique seeks to only preserve singularities present in the input
data. This is achieved with no significant change in the typi-
cally sparse nature of the data.

The novelty of this approach lies in our introduction of
an energy functional on the distance fields of the level curves
which is intuitively appealing and sensible and generalizes the
linear interpolation of [6]. Specifically, we maintain thata
smooth displacement of these distance fields (which amount
to a smooth evolution of cross-section curves) isalmost always
the prevailing law of nature, and hence justifies the choice of
anelasticæfunction for interpolating them in a function space.
This infinite dimensional space is challenging to optimize over,
and hence, requires a judicious formulation by constraining the
problem to a 3D subspace where the interpolation curve, i.e.,



the elasticæ solution, will lie [7, 8].

2. INTERPOLATION MODELS

2.1. The Linear Model

Recall that sample curves/cross-sectional data are typically a
result of intersections of a surface with a plane along az− di-
mension in a Euclidean coordinate system. Since all practical
surfaces of interest are compact, it is natural to assume that all
intersections lie within a fixed bounded regionΩ of the plane
R

2, i.e. a sufficiently large enclosing rectangle. More pre-
cisely, a cross-sectionR at levelz is assumed to be contained
in Ω× {z}. When thez-level is not relevant, we may think of
cross-sections simply as subsets ofΩ.

Generically, the contourC of a cross-sectionR ⊆ Ω con-
sists of a collection of non-overlapping closed curves.1 Asso-
ciated withR, there is a signed distance fieldρ : Ω → R as
illustrated in Fig. 2, given by:

ρ(x, y) =

{

+D((x, y),C), if (x, y) /∈ R;
−D((x, y),C), if (x, y) ∈ R,

(1)

whereD((x, y),C) denotes the distance from any point(x, y) ∈
Ω to the setC, i.e.,

D((x, y), C) = min
u,v∈C

d ((x, y), (u, v)).

The contourC may be viewed as the isosetC = ρ−1(0). Just
asC is sometimes viewed as a subset ofΩ × {z}, we often
think of ρ as defined onΩ × {z}.

(a) (b)

Fig. 2. Distance field representation of a curve: (a) Original
curve; (b) Distance field. Red corresponds to exterior while
blue corresponds to the interior of the curve where the field is
negative.

As pictorially illustrated in Fig. 1, we are givenK cross-
sectionsRi of an object (e.g. a double torus)0 ≤ i ≤ K − 1,
from horizontal slices at levelszi, with zi−1 < zi, and we
let ρi denote the associated distance fields. The problem is to
reconstruct a surface given the slices.

Jones and Chen [6] linearly interpolate consecutive dis-
tance fieldsρi : Ω × {zi} → R to obtain a functionF : Ω ×
[z0, zK−1] → R. The contourS of the 3D object is recon-
structed as the isosurfaceS = F−1(0), and practically ex-
tracted using theMarching Cubes Algorithm[12].

1Note that we do not restrict the topology of the surface beingre-
constructed, which could in fact have holes and branches.

2.2. Problem Formulation

In practice,Ω is finite dimensional and ordering itsn pixels
yields a functionρ : Ω → R

n which in turn may be repre-
sented by ann-tuple(d1, . . . , dn) ∈ R

n.
Let the distance field corresponding to the intersection curve

at level zi be ρi ≡ (di
1, . . . , d

i
n). For K intersections, we

get an ordered collection{ρi, 0 ≤ i ≤ K − 1} of points in
R

n, and would like to model a trajectory that passes through
them. The trajectory will then be used to interpolate between
the given points to reconstruct the entire surface from the given
intersections. The linear interpolation used by Jones and Chen
corresponds to a polygonal curve inR

n connecting these points
as illustrated in Fig. 3(a). A linear evolution of curves is clearly
overoptimistic in the sense that it completely ignores any de-
pendence of the end curves on their immediate neighbors and
that the distance fields typically lie in some curved space. In
contrast, we seek to replace this linear interpolation by anelas-
ticæ fulfilling nonlinear curve to join these fields on this mani-
fold. The elasticæ is formulated in a way that it introduces the
notion of dependence of any curves interpolated close to the
end points on their immediate neighbors. This is achieved by
imposing the starting and ending point tangent constraintsas
illustrated in Fig 3(b). As shown in Fig.3, elasticæ also ensures
smoothness at the junctions.

(a)

(b)

Fig. 3. Approximation of an interpolation curve inR3: (a)
Linear approximation; (b) Nonlinear fit.

2.3. Nonlinear Interpolation

The interpolations we wish to consider consist ofK−1 smooth
arcs inR

n connectingρi−1 to ρi, 1 ≤ i ≤ K, whose tangent
vectors agree at the junctions. By requiring that the tangent
vectors to the curve at theith and(i + 1)th junctions assume
some direction and that the displacement between the two dis-
tance fields be upper-bounded, we are in effect stating that the
solution curve lie in a 3D subspace with canonical directions
given by these three vectors. The direction of the tangent vec-



tor at theith and(i + 1)th junction is given by:

vi =
ρi+1 − ρi−1

‖ρi+1 − ρi−1‖
,

for 0 < i < K − 1. For generic objects, we can suppose
that the displacement vectorsρi+1 − ρi−1 6= 0, for every
0 < i < K − 1, so thatvi is well defined, computed as shown
in Fig. 4.
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Fig. 4. Approximation of tangents for a solution inR3.

At the initial and terminal points, as illustrated in Fig. 3(b),
we use:

v0 =
ρ1 − ρ0

‖ρ1 − ρ0‖
and vK =

ρK − ρK−1

‖ρK − ρK−1‖
, (2)

which we also assume to be well defined. For space reasons,
other special cases are omitted and discussed elsewhere.

With this formulation in hand, we may succinctly state the
interpolation problem as follows: for each1 ≤ i ≤ K−1, find
the most “energy efficient” unit-speed curveαi in R

n having
ρi−1 andρi as initial and terminal points, andvi−1 andvi as
initial and terminal velocity vectors, respectively. The issue of
energy efficiency brings us to the notion ofelasticæ.

2.4. The elasticæ model

Let α : [0, L] → R
n be a unit-speed curve inRn. The cur-

vature ofα at s ∈ [0, L] is given byκ(s) = ‖α′′(s)‖. The
(bending)elastic energyof α is defined by:

E(α) =

∫ L

0

κ2(s) ds.

These functionals date back to Euler [5] and were introduced
in computer vision by Mumford to model edge occlusions [9].
It is often the case that, in pattern recognition problems, it is
more natural to use ascale invariantform of the elastic energy.
Such functional was introduced in [11, 4] and is given by:

Esi(α) = L

∫ L

0

κ2(s) ds.

We may now state the interpolation problem as:
Given pointsp, q ∈ R

n and unit vectorsv1, v2 ∈ R
n, find

a unit-speed curveα in R
n of minimal scale-invariant elastic

energy havingp, q as initial and terminal points, andv1, v2 as
initial and terminal velocity vectors.

The energy minimizing curves satisfying first-order bound-
ary conditions are calledscale-invariant elasticæ. Minimiz-
ing the bending energy results in a curve which is smooth. In
the absence of any tangent constraints, the solution will bea
straight line joining the two points and we are left with the in-
terpolation of Joneset. al. Fixing the tangents constrains the
launching and ending directions of the velocity vector along
the curve and the minimization of the bending energy results
in a curve that is least bent. In other words, elasticæ gener-
alizes the linear interpolation, and when the two tangents are
perfectly aligned, we converge to the same solution.

In the planar case, algorithms to compute curves that ap-
proximate elasticæ were studied in [10]. Fast algorithms to
compute scale-invariant and other forms of elasticæ inR

n were
developed in [8]. An illustration of fitting a trajectory through
successive level curves is given in Fig. 5.

Fig. 5. A trajectory on an(n − 1)-manifold to model curves
represented as points inRn.

2.5. Elasticæ inR
3

Instead of minimizing the bending energy in high dimensional
space, the given constraints may be fulfilled by projecting the
tangentsv1, v2 and the displacementd = q − p to R

3, thus
reducing significantly the computational cost. Assume that
{v1, v2, d} forms a linearly independent set. A Gram-Schmidt
orthogonalization results in:

b1 = v1;

b2 =
v2 − 〈v2, b1〉b1

‖v2 − 〈v2, b1〉b1‖
; (3)

b3 =
d − 〈d, b1〉b1 − 〈d, b2〉b2

‖d − 〈d, b1〉b1 − 〈d, b2〉b2‖
.

{b1, b2, b3} ⊂ R
n forms an orthonormal set. Lete1, e2, e3

be the canonical basis forR3. We projectv1, v2 andd to R
3

according to the following:

w1 = e1;

w2 = 〈v2, b1〉e1 + 〈v2, b2〉e2 + 〈v2, b3〉e3; (4)

w3 = 〈d, b1〉e1 + 〈d, b2〉e2 + 〈d, b3〉e3.

The problem is now simplified to finding elasticæα : I =
[0, 1] → R

3 satisfyingα(0) = 0, α(1) = w3 with starting

and ending tangentsα
′(0)

‖α
′(0)‖

= w1 and α
′(1)

‖α
′(1)‖

= w2 respec-

tively. Each pointα(t) ∈ R
3 may be viewed as a position

vectorρ(t) ∈ R
n according to:

ρ(t) = p1+〈α(t), e1〉b1+〈α(t), e2〉b2+〈α(t), e3〉b3. (5)



Clearly,ρ(t) given by Eq. (5) satisfies the tangent and dis-
placement constraints.

2.6. Algorithm

The algorithm may then be summarized as follows:

• Given ρk−1, ρk, vk−1, vk, let αk : [0, Lk] → R
n be

the scale-invariant elasticæ satisfying the boundary con-
ditions in Eq. 2.

• For eacht ∈ [0, Lk], αk(t) ∈ R
n represents a function

Ω → R, whose value at the(i, j)-th pixelpij ∈ Ω will
be denotedαk(t)(pij).

• DefineFk : Ω × [zk−1, zk] → R by:

Fk(pij , z) = αk(t)(pij),

wheret = Lk

zk−zk−1

(z − zk−1). Stacking theFk ’s, we

obtainF : Ω × [z0, zK−1] → R, or more precisely, a
functionF defined on the voxels ofΩ × [z0, zK−1].

• As in [6], using theMarching Cubes Algorithm[12],
we extract the isosetF−1(0), which yields theelasticæ
modelof the 3D object we are to reconstruct.

3. EXAMPLES

In this section, we present some examples where we recon-
struct 3D objects given respective sets of slices. Slices for
double torus, as shown in Fig. 1, were used to reconstruct a
double torus given in Fig. 7(a).

In Figs. 6(a) and (b), a vase and its level curves are shown,
which were used to reconstruct a vase illustrated in Fig.7(b).
Note that the surface is rendered using the Marching Cube al-
gorithm.

(a) (b)

Fig. 6. 3D object and its level curves: (a) Vase; (b) Level
curves.
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