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ABSTRACT

Three dimensional objects viewed as surfaces or volumes em-

bedded inR?, are usually sampled along the z-dimension by
planes for rendering or modeling purposes. The resulting in

tersections are curves or planar shapes which may in turn be

modeled for parsimony of representation. Each curve ogplan

shape may be viewed as a point in a high dimensional man-

ifold, thereby providing the notion of interpolation bewve
two curves or two points on this manifold to reconstruct the

subsurface that lies between the two slices. We exploit some

recent results in formulating this interpolation problemam
optimization problem inR? to yield a simple interpolating

spline, known as elasticae, which when evaluated at interme-

diate points yields curves which can in turn be instrumental
in 3D reconstruction. The approach is particularly suited f
interpolation between MRI slices and for modeling and recon
struction of 3D shapes.

1. INTRODUCTION

Interpolation has long been of interest in Signal Procegssin
since it is the very basis of signal reconstruction from ite
sampled data. Linear and nonlinear interpolation have wit-

Fig. 1. Vertical sampling of a surface.

contiguously connect various curves and to allow for pdesib
topological changes, one is indeed faced with physicaldiran
ing and bifurcation of a surface referred to as tleerespon-
denceandbranchingproblems.

In [6], Jones and Chen proposed a reconstruction tech-
nigue that solves these problems in a simple and elegant way.
They subsequently proceed to linearly interpolate theadist
of various slices to obtain a functiai defined on a 3D space.
The desired 3D model is then obtained as the O-level sét of

Many good 3D models in surface/object reconstruction have

nessed a development of a wealth of techniques using wavelet been proposed in the literature [4, 11] and their overlogkin

and splines[1, 3] just to name a few. In all these studiesnthe
terpolation was point-wise and the local inter-samplealarr
tion was to a large extent overlooked. A natural generatimat

of this approach may for instance, define an algebraically co
pled set of samples (e.g. forming a curve) as a starting point
to be interpolated to another similarly defined set of sample
(i.e. a curve to another). Such curves are typically thelresu
of sampling a surface embeddedR along thez-dimension
with a flat plane, as shown in Fig. 1. They are, hence, inter-
sections of parallel planes with a surface. Applicationgmeh
such cross-sectional data arise, include medical imagitg,
croscopy, manufacturing, geology and more.

In particular, digital 3D reconstruction techniques based
on interpolating 2D slices are not only encountered in Mag-
netic Resonance Imaging applications but also in terraid-mo
eling from topographic elevation contour information [2}.
myriad of methods addressing different aspects of thede pro
lems have been proposed in the literature[11, 2]. In trying t
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of other than adjacent slices which ignores informationuabo
the overall shape causes severe artifacts (sharp edges-and a
tifacts). In this paper, we seek to refine existing methodts an
using [6] as an inspiration, we exploit recent results in lgtio
al.[8] and propose the notion @flasticagto naturally describe

the evolution of two curves. In addition, this proposed tech
nigue seeks to only preserve singularities present in thiatin
data. This is achieved with no significant change in the typi-
cally sparse nature of the data.

The novelty of this approach lies in our introduction of
an energy functional on the distance fields of the level arve
which is intuitively appealing and sensible and generalibe
linear interpolation of [6]. Specifically, we maintain that
smooth displacement of these distance fields (which amount
to a smooth evolution of cross-section curveglimost always
the prevailing law of nature, and hence justifies the chofce o
anelasticagunction for interpolating them in a function space.
This infinite dimensional space is challenging to optimizerp
and hence, requires a judicious formulation by constraittie
problem to a 3D subspace where the interpolation curve, i.e.



the elasticae solution, will lie [7, 8]. 2.2. Problem Formulation

In practice, is finite dimensional and ordering its pixels
yields a functionp : Q@ — R™ which in turn may be repre-
sented by am-tuple (d1, . .., d,) € R™.

Let the distance field corresponding to the intersectiomeur
Recall that sample curves/cross-sectional data are tipa  at level z; be p, = (di,...,d}). For K intersections, we
result of intersections of a surface with a plane along-adi- get an ordered collectiofip,,0 < i < K — 1} of points in
mension in a Euclidean coordinate system. Since all pctic R™, and would like to model a trajectory that passes through
surfaces of interest are compact, it is natural to assunt@tha  them. The trajectory will then be used to interpolate betwee
intersections lie within a fixed bounded regi@nof the plane the given points to reconstruct the entire surface from ieng
R?, i.e. a sufficiently large enclosing rectangle. More pre- intersections. The linear interpolation used by Jones drehC
cisely, a cross-sectioR at levelz is assumed to be contained corresponds to a polygonal curveRft connecting these points
in Q x {z}. When thez-level is not relevant, we may think of  asillustrated in Fig. 3(a). A linear evolution of curveslisarly

2. INTERPOLATION MODELS

2.1. The Linear Model

cross-sections simply as subset$of overoptimistic in the sense that it completely ignores agy d
Generically, the contout of a cross-sectiok C €2 con- pendence of the end curves on their immediate neighbors and
sists of a collection of non-overlapping closed curbessso- that the distance fields typically lie in some curved space. |
ciated withR, there is a signed distance figld & — R as contrast, we seek to replace this linear interpolation bglas-
illustrated in Fig. 2, given by: ticee fulfilling nonlinear curve to join these fields on thisnia

fold. The elasticee is formulated in a way that it introdudues t
notion of dependence of any curves interpolated close to the
end points on their immediate neighbors. This is achieved by
imposing the starting and ending point tangent constraiats
illustrated in Fig 3(b). As shown in Fig.3, elasticee alsoueas
smoothness at the junctions.

f +D((x.9),C), i () ¢ R;
”(x’y)*{ Dl 0, g er, @

whereD((z,y),C) denotes the distance from any pafmty) €
Q tothe set, i.e.,

D((z,y),€) = min d((z,y), (u,v)).

u,veC
a(t)
The contourC may be viewed as the isosét= p~*(0). Just
asC is sometimes viewed as a subsettdfx {z}, we often

think of p as defined o2 x {z}.
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/
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Fig. 2. Distance field representation of a curve: (a) Original v
curve; (b) Distance field. Red corresponds to exterior while (b)

blue corresponds to the interior of the curve where the figld i '
negative. Fig. 3. Approximation of an interpolation curve iR*: (a)

Linear approximation; (b) Nonlinear fit.

As pictorially illustrated in Fig. 1, we are giveR cross-
sectionsR; of an object (e.g. a double tord)< i < K — 1,
from horizontal slices at levels;, with z;_1 < z;, and we
let p; denote the associated distance fields. The problem is to2-3. Nonlinear Interpolation
reconstruct a surface given the slices.

Jones and Chen [6] linearly interpolate consecutive dis-
tance fields;: © x {z;} — R to obtain a function’:  x
[z0,2K—-1] — R. The contourS of the 3D object is recon-
structed as the isosurface = ~'(0), and practically ex-
tracted using thélarching Cubes AlgorithrfiL2].

The interpolations we wish to consider consistof 1 smooth
arcs inR™ connectingp,_; to p,, 1 < ¢ < K, whose tangent
vectors agree at the junctions. By requiring that the tahgen
vectors to the curve at thé" and (i + 1)*" junctions assume
some direction and that the displacement between the two dis
tance fields be upper-bounded, we are in effect statingileat t
1INote that we do not restrict the topology of the surface beig solution curve lie in a 3D subspace with canonical direcion
constructed, which could in fact have holes and branches. given by these three vectors. The direction of the tangerit ve




tor at thei*™ and (i + 1)** junction is given by:
v, = Piy1 — Pi—1 7
Hpi+1 —pi_ll

for0 < ¢ < K — 1. For generic objects, we can suppose
that the displacement vectops , — p,_, # 0, for every

0 < i < K — 1, so thatv; is well defined, computed as shown
in Fig. 4.

P

Fig. 4. Approximation of tangents for a solutionR?.

At the initial and terminal points, as illustrated in Figby(
we use:

Pk — Pr—1

P1— Po
lex —pr_all’

Vo = ( and Vg =
ller — ool

@)

which we also assume to be well defined. For space reasons,

other special cases are omitted and discussed elsewhere.

With this formulation in hand, we may succinctly state the
interpolation problem as follows: for eath< : < K —1, find
the most “energy efficient” unit-speed curag in R™ having
p,_, andp, as initial and terminal points, and_1 andv; as
initial and terminal velocity vectors, respectively. Tissue of
energy efficiency brings us to the notionalasticae

2.4. The elasticae model

Let«: [0, L] — R" be a unit-speed curve iR™. The cur-
vature ofa ats € [0, L] is given byx(s) = ||a”(s)||. The
(bending)elastic energyf « is defined by:

Ela) = /OL k2 (s) ds.

The energy minimizing curves satisfying first-order bound-
ary conditions are calledcale-invariant elasticae Minimiz-
ing the bending energy results in a curve which is smooth. In
the absence of any tangent constraints, the solution wid be
straight line joining the two points and we are left with the i
terpolation of Jonest. al Fixing the tangents constrains the
launching and ending directions of the velocity vector glon
the curve and the minimization of the bending energy results
in a curve that is least bent. In other words, elasticee gener-
alizes the linear interpolation, and when the two tangergs a
perfectly aligned, we converge to the same solution.

In the planar case, algorithms to compute curves that ap-
proximate elasticee were studied in [10]. Fast algorithms to
compute scale-invariant and other forms of elastic&'invere
developed in [8]. An illustration of fitting a trajectory thugh
successive level curves is given in Fig. 5.

Fig. 5. A trajectory on an(n — 1)-manifold to model curves
represented as points R”.

2.5. Elasticee inR3

Instead of minimizing the bending energy in high dimensiona
space, the given constraints may be fulfilled by projecthrey t
tangentsv, v, and the displacement = q — p to R?, thus
reducing significantly the computational cost. Assume that
{v1,Vvs,d} forms a linearly independent set. A Gram-Schmidt
orthogonalization results in:

b1 = Vi,
Vo — <V2,b1>b1
by — 2 W20y 3
> = v (va.bu)br] ®)
by — d — (d,bi)b; — (d, b2)b2

ld — (d, b1)by — (d, b2)bs ||

{b1,b2,b3} C R™ forms an orthonormal set. Let, e;, e3

These functionals date back to Euler [5] and were introduced be the canonical basis f@®>. We projectv, v» andd to R?

in computer vision by Mumford to model edge occlusions [9].
It is often the case that, in pattern recognition problems i
more natural to usescale invarianform of the elastic energy.
Such functional was introduced in [11, 4] and is given by:

L
Esi(a) =1L / K% (s) ds.

JO
We may now state the interpolation problem as:
Given pointsp,q € R™ and unit vectors/1,v2 € R"”, find
a unit-speed curvex in R™ of minimal scale-invariant elastic
energy having, q as initial and terminal points, and;, v» as
initial and terminal velocity vectors.

according to the following:

W1 €1;
We = (va,bi)er + (Va,bo)es 4 (vo,b3)es;  (4)
ws = (d,bi)er + (d,b2)e; + (d, bs)es.

The problem is now simplified to finding elastiese I =

[0,1] — R? satisfyingae(0) = 0, (1) = ws with starting

i "0) _ a’(1) _

and ending tangent O w; and Tar(] = W2 respec

tively. Each pointa(t) € R* may be viewed as a position
vectorp(t) € R™ according to:

p(t) = pi+{a(t), e)bi+{a(t), e2)bz: +(a(t), es)bs. (5)



Clearly, p(t) given by Eq. (5) satisfies the tangent and dis-
placement constraints.

2.6. Algorithm

The algorithm may then be summarized as follows:

e Givenp,_,pi,Vi—1,Vk, let ax: [0, Lx] — R™ be
the scale-invariant elasticae satisfying the boundary con-
ditions in Eq. 2.

e Foreach € [0, Li], ai(t) € R™ represents a function
Q — R, whose value at th&, 7)-th pixelp;; € Q will
be denotedv (t)(pi;).

e DefineFy: Q X [z5-1,2x] — Rby:

(3]
Fi(pij, 2) = ax(t)(pis),

wheret = = fjkil (z — zx—1). Stacking theFy’s, we [4]
obtain F': Q X [20, zx—1] — R, or more precisely, a

function £’ defined on the voxels & x [z0, 2k —1].
e As in [6], using theMarching Cubes Algorithnjl2], [5]

we extract the isoset ~*(0), which yields theelasticae
modelof the 3D object we are to reconstruct.

3. EXAMPLES [6]

In this section, we present some examples where we recon-
struct 3D objects given respective sets of slices. Slices fo [7]
double torus, as shown in Fig. 1, were used to reconstruct a
double torus given in Fig. 7(a).

In Figs. 6(a) and (b), a vase and its level curves are shown, (8]
which were used to reconstruct a vase illustrated in Fig.7(b
Note that the surface is rendered using the Marching Cube al-
gorithm.

9]

| [10]
) = ¢
[11]
e/ : : [12]
(@) (b)

Fig. 6. 3D object and its level curves: (a) Vase; (b) Level
curves.
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