Hamid Heydarian

Hamid Heydarian
The University of Newcastle, Australia · School of Electrical Engineering and Computing

PhD Candidate (Information Technology)

About

5
Publications
520
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
44
Citations

Publications

Publications (5)
Article
Full-text available
Recent research has employed deep learning to detect intake gestures from inertial sensor and video camera data. However, the fusion of these modalities has not been attempted. The present research explores the potential of fusing the outputs of two individual deep learning inertial and video intake gesture detection models (i.e., score-level and d...
Article
Full-text available
Wrist-worn inertial measurement units have emerged as a promising technology to passively capture dietary intake data. State-of-the-art approaches use deep neural networks to process the collected inertial data and detect characteristic hand movements associated with intake gestures. In order to clarify the effects of data preprocessing, sensor mod...
Preprint
Full-text available
Automatic detection of intake gestures is a key element of automatic dietary monitoring. Several types of sensors, including inertial measurement units (IMU) and video cameras, have been used for this purpose. The common machine learning approaches make use of the labelled sensor data to automatically learn how to make detections. One characteristi...
Article
Full-text available
Automatic detection of intake gestures is a key element of automatic dietary monitoring. Several types of sensors, including inertial measurement units (IMU) and video cameras, have been used for this purpose. The common machine learning approaches make use of labeled sensor data to automatically learn how to make detections. One characteristic, es...
Article
Full-text available
Wearable motion tracking sensors are now widely used to monitor physical activity, and have recently gained more attention in dietary monitoring research. The aim of this review is to synthesise research to date that utilises upper limb motion tracking sensors, either individually or in combination with other technologies (e.g., cameras, microphone...

Network

Cited By