About
14
Publications
1,370
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
190
Citations
Introduction
Current institution
Publications
Publications (14)
Radiotherapy is one of the conventional treatments for head and neck malignancies. Despite the implementation of protective measures to minimize the detrimental impact on healthy tissues surrounding the radiation site, radiation keratopathy remains a prevalent complication. We aimed to establish a mouse model of radiation keratopathy to characteriz...
Extracellular vesicles (EVs), a diverse group of cell-derived exocytosed particles, are pivotal in mediating intercellular communication due to their ability to selectively transfer biomolecules to specific cell types. EVs, composed of proteins, nucleic acids, and lipids, are taken up by cells to affect a variety of signaling cascades. Research in...
Extracellular vesicles (EVs), a diverse group of cell-derived exocytosed particles, are pivotal in mediating intercellular communication due to their ability to selectively transfer biomolecules to specific cell types. EVs, composed of proteins, nucleic acids, and lipids, are taken up by cells to affect a variety of signaling cascades. Research in...
Extracellular vesicles (EVs) have been recognized as promising candidates for developing novel therapeutics for a wide range of pathologies, including ocular disorders, due to their ability to deliver a diverse array of bioactive molecules, including proteins, lipids, and nucleic acids, to recipient cells. Recent studies have shown that EVs derived...
Purpose:
Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) have been demonstrated to possess great potential in preclinical models. An efficient biomanufacturing platform is necessary for scale up production for clinical therapeutic applications. The aim of this study is to investigate the potential differences in neuro-re...
Novel biomaterial development is a rapidly growing field that is crucial because biomaterial fouling, due to rapid and irreversible protein adsorption, leads to cellular responses and potentially detrimental consequences such as surface thrombosis, biofilm formation, or inflammation. Therefore, biomaterial technology's fundamentals, like material b...
Infection remains a significant challenge in healthcare and with medical devices, resulting in two million healthcare-associated infections reported annually in the U.S. alone. Researchers are seeking new antimicrobial materials and therapies to solve the infection challenges associated with biomaterials and devices without bacterial resistance. Ni...
The cover image is based on the Research Article Prevention ofmedical device infections viamulti‐action nitric oxide and chlorhexidine diacetate releasing medical grade silicone biointerfaces by ElizabethBrisbois et al., https://doi.org/10.1002/jbm.a.37372.
The presence of bacteria and biofilm on medical device surfaces has been linked to serious infections, increased health care costs, and failure of medical devices. Therefore, antimicrobial biointerfaces and medical devices that can thwart microbial attachment and biofilm formation are urgently needed. Both nitric oxide (NO) and chlorhexidine diacet...