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Abstract
This article presents an improved version of the coyote optimization algorithm (COA) that is more compatible with nature.

In the proposed algorithm, fitness-distance balance (FDB) and Lévy flight were used to determine the social tendency of

coyote packs and to develop a more effective model imitating the birth of new coyotes. The balanced search performance,

global exploration capability, and local exploitation ability of the COA algorithm were enhanced, and the premature

convergence problem resolved using these two methods. The performance of the proposed Lévy roulette FDB-COA

(LRFDBCOA) was compared with 28 other meta-heuristic search (MHS) algorithms to verify its effectiveness on 90

benchmark test functions in different dimensions. The proposed LRFDBCOA and the COA ranked, respectively, the first

and the ninth, according to nonparametric statistical results. The proposed algorithm was applied to solve the AC optimal

power flow (ACOPF) problem incorporating thermal, wind, and combined solar-small hydro powered energy systems. This

problem is described as a constrained, nonconvex, and complex power system optimization problem. The simulation

results showed that the proposed algorithm exhibited a definite superiority over both the constrained and highly complex

real-world engineering ACOPF problem and the unconstrained convex/nonconvex benchmark problems.

Keywords Lévy steps � Fitness-distance balance (FDB) � FDB-enhanced coyote optimization algorithm (FDB-COA) �
Optimal power flow � Renewable energy sources � Modern power systems

1 Introduction

In this article, research was carried out on two important

topics in the field of optimization and significant achieve-

ments were obtained. The first of these issues was the

development of the meta-heuristic search (MHS) algorithm

as the most important element of the optimization process.

Dozens of MHS algorithms have been developed in recent

years. However, information is limited about the compar-

ative performance of these algorithms with respect to each

other (Del Ser et al. 2019). For this, algorithms must be

compared with each other and their performances investi-

gated accordingly. However, the experimental sections of

studies published on MHS algorithms are often deficient,

especially in terms of comparisons with existing methods,

in the number of current and strong competing algorithms

and their selection, and in the objectivity of the experi-

mental conditions. These problems encountered by the

studies in the literature were resolved in the present study.

First, the design errors and deficiencies of the coyote
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optimization algorithm (COA) (Pierezan and Coelho

2018), which is a recently developed and bio-inspired MHS

method, were investigated. The aim was to design the COA

to be more compatible with nature and thereby improve its

performance. For this, fitness-distance balance (FDB)

(Kahraman et al. 2020) and Lévy flight (Wang 2018;

Amirsadri et al. 2018; Pang et al. 2019; Emary et al. 2019;

Wang et al. 2020; Yang and Deb 2009), two methods

inspired by nature and that successfully imitate it, were

used. By using the FDB and Lévy flight, more efficient

modeling of the exploration and exploitation processes in

the COA algorithm was accomplished. Thus, the premature

convergence problems of the algorithm were eliminated, and

the balanced search ability was strengthened. As a result, the

proposed Lévy roulette FDB COA (LRFDBCOA), an

improved variation of the COA algorithm, was successfully

developed. A very comprehensive experimental study sec-

tion was prepared to clearly demonstrate the performance of

the LRFDBCOA proposed in this article compared to its

competitors in the literature. For this purpose, 28 recently

developed and powerful MHS algorithms and 90 test prob-

lems in three different benchmark suites were used. The

Congress on Evolutionary Computation (CEC) CEC2014

(Liang et al. 2013) and CEC2017 (Awad et al. 2017)

specifications were taken as guidelines for conducting the

experiments in accordance with the standards to ensure

impartiality among the competing algorithms. The data

obtained from the experiments were analyzed by nonpara-

metric statistical test methods. The results of the analyses

revealed that the LRFDBCOA algorithm proposed in this

article is among the most effective MHS algorithms com-

pared to those found in the literature. Thus, the development

of the optimization algorithm, the first subject of this article,

was successfully completed.

The second subject on which research was conducted

was the solution of the optimal power flow (OPF) problem,

which is the most important optimization for power sys-

tems. Nowadays, modern electrical power grids face many

planning and operation problems, including those of eco-

nomic dispatch, combined heat and power dispatch, plan-

ning of short-term hydro thermal generation, economic/

emission dispatch, dynamic economic dispatch, optimal

power flow, optimal power flow incorporating high-voltage

DC (HVDC) transmission systems, setting of power system

stabilizer parameters, load frequency control, optimal

reactive power flow, load prediction, and others. These

continue to be hot topics among power system research

groups. The OPF problem is known as one of the most

fundamental among these problems. The OPF problem

involves optimizing different objective functions within the

equality and inequality constraints. These objective func-

tions have been identified as the improvement of voltage

stability and the minimization of total cost, active power

loss, emission, and voltage deviation. At the end of the

OPF problem optimization process, the outcomes of the

problem exhibit the optimal operating situation of electrical

power system, and the values of the control variables are

optimized to provide a reliable, stable, and economic

operation. The control variables are commonly described

as the active power of the generating units, the voltage

values of the generator buses, the reactive power injected

from the capacitor banks, and the tap setting parameters of

the transformers (Nguyen 2019; Biswas et al. 2018a; Niu

et al. 2014).

In the past decades, various optimization algorithms

applied to solve the traditional OPF problem have incor-

porated thermal generating units. These involve the bio-

geography-based optimization (BBO) (Roy et al. 2010),

differential evolution (DE) algorithm (Abou El Ela et al.

2010), hybrid shuffle frog-leaping algorithm and simulated

annealing (SFLA-SA) (Niknam et al. 2012), improved

harmony search (IHS) algorithm (Sinsuphan et al. 2013),

black-hole-based optimization (BHBO) (Bouchekara

2014), teaching–learning-based optimization (TLBO)

(Bouchekara et al. 2014), chaotic invasive weed opti-

mization (CIWO) algorithm (Ghasemi et al. 2014a),

improved group search optimization (IGSO) (Tan et al.

2015), hybrid firefly algorithm with pattern search (FFA-

PS) algorithm (Mahdad and Srairi 2015), imperialist

competitive algorithm (ICA) (Ghasemi et al. 2014b),

Gaussian bare-bones imperialist competitive algorithm

(GBICA) (Ghasemi et al. 2015), chaotic krill herd algo-

rithm (CKHA) (Mukherjee and Mukherjee 2015), glow-

worm swarm optimization (GSO) (Reddy and Rathnam

2016), backtracking search optimization algorithm (BSA)

(Chaib et al. 2016), salp swarm algorithm (SSA) (El-Fer-

gany and Hasanien 2020), modified grasshopper opti-

mization algorithm (MGOA) (Taher et al. 2019), and group

search optimization (GSO) (Basu 2016). Although the

conventional OPF problem considered only thermal gen-

erating units until recently, nowadays, this problem is

being evaluated with the renewable energy sources (RESs).

Utilization of these sources for electrical power systems is

increasing as a result of the rising energy demands brought

about by advances in technology and the growing popu-

lation. Therefore, the OPF problem using RESs introduces

a highly complex nonconvex and nonlinear structure,

which leads to new difficulties in the planning and opera-

tion of power systems.

Recently, researchers have been investigating the use of

optimization methods to solve the OPF problem by con-

sidering systems based on RESs, such as wind, solar, hydro

power, tidal, and wave energy systems. Panda and Tripathy

presented the modified bacteria foraging algorithm

(MBFA) to solve security constrained optimal power flow

using a wind generation system, and the propose algorithm
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was tested on an (Institute of Electrical and Electronics

Engineer) IEEE 30-bus test system incorporating static

synchronous compensator (STATCOM) to demonstrate

their solution to the OPF problem. Optimal planning for

various types of objective functions was investigated using

the MBFA, and the results obtained from the proposed

algorithm were compared to those of the ant colony opti-

mization (ACO). The MBFA algorithm was more effective

in reaching an optimal solution than ACO algorithm

(Panda and Tripathy 2015). Arajua et al. aimed to solve

optimal power flow involving renewable energy using a

modified nondominated sorting genetic algorithm II

(NSGA II), which was successfully tested on different

electrical power systems (Araujo et al. 2020). Samakpong

et al. used different versions of the particle swarm opti-

mization (PSO) to investigate the optimal solution for the

OPF problem by incorporating wind and solar generation

systems, and tested them on a New England 39-bus system.

The simulation results obtained from the proposed versions

of PSO were then compared (Samakpong et al. 2019).

Salkuti et al. utilized the NSGA II to solve an optimal

generation planning problem using wind and solar energy

(Salkuti et al. 2018), and in another study, used the glow-

worm swarm optimization (GSO) algorithm to solve a

multi-objective OPF problem in a wind power-integrated

electrical power system (Salkuti 2019). Abdullah et al.

focused on the solution of the OPF problem by considering

RESs. The flower pollination algorithm (FPA) was used to

solve the proposed problem and tested on an IEEE 30-bus

system. According to simulation results, the FPA per-

formed better than the other algorithms (Abdullah et al.

2019). Anongpun et al. reported the advantages of the

enhanced PSO with chaotic mutation and stochastic

weights in the solving of a multi-objective OPF problem

with a wind energy system evaluated on different test

systems (Man-Im et al. 2019). Elattar used a modified moth

swarm optimization algorithm (MSA) to explore the solu-

tion to the OPF problem with a combined thermal and

power system incorporating stochastic wind energy (Elattar

2019). In another study, the modified JAYA (a Sanskrit

word meaning victory) algorithm was proposed to solve the

OPF problem in view of renewable energy sources and

tested it on IEEE 30-bus and 118-bus test systems under

different operational conditions (Elattar and ElSayed

2019). Duman et al. proposed the solution of the OPF

problem incorporating controllable wind and photovoltaic

(PV) energy systems using the differential evolutionary

particle swarm optimization (DEEPSO), which was tested

on various electrical power systems for different opera-

tional cases (Duman et al. 2020a). Chen et al. presented the

constrained multi-objective population extremal optimiza-

tion (CMOPEO) algorithm to investigate the optimal

solution of the OPF problem by incorporating wind and

solar energy systems (Chen et al. 2019). Moreover, dif-

ferent studies in the literature have endeavored to solve the

OPF problem incorporating RESs and using optimization

algorithms such as a modified particle swarm optimization

and gravitational search algorithm (PSOGSA) with chaotic

maps (Duman et al. 2020b), hybrid particle swarm opti-

mization and artificial physics optimization (PSO-APO)

(Teeparthi and Kumar 2017), the hybrid modified imperi-

alist competitive algorithm and sequential quadratic pro-

gramming (HMICA-SQP) (Hmida et al. 2019), the

adaptive parameter control technique of success-history-

based adaptation of differential evolution with superiority

of feasible solutions (SHADE-SF) (Biswas et al. 2017),

hybrid differential evolution and symbiotic organisms

search (DE-SOS) algorithm (Saha et al. 2019), the multi-

objective evolutionary algorithm based on decomposition

with superiority of feasible solutions (MOEA/D-SF), and

the summation-based multi-objective differential evolution

with superiority of feasible solutions (SMODE-SF) (Bis-

was et al. 2018b).

In our study, we aimed to solve the AC optimal power

flow (ACOPF) problem for thermal, wind, solar, and

combined solar-small hydro power energy systems using

most effective meta-heuristic optimization methods. For

this purpose, we used the LRFDBCOA algorithm that we

developed as a result of our initial research studies. We

compared our proposed method with the memetic frog

leaping algorithm (MFLA) (Tang et al. 2019), backtracking

search algorithm (BSA) (Civicioglu 2013), teaching–

learning artificial bee colony (TLABC) (Chen and Xu

2018), electromagnetic field optimization (EFO) (Abedin-

pourshotorban et al. 2016), and symbiotic organisms search

(SOS) (Cheng and Prayogo 2014), which are among the top

five in the ranking from among 28 recently developed

meta-heuristic optimization algorithms. The proposed

LRFDBCOA, the COA, and the top five algorithms were

applied to solve the ACOPF problem incorporating RESs

under various test case conditions. The wind speed, solar

irradiance, and water flow rate of the RESs were simulated

using Weibull, Lognormal, and Gumbel probability distri-

bution functions. Simulation results were analyzed using

statistical test methods. The results of the analyses indi-

cated that the proposed LRFDBCOA achieved an opti-

mization performance superior to the top five algorithms

and the COA. In addition to these simulation studies, we

examined the literature and compared the results of the

proposed approach under the same simulation conditions

with the results of the recently reported MOEA/D-SF and

SMODE-SF algorithms (Biswas et al. 2018b). The com-

parison results showed that the LRFDBCOA we developed

and have described in this article found the best solutions

for the ACOPF problem.

The main contributions of this study are as follows:
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• New methods were proposed in the COA to determine

the social tendency of packs and model of the birth of

new coyotes. Although the representation processes of

the social tendency of the packs were improved by the

FDB selection method (Kahraman et al. 2020), by using

Lévy flight (Wang 2018; Amirsadri et al. 2018; Pang

et al. 2019; Emary et al. 2019; Wang et al. 2020; Yang

and Deb 2009), premature birth of coyotes was

prevented and the adaptability of coyotes to nature

was more effectively imitated. By using these two

methods, the balanced search capability of the COA

(Pierezan and Coelho 2018) was improved and the

LRFDBCOA was developed as one of the most robust

MHS algorithms presented to the literature.

• This article can contribute to the literature as one of the

most comprehensive studies conducted to test and

verify the performance of the proposed LRFDBCOA.

The proposed algorithm outperformed all competitors

in constrained and continuous engineering problems,

four different problem types, and 90 different test

functions, in low-/middle-/high-dimensional search

spaces. According to the results of the statistical

analysis, it ranked first among 28 competing algorithms.

The LRFDBCOA has been introduced to the literature

as a robust method with which researchers can effec-

tively solve different types of optimization problems.

• The ACOPF problem was presented using wind, solar,

and combined solar-small hydro power energy systems

and thermal generators. Different objective functions

were used to evaluate the performance of the proposed

algorithm. The superiority of the LRFDBCOA was

proven when it was compared to the results of other

algorithms and previously reported results in the

literature.

The remainder of this article is organized as follows.

Section 2 gives the formulation of the OPF problem

involving wind/solar/combined solar-small hydro energy

systems. Section 3 presents the wind/solar/combined solar-

small hydro uncertainty and power models. Section 4

consists of six subsections introducing the preliminaries of

meta-heuristic optimization, the MHS process, the Lévy

flight, the FDB selection method, the COA, and the pro-

posed method (LRFDBCOA), respectively. Section 5 pre-

sents the experimental settings and the standards taken into

account in conducting the experiments. Section 6 presents

the performance of the algorithms and the results of the

statistical analyses of the experiments. This section consists

of four subsections. The first presents the top five ranking

algorithms from among 28 MHS algorithms. The second

presents the performance of different variations of the

FDB-COA algorithm on the benchmark test suites and

gives information on statistical analysis, convergence

analysis, and algorithm complexity. The third presents the

experimental and statistical analysis results of the com-

parison between the proposed LRFDBCOA algorithm and

the top five MHS methods. In the fourth subsection, the

OPF problem is solved by using LRFDBCOA and the top

five MHS algorithms. This subsection reveals the best

method of solving the OPF problem incorporating

wind/solar/combined solar-small hydro energy sources.

The conclusions are presented in the final Sect. 7.

2 Formulation of the ACOPF problem
involving solar/wind/small hydro energy
systems

The optimal power flow problem is one of the most

important power system optimization tools for the planning

and operation of power systems. It is described as a non-

convex, nonlinear, large-scale optimization problem of

power systems. To obtain optimal solution control variable

values, it must provide the equality and inequality con-

straints for minimization of the certain objective functions

under different operational conditions. In this study, the

solution of the ACOPF problem regarding wind, solar, and

small hydro energy systems was proposed. In order to solve

the power system optimization problem, it can be mathe-

matically modeled as follows:

Minimize fobj D;Eð Þ ð1Þ

Subject to
g D;Eð Þ ¼ 0

h D;Eð Þ� 0

�
ð2Þ

where fobj(D,E) is the objective function, D and E are the

state and control variable vectors, and g(D,E) and

h(D,E) can be defined as the equality and the inequality

constraints, respectively.

2.1 State variables of the proposed ACOPF
problem

The state variables of the proposed ACOPF problem are

shown in vector form as follows:

D ¼ PTh1 ;VL1 . . .VLNPQ ;QTh1 . . .QThNTHG ;QWS1 . . .QWSNW ;
�

QPVS1 . . .QPVSNPV ;QPVSHS1 . . .QPVSHSNPVSH ; SL1 . . .SLNTL �
ð3Þ

where PTh1 PTHG1
PTHG1

PTHG1
is the active power of the

swing generator, VL represents the voltage values of all

load buses, QTh, QWS, QPVS, and QPVSHS describe the

reactive power of classical thermal generating units, wind

farms, solar energy systems, and a combination of the

solar-small hydro energy systems, and SL is the apparent

power of the transmission lines; NPQ, NTHG, NW, NPV,
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NPVSH, and NTL are the numbers of the PQ (load) buses,

thermal generating units, wind farms, solar energy systems,

combined solar-small hydro systems, and transmission

lines in the power system.

2.2 Control variables of the proposed ACOPF
problem

The control variables of the proposed ACOPF problem are

shown in vector form in Eq. (4).

E ¼ PTh2 . . .PThNTHG ;PWS1 . . .PWSNW ;PPVS1 . . .PPVSNPV ;½
PPVSHS1 . . .PPVSHSNPVSH ;VG1

. . .VGNG
; T1. . .TNT ;QSH1

. . .QSHNC
�

ð4Þ

where PTh represents the active powers of the thermal

generators except for the swing generator, PWS, PPVS, and

PPVSHS identify the active powers of the wind, solar

(photovoltaic), and combined solar-small hydro energy

systems; VG is the voltage value of all generator buses

incorporating the thermal generating units and the wind,

solar, and combined solar-small hydro energy systems;

T and QSH are defined as the tap ratios of the transformers

and the shunt VAR compensators, respectively; NG, NT,

and NC are the number of generator buses (involving

thermal, wind, solar, and combined units), tap setting

transformers, and shunt compensators.

2.3 Mathematical modeling of the system

The adaptation of the thermal generating units and the

wind, solar, and combined solar-small hydro energy

systems to modern electrical energy grids was mathemat-

ically formulated. The parameters belonging to the modi-

fied IEEE 30-bus test system incorporating wind, solar, and

combined solar-small hydro energy systems are shown in

Table 1.

2.3.1 The fuel cost model of thermal generating units

The conventional fuel cost function in thermal units is

identified as a quadratic cost function in Eq. (5), depending

on the active power output of the generating units using

fossil fuels.

CF PThð Þ ¼
XNTHG
i¼1

mi þ niPThi þ oiP
2
Thi

ð5Þ

The fuel cost model of thermal generating systems

including valve-point effects is given in Eq. (6).

CF1 Pthð Þ ¼
XNTHG
i¼1

mi þ niPThi þ oiP
2
Thi

þ pi � sin ri � Pmin
Thi

� PThi

� �� ���� ��� ð6Þ

where CF1(Pth) and CF(Pth) are the total fuel cost of the

thermal units with and without valve-point effect. mi, ni,

and oi describe the fuel cost coefficients of the ith thermal

generating unit, and pi and ri represent the valve-point

loading effect coefficients.

2.3.2 Emission and carbon tax model

The mathematical expression for computing the total

emission value of the thermal generation systems involving

Table 1 The parameters of modified IEEE 30-bus test system

Characteristics IEEE 30-bus test system

Number Details

Buses 30 IEEE 30-bus test system data

Branches 41 IEEE 30-bus test system data

Thermal generating units 3 Buses: 1, 2, and 8

Swing generator 1 Bus: 1

Wind generators 2 Buses: 5

Solar energy systems 1 Bus: 11 and 13

Combined solar-small hydro energy systems 1 Bus: 13

Transformers 4 Branches: 11, 12, 15, and 36

Shunt capacitor banks 2 Buses: 10 and 24

Control variables 17 Generating systems (5 Nos.); voltages of generator buses (6 Nos.); tap ratios of the

transformers (4 Nos.); shunt capacitors (2 Nos.)

Total active and reactive loads – 283.4 MW, 126.2 MVAr

PQ bus voltage limits 24 [0.95–1.05] p.u
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fossil fuels is formulated as in Eq. (7) (Biswas et al.

2017, 2018b).

FE ¼
XNTHG
i¼1

ri þ biPThi þ siP
2
Thi

� �
� 0:01þ xie

liPThið Þ
� �

ð7Þ

Due to increasing global warming, a carbon tax model

was considered in this problem by calculating the total cost

value with the emission value. This statement was mathe-

matically formulated by adding the carbon tax value to the

total emission value as shown in Eq. (8).

CE ¼ Ctax � FE ð8Þ

where FE, CE, and Ctax are, respectively, the total emission,

emission cost, and tax values, and ri, bi, si, xi, and li are
the emission coefficients of the ith thermal generating unit.

2.3.3 Prohibited operating zones

The formula for prohibited operating zones (POZs) for a

thermal generation system involving fossil fuels is shown

as follows:

PThi;min �PThi �PL
Thi;1

PU
Thi;y�1 �PThi �PL

Thi;y
y ¼ 2; 3; . . .; vi

PU
Thi;vi

�PThi �PL
Thi;max

ð9Þ

where vi is the total number of POZs, y is the number of

POZs, PU
Thi,y-1, and PL

Thi,y are the upper and lower limits

of the (y-1)th POZ of the ith generator. The characteristic

curves of the fuel cost with and without the valve point

effect, and the POZs of the thermal generation systems are

shown in Fig. 1.

2.3.4 Direct cost models of wind, solar, and combined
solar-small hydro energy systems

A direct cost model of the wind power system was for-

mulated as a linear function of the scheduled power (Bis-

was et al. 2017, 2018b).

DCWP;i ¼ ws;i �PWS;i ð10Þ

where DCWP,i, ws,i, and PWS,i are the direct cost function of

wind power, the direct cost coefficient, and scheduled

power of the ith wind energy system.

The formula shown in Eq. (11) was used in this study to

compute the direct cost value of the solar power system.

DCPV ;i ¼ pvs;i �PPVS;i ð11Þ

where DCPV,i, pvs,i, and PPVS,i described the direct cost

function of the solar power system, the direct cost coeffi-

cient, and the scheduled power of the ith solar power

system (Biswas et al. 2017, 2018b).

The direct cost value of the proposed combined solar-

small hydro energy system model can be defined as

follows:

DCPVSH;i ¼ CFPVSH;i ¼ CFPVSH PPVSH;s þ PPVSH;smh

� �
¼ pvs;i � PPVSH;s þ smh;i �PPVSH;smh

ð12Þ

where DCPVSH,i and CFPVSH PPVSH;s þ PPVSH;smh

� �
PPVSH,smh, PPVSH,s, and PPVSHS,i represent the direct cost

function of the combined solar-small hydro system, the

small hydro unit, solar system, and the scheduled power of

the combined system and smh,i is the direct cost coefficient

of the small hydro system (Biswas et al. 2018b).

2.3.5 Uncertainty cost models of wind, solar,
and combined energy systems

The overestimation and underestimation situations of

renewable energy systems are described as the uncertain

Power Output (MW)

Fuel Cost ($/h)

with valve point effect
without valve point effect

(a)
Power Output (MW)

Fuel Cost ($/h)

Prohibited operating zones

(b)

Fig. 1 Fuel cost curves: a with and without valve-point effect, b with POZs
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cost models of the wind, solar, and combined energy sys-

tems. Equations (13) and (14) represent the uncertainty

cost models of the wind farm system (Biswas et al.

2017, 2018b).

OCWP;i ¼ COw;i PWS;i � Pwav;i

� �

¼ COw;i

ZPWS;i

0

PWS;i � pw;i
� �

fw pw;i
� �

dpw;i ð13Þ

UCWP;i ¼ CUw;i Pwav;i � PWS;i

� �

¼ CUw;i

ZPwr;i

PWS;i

pw;i � PWS;i

� �
fw pw;i
� �

dpw;i ð14Þ

where OCWP,i and COw;i PWS;i � Pwav;i

� �
; and UCWP,i and

CUw;i Pwav;i � PWS;i

� �
represent the overestimation and

underestimation cost values, COw,i and CUw,i are the

uncertainty cost coefficients, and Pwr,i and Pwav,i indicate

the rated power and available power of the ith wind farm

system.

The mathematical model of the uncertainty cost models

of the solar energy system was obtained via Eqs. (15) and

(16) (Biswas et al. 2017, 2018b), which demonstrate the

over- and underestimation situations.

OCPV ;i ¼ COpv;i PPVS;i � PPVav;i

� �
¼ COpv;i � fPV PPVav;i\PPVS;i

� �
� PPVS;i � E PPVav;i\PPVS;i

� �� 	
ð15Þ

UCPV ;i ¼ CUpv;i PPVav;i � PPVS;i

� �
¼ CUpv;i � fPV PPVav;i [PPVS;i

� �
� E PPVav;i [PPVS;i

� �
� PPVS;i

� 	
ð16Þ

where OCPV,i and COpv;i PPVS;i � PPVav;i

� �
, and UCPV,i and

CUpv;i PPVav;i � PPVS;i

� �
explain the over- and underesti-

mation cost values, COpv,i and CUpv,i are the uncertainty

cost coefficients, and PPVav,i is the available power of the

ith solar energy system; E PPVav;i\PPVS;i

� �
and

E PPVav;i [PPVS;i

� �
are the expectancy of solar power

below and above the scheduled power of the ith solar

power system, respectively; and fPV PPVav;i\PPVS;i

� �
and

fPV PPVav;i [PPVS;i

� �
are defined as the probability of solar

power less than and more available than the scheduled

power.

The uncertainty cost models of the over- and underes-

timation situations of the combined energy system are

shown as follows (Biswas et al. 2018b):

OCPVSH;i ¼ COpvsh;i PPVSHS;i � PPVSHav;i

� �
¼ COpvsh;i � fPVSH PPVSHav;i\PPVSHS;i

� �
� PPVSHS;i � E PPVSHav;i\PPVSHS;i

� �� 	
ð17Þ

UCPVSH;i ¼ CUpvsh;i PPVSHav;i � PPVSHS;i

� �
¼ CUpvsh;i � fPVSH PPVSHav;i [PPVSHS;i

� �
� E PPVSHav;i [PPVSHS;i

� �
� PPVSHS;i

� 	
ð18Þ

where OCPVSH,i and COpvsh;i PPVSHS;i � PPVSHav;i

� �
, and

UCPVSH,i and CUpvsh;i PPVSHav;i � PPVSHS;i

� �
are the over-

and underestimation cost values of the combined system,

COpvsh,i and CUpvsh,i identify the uncertainty cost coeffi-

cients, and PPVSHav,i represents the available power of the

ith combined energy system; E PPVSHav;i\PPVSHS;i

� �
and

E PPVSHav;i [PPVSHS;i

� �
are the expectancy of a combined

system power of below and above the scheduled power of

the ith combined system power, respectively; and

fPV PPVSHav;i\PPVSHS;i

� �
and fPV PPVSHav;i [PPVSHS;i

� �
rep-

resent the probability of less and more power available than

that of the scheduled combined system power.

2.4 Objective functions

2.4.1 Total cost model of the problem

The objective function of the proposed OPF problem

involving the cost value using the quadratic cost function

of the thermal generating units and the cost values of the

wind, solar, and combined solar-small hydro energy sys-

tems was mathematically explained as shown in Eq. (19).

Fobj1 ¼ CF Pthð Þ þ
XNW
i¼1

DCWP;i þ OCWP;i þ UCWP;i

� �

þ
XNPV
i¼1

DCPV ;i þ OCPV ;i þ UCPV ;i

� �

þ
XNPVSH
i¼1

DCPVSH;i þ OCPVSH;i þ UCPVSH;i

� �

ð19Þ

2.4.2 Total cost model with emission and tax

The objective function of the OPF problem involving the

total cost with emissions and carbon tax is described

below:

Fobj2 ¼ CF1 Pthð Þ þ
XNW
i¼1

DCWP;i þ OCWP;i þ UCWP;i

� �

þ
XNPV
i¼1

DCPV ;i þ OCPV ;i þ UCPV ;i

� �

þ
XNPVSH
i¼1

DCPVSH;i þ OCPVSH;i þ UCPVSH;i

� �
þ CE

ð20Þ
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2.4.3 Total cost model with POZs of the problem

The fuel cost function with valve point effects in the

thermal generating units with POZs was considered as the

objective function as shown below:

Fobj3 ¼ CF1 Pthð Þ þ
XNW
i¼1

DCWP;i þ OCWP;i þ UCWP;i

� �

þ
XNPV
i¼1

DCPV;i þ OCPV;i þ UCPV ;i

� �

þ
XNPVSH
i¼1

DCPVSH;i þ OCPVSH;i þ UCPVSH;i

� �

ð21Þ

2.4.4 Improvement of the voltage stability of the system

Nowadays, because of rising energy demands, the stress on

modern electrical power system transmission lines has

increased, and therefore, stability problems are emerging in

modern electrical power grids. Voltage stability problems

are well known in modern electrical power grids and can be

seen in particular as a result of a change in the electrical

power grid configuration, load fluctuations at the load bus,

or a disturbance in the grid. The improvement of the

voltage stability of an electrical power grid can be

expressed mathematically as shown in Eqs. (22)–(25)

(Duman et al. 2020a):

Lj ¼ 1�
XNG
i¼1

Fji
Vi

Vj

�����
����� where j ¼ 1; 2; . . .;NPQ ð22Þ

Fji ¼ � YLL½ ��1 YLG½ � ð23Þ

where NG represents the number of generator buses

included in thermal, wind, solar, and combined solar-small

hydro energy systems, and the L-index value of jth bus is

defined as Lj; YLL and YLG are computed from the system

YBUS matrix.

IL
IG


 �
¼ Ybus½ � VL

VG


 �
¼ YLL YLG

YGL YGG


 �
VL

VG


 �
ð24Þ

Fobj4 ¼ min Lmaxð Þ ¼ min max Lj
� �� �

ð25Þ

2.4.5 Voltage deviation

The voltage deviation (VD) value of the electrical power

network in the OPF problem was computed as shown

below:

Fobj5 ¼ VD ¼
XNPQ
i¼1

VLi � 1j j
 !

ð26Þ

2.5 Constraints of the proposed OPF problem

2.5.1 Equality constraints

The equality constraints of the OPF problem can be

mathematically explained as follows:

PGi � PLi � Vi

XNbus

j¼1

Vj Gijcos di � dj
� �

þ Bijsin di � dj
� �� �

¼ 0 8i 2 Nbus

ð27Þ

QGi þ QSHi � QLi

� Vi

XNbus

j¼1

Vj Gijsin di � dj
� �

� Bijcos di � dj
� �� �

¼ 0 8i 2 Nbus ð28Þ

where PGi, and PLi are the active powers of the ith gener-

ating unit (including thermal, wind, solar, and combined

solar-small hydro units), and the demanded loads in PQ

buses; QGi, QSHi, and QLi represent the reactive powers of

the ith generating unit (thermal, wind, solar, and combined

solar-small hydro units), the shunt VAR compensator, and

the load buses in the power system; Nbus is the number of

buses in the electrical power system, Vi, and Vj describe the

voltage values at the ith and jth buses; di-dj is the angle

difference of the voltage phasor values at the ith and jth

buses; and Gij and Bij are the conductance and susceptance

values of the transmission line between the ith and jth

buses.

2.5.2 Inequality constraints

2.5.2.1 Generator constraints Lower and upper limits of

the active/reactive power values and the voltage magni-

tudes of the generating units (including thermal, wind,

solar, and combined solar-small hydro units) are described

as shown below:

PThi;min �PThi �PThi;max 8i 2 NTHG

PWSi;min �PWSi �PWSi;max 8i 2 NW

PPVSi;min �PPVSi �PPVSi;max 8i 2 NPV

PPVSHSi;min �PPVSHSi �PPVSHSi;max 8i 2 NPVSH

QThi;min �QThi �QThi;max 8i 2 NTHG

QWSi;min �QWSi �QWSi;max 8i 2 NW

QPVSi;min �QPVSi �QPVSi;max 8i 2 NPV

QPVSHSi;min �QPVSHSi �QPVSHSi;max 8i 2 NPVSH

VGi;min �VGi
�VGi;max 8i 2 NG

ð29Þ
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2.5.2.2 Transformer constraints Minimum and maximum

limit values of the transformer tap settings are shown in

Eq. (30).

Ti;min � Ti � Ti;max 8i 2 NT ð30Þ

where Ti,min and Ti,max are the lower and upper tap

setting values of the transformers.

2.5.2.3 Compensator constraints The optimal operating

ranges of the shunt VAR compensators are given below:

QSHi;min �QSHi �QSHi;max 8i 2 NC ð31Þ

where QSHi,min and QSHi,max are the minimum and maxi-

mum limits of the shunt VAR compensators.

2.5.2.4 Security constraints The voltage limit values of

each of the load buses, and the apparent power value of

each transmission line, which can be limited by its maxi-

mum capacity, are shown in Eq. (32).

VLi;min �VLi �VLi;max 8i 2 NPQ

SLi � SLi;max 8i 2 NTL
ð32Þ

where VLi,min and VLi,max are the lower and upper voltage

values of the ith load bus; SLi and SLi,max represent the

apparent power value and maximum apparent power value

of the ith line.

The fitness function of the proposed OPF problem

including the thermal, wind, solar, and combined solar-

small hydro energy systems can be mathematically iden-

tified as shown below:

Jfitness ¼ fobj D;Eð Þ þ kVPQ
XNPQ
i¼1

VLi � Vlim
Li

� �2
þkPslack

PTh1 � Plim
Th1

� �2

þ kQTH
XNTHG
i¼1

QThi � Qlim
Thi

� �2
þkQWS

XNW
i¼1

QWSi � Qlim
WSi

� �2

þ kQPV
XNPV
i¼1

QPVSi � Qlim
PVSi

� �2

þ kQPVSH
XNPVSH
i¼1

QPVSHSi � Qlim
PVSHSi

� �2
þkSL

XNTL
i¼1

SLi � SlimLi

� �2

ð33Þ

where kVPQ, kPslack, kQTH, kQWS, kQPV, kQPVSH, and kSL
are the penalty coefficients of the penalty functions.

3 Wind/solar/combined solar-small hydro
uncertainty and power models

The Weibull probability density function (PDF), shown in

Eq. (34), was used to simulate the wind speed distribution

(fv(vw)) in the wind energy systems.

fv vwð Þ ¼ n
w

� 
vw
w

� n�1

e � vw
wð Þn

� �� 
ð34Þ

where vw, n, and w are the wind speed, shape, and

scale factors (Biswas et al. 2017, 2018b). The output

power pw vwð Þ of the wind power system is described as

follows:

pw vwð Þ ¼
0 vw vw;in and vw

� �
vw;out

pwr
vw � vw;in
vw;r � vw;in

� 
vw;in � vw � vw;r

pwr vw;r\vw\vw;out

8>><
>>:

ð35Þ

where pwr, vw,in, vw,out, and vw,r are the rated power, cut-in,

cut-out, and rated wind speeds, respectively. The output

power of a wind power system has discrete parts according

to wind speeds, as can be seen in Eq. (35). The probability

values of these parts were calculated using Eqs. (36)–(38).

fw pwð Þ pw ¼ 0f g ¼ 1� exp � vw;in
w

� n
 !

þ exp � vw;out
w

� n
 !

ð36Þ

fw pwð Þ pw ¼ pwrf g ¼ exp � vw;r
w

� n
 !

� exp � vw;out
w

� n
 !

ð37Þ

fw pwð Þ ¼
n vw;r � vw;in
� �

wnpwr


 �
� vw;in þ

pw
pwr

� 
vw;r � vw;in
� �� n�1

� exp �
vw;in þ pw

pwr

� �
vw;r � vw;in
� �
w

0
@

1
A

n0
B@

1
CA

ð38Þ

Table 2 presents the PDF parameters of the wind, solar,

and small hydro energy sources (Biswas et al. 2018b).

Wind speeds and rated power for each turbine were set as

vw,in = 3 m/s, vw,r = 16 m/s, and vw,out = 25 m/s and

3 MW, respectively (Biswas et al. 2018b).

The power output of the solar energy systems as a

function of solar irradiance was determined using Log-

normal PDF. Equations (39) and (40) mathematically

explain the probabilistic model fGpv
Gpv

� �
and output power

PPVo of the solar energy system, respectively (Biswas et al.

2017, 2018b).
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fGpv
Gpv

� �
¼ 1

GpvX
ffiffiffiffiffiffi
2p

p exp
� lnGpv � f
� �2

2X2

 !
for

Gpv [ 0

ð39Þ

PPVo ¼
PPVrate �

Gpv

Gpvstd � RC

� 
for 0\Gpv\RC

PPVrate �
Gpv

Gpvstd

� 
for Gpv �RC

8>><
>>:

ð40Þ

where f and X are the mean and standard deviation values

of the Lognormal PDF, which are given in Table 2; Gpv,

Gpvstd, and Ppvrate are the probability value of solar irra-

diance, the standard solar irradiance value, and the rated

power of the solar energy system. The Gpvstd and Ppvrate

were selected as 1000 W/m2, and 50 MW and 45 MW

were selected at bus 11 and bus 13, respectively. The RC

value was set as 120 W/m2.

In this study, the probability model of the water flow

rate Qwsh in the small hydro energy system was modeled by

the Gumbel distribution (Biswas et al. 2018b), as shown in

Eq. (41). The distribution parameters are given in Table 2.

fQ Qwshð Þ ¼ 1

k
e

Qwsh�c
kð Þe

�e
Qwsh�c

kð Þ
� �

ð41Þ

The thermal generating unit at bus 13 of the IEEE 30-

bus system was replaced with a combined solar-small

hydro energy system. The output power PSH Qwshð Þ in the

small hydro energy system can be shown mathematically

as follows:

PSH Qwshð Þ ¼ gqgQwshHwsh ð42Þ

where g and q are, respectively, the turbine efficiency and

water density (kg/m3); g and Hwsh are the gravity acceler-

ation (m/s2) and effective pressure head. These parameters

of the small hydro energy system are set as Hwsh = 25 m,

g = 0.85, q = 1000 kg/m3, and g = 9.81 m/s2.

4 Method

In order to make it easier for the readers to understand the

method developed in the article, a ‘‘Method Section’’

consisting of six subsections, which summarize the pre-

requisite topics, has been prepared. In the subsections, the

basics of meta-heuristic optimization, meta-heuristic search

(MHS) process, Levy flight and FDB method used in the

design of MHS algorithms, COA, a powerful and effective

bio-inspired MHS algorithm, and LRFDBCOA, the method

proposed in this article, are introduced.

4.1 Preliminaries of meta-heuristic optimization

The constrained optimization problem consists mainly of

three basic elements: the design parameters, objective

functions, and constraints, respectively. The number of

design parameters determines the dimension of the search

space. The mathematical expression of the objective

function defines the complexity of the search space. Con-

straints have a multiplier effect when the complexity level

of the problem is calculated. Accordingly, where

x1; x2; . . .; xm are the design variables of the problem, an m-

dimensional search space can be defined by

X 	 x1; x2; . . .; xm½ �, m 2 Nþ; 8mi¼1xi 2 X: If the data types

of the design parameters are continuous, then the search

space boundaries (lower and upper bounds) for each are

defined as [a1, b1], [a2, b2],..., [am, bm]. The other two

elements of the constrained optimization problem, the

objective function and constraints, are defined in Eq. (43)

(Kahraman and Aras 2019; Ghasemi et al. 2020; Ghafil and

Jármai 2020).

minimize=maximize
x2Rn G ¼ f x1; x2; . . .; xmð Þ

Subject to

;j xð Þ ¼ 0; j ¼ 1; 2; . . .; Jð Þ;
uk xð Þ� 0; k ¼ 1; 2; . . .;Kð Þ

ð43Þ

The ; and u in Eq. (43) represent the constraints of

equality and inequality, respectively. Accordingly, for the

optimization problem given in Eq. (43), there is one global

solution that meets the ; and u constraints and makes the G

Table 2 The probability density function parameters of the wind, solar, and combined energy systems

Solar power system (bus 11) Wind power system (bus 5) Combined solar-small hydro (bus 13)

Rated power

(PPVrate)

Lognormal

parameters

Number of

turbines

Total rated

power (Pwr)

Weibull

parameters

Solar rated

power (PPVrate)

Lognormal

parameters

Small hydro

rated power

Gumbel

parameters

50 MW f = 5.2

X = 0.6

25 75 MW n = 2 w = 9 45 MW f = 5.0

X = 0.6

5 MW k = 15

k = 1.2
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objective function minimum/maximum. The purpose of

optimization algorithms is to find a global solution point

(position vector) in the search space of the problem. When

a global solution cannot be found, the vector closest to it is

considered the solution. Often in the real world, the global

solution to optimization problems is unknown. In this case,

the design variables vector that provides the constraints and

optimizes the objective function among the current candi-

dates is accepted as the solution to the problem. The MHS

algorithms try to find the best solution for the problem

given in Eq. (43).

The MHSs are population-based search algorithms that

are inspired by nature. Each individual in the population is

a candidate for a solution. Accordingly, a community

consisting of n-individuals should be represented by the

vector P 	\ p1, p2, p3,…, pn[ . The P created to solve

the optimization problem defined in Eq. (43) is given in

Eq. (44).

P 	
p1

..

.

pn

2
64

3
75 	

x11 � � � x1m
..
. . .

. ..
.

xn1 � � � xnm

2
64

3
75
nxm

ð44Þ

where each individual in P represents a position in the

search space. The individuals must meet the indispensable

condition because this fulfills the constraints of the prob-

lem. Fitness values were calculated to measure the success

of the individuals (solution candidates) who provide con-

straints. This value was calculated in two steps. In the first

step, the objective function value (Gi) of each solution

candidate was calculated using Eq. (43). In the second step,

the fitness values of the solution candidates were calculated

as given in Eq. (45) depending on the problem type. The

normGi is the normalized value of the objective function in

the range [0,1].

n 2 Nþ; 8ni¼1; Gi ¼ fG Pið Þ; 1\Gi\þ1

fi 	
if goal is minimization ! fi ¼ 1� normGi

if goal is maximization ! fi ¼ normGi

� ð45Þ

Accordingly, the fitness value vector for the P-popula-

tion is given in Eq. (46).

F 	

f1
:
:
:
fn

2
66664

3
77775
nx1

ð46Þ

4.2 Meta-heuristic search process

The general steps of the searching process in MHS algo-

rithms are given in Algorithm 1 (Kahraman et al. 2020).

The search process in MHS algorithms mainly consists

of two phases. The first is the creation phase of the popu-

lation, as in nature. This phase is imitated as in lines 1–5 in

Algorithm 1. In MHS algorithms, techniques such as

opposition-based learning, Gaussian distribution, random

distribution, and Lévy steps are used to create the popu-

lation (Amirsadri et al. 2018; Pang et al. 2019; Emary et al.

2019; Wang et al. 2020; Yang and Deb 2009; Kahraman

et al. 2017). The results obtained from studies show that the

distribution techniques can change the search performance

of MHS algorithms (Kahraman et al. 2017).

The second phase of MHS algorithms is the search

process life cycle. This phase corresponds to the processes

found in nature since the creation of the universe. In MHS

algorithms, this phase is imitated in three steps, as given in

lines 6–13 of Algorithm 2. Accordingly, the steps of the

search process life cycle in MHS algorithms include the

selection process, search operations, and the population

Algorithm 1. General steps of the search process in MHS algorithms [3]
1. Begin (initialization)
2. P: Create the P-population as given in Eq. (44)
3. for i=1: n (the number of solution candidates)
4. F: Use the Eq. (43) and create the fitness vector as given in Eq. (46)
5. end 
6. while (search process lifecycle)
7. Step 1: Selection process: 

Selection of reference positions from the P
8. Step 2: Search operations: 
9. Exploitation (neighborhood search around reference positions)
10. Exploration (diversification operations in P)
11. Step 3: Update mechanism:      

Update the P-population depending on the fitness values of solution 
candidates

12. next generation until termination criterion  
13. End
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update, respectively. The performance of MHS algorithms

depends on the success of these three steps. In the selection

process, i.e., the first step, the individuals (candidates for

solution) that will guide the search process are determined.

The selection process of parents in genetic algorithms

(GAs) and the search of bees in their area in the artificial

bee colony (ABC) algorithm are examples. The selected

individuals have a major role in the future of the popula-

tion. Search operators work in the second step of the search

process lifecycle. The task of search operators is to

increase the population’s power and make it better than its

current state. For this, exploitation and exploration tasks

must be performed effectively. Search operators need

individuals to successfully guide the search process to

perform these tasks. These individuals are obtained from

the selection process in the first step. Therefore, the

selection method used in MHS algorithms affects the entire

search process life cycle. Consequently, in this study,

research was conducted to improve the performance of the

COA algorithm using the FDB selection method.

4.3 Lévy flights

Swarms in nature are constantly in motion to hunt and

survive. Many bird, fish, and other animal communities

regularly move toward food sources. To mimic this

behavior in MHS algorithms, solution candidates are dis-

tributed in the search space using various methods,

including the random, Gaussian, and Lévy flight methods

(Kahraman et al. 2017). Compared to other methods, the

bio-inspired foundations of the Lévy flight method are

stronger and can mimic flock movements more effectively.

Therefore, Lévy distribution is widely used in the design of

MHS methods to improve the search performance of the

algorithms (Amirsadri et al. 2018; Pang et al. 2019; Emary

et al. 2019; Wang et al. 2020). The mathematical formula

of the Lévy distribution L (s) is given in Eq. (47) (Emary

et al. 2019):

L s; c; lð Þ ¼

ffiffiffiffiffiffi
c
2p

r
exp � c

2 s� lð Þ

� 
1

s� lð Þ3
.
2

; 0\l\s\1

0 otherwise

8><
>:

ð47Þ

where l; s; and c are the minimum step size, sample, and

control parameters of the Lévy flight distribution, respec-

tively. The step size between the two flights in the search

space is set depending on the values of the l and s pa-

rameters. The value of the s-parameter is determined

depending on the problem dimension. Lévy distribution

enables solution candidates (individuals) to be positioned

effectively in the search space and strengthens the explo-

ration capabilities of the algorithms. In COA, which is a

bio-inspired algorithm, the issue to be investigated was the

use of Lévy flight to mimic the movement of coyotes.

Therefore, in this study, research was conducted to

improve the performance of the COA algorithm using the

Lévy distribution.

4.4 FDB selection method

Selection methods in the MHS algorithms were used to

determine the reference locations that the search operators

needed, i.e., the selection methods identified the individu-

als to be referenced in determining the future status of the

population and who would guide the search process. As in

all other elements of the MHS algorithms, processes in

nature are taken as the reference in designing selection

methods. Accordingly, the selection methods used in the

MHS algorithms are classified into three categories:

greedy, random, and probabilistic. Selection methods used

in the MHS algorithms are explained in Table 3.

To what extent do the methods described in Table 3

match with the selection processes in nature? Can the

greedy selection method used in all MHS algorithms

effectively mimic elitism in nature? Does randomness

occur as often, or perhaps not at all in nature? Are there any

other selection methods in nature that operate differently

than those given in Table 3? All these questions and con-

siderations point out that more research is needed on

selection methods. The FDB selection method was devel-

oped as a result of research conducted to seek answers to

these questions and to imitate the functioning of nature

more effectively.

In the recently developed robust FDB selection method

(Kahraman et al. 2020), the strength of individuals is

measured by their ability to complement the shortcomings

of the best solution candidate in the population during the

search process. In this way, the aim is to identify the

strongest individuals having the characteristics that can

effectively guide the search process. For this purpose, in

the FDB selection method, score values are calculated

indicating the contribution of solution candidates to the

search process. In score calculation, the two characteristics

of the solution candidates that are taken into consideration

are the fitness values and their distance from the best

solution candidate (pbest). Accordingly, fitness values are

obtained using Eq. (46). The solution steps of the candi-

dates for FDB scores are given below.

i. The dimension of the optimization problem is m, and

n is the number of individuals in the population. The

Euclidean distance of the candidate for the ith

solution to pbest is calculated as given in Eq. (48):
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n
i¼18Pi;DPi

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pi 1½ � � pbest 1½ �
� �2þ pi 2½ � � pbest 2½ �

� �2þ � � � þ pi m½ � � pbest m½ �
� �2q

ð48Þ

ii. The Dp vector, representing the distance of each

individual in the community from pbest, is given in

Eq. (49).

DP 	

d1
:
:
:
dn

2
66664

3
77775
nx1

ð49Þ

iii. When calculating the FDB scores of solution candi-

dates, the fitness values in Eq. (46) and distance

values in Eq. (49) are used. These two parameters

need to be normalized so that they do not dominate

each other in the score calculation. Accordingly, the

normalized fitness and distance values of the solution

candidates in the range [0,1] are represented by

normF and normDp, respectively. Solution candidate

FDB scores (SPi
) are calculated as given in Eq. (50).

n
i¼18Pi; SP i½ � ¼ w � normF i½ � þ 1� wð Þ � normDP i½ �

ð50Þ

In Eq. (50), w and (1 - w) are the weighting coef-

ficients representing the effects of the fitness and

distance parameters, respectively, on the FDB score.

The main function of the w-coefficient given in

Eq. (50) is to effectively balance exploitation–ex-

ploration in the search process lifecycle of meta-

heuristic search algorithms. For this purpose, the

value of the w-coefficient is changed in the range of

[0, 1] to adjust the effect of fitness and distance

parameters in calculating the scores of the solution

candidates. If the value of w is close to 1, the value

of fitness predominantly affects the score of the

solution candidate. In this case, exploitation effect

(intensification) is seen in the search process. If the

value of w is close to 0, the distance effect is pre-

dominant in the solution candidate’s score. In this

case, the least similar solution candidate to the best

solution candidate in the population is selected as a

guide. Therefore, thanks to this guide, diversity

(exploration effect) is created in the search process.

In the study, w was taken as 0.5 (Kahraman et al.

2020).

iv. Accordingly, the n-dimensional SP vector represent-

ing the FDB scores of individuals in the P-population

is given in Eq. (51).

SP 	

s1
:
:
:
sn

2
66664

3
77775
nx1

ð51Þ

Once Sp is created (Eq. 51), greedy or probabilistic

selection methods can be used in the MHS algorithms to

identify the candidates to guide the search process. For

example, instead of randomly choosing one of individuals

from the population in the MHS algorithms, the candidate

with the highest FDB score can be chosen. More detailed

Table 3 Selection methods used in MHS algorithms

Method Description

Greedy The greedy selection method is based on the logic of elitism in nature. In other words, it is the method where the strongest among

the population members is selected. The criterion of being strong in MHS algorithms is assumed as the fitness value of the

individuals. For example, for the alpha coyote in the COA (Pierezan and Coelho 2018), the alpha, beta, and delta wolves in the

grey wolf optimizer (GWO) (Mirjalili et al. 2014), and the best organism in the SOS (Cheng and Prayogo 2014), the population

members are first sorted according to their fitness values and then selected in a deterministic way. The greedy method is used in

all MHS algorithms (Civicioglu 2013; Chen and Xu 2018; Abedinpourshotorban et al. 2016; Cheng and Prayogo 2014;

Kahraman and Aras 2019; Ghasemi et al. 2020; Ghafil and Jármai 2020; Kahraman et al. 2017; Mirjalili et al. 2014; Ghosh et al.

2020)

Random The random selection method is based on the randomness that is assumed to occur frequently in nature. Accordingly, a completely

random selection is made among the individuals in the population. It is clear that this method serves the exploration task. For

example, the crows to follow in crow search algorithm (CSA) (Askarzadeh 2016), the food source in SSA (Mirjalili et al. 2017),

the nests in the Cuckoo search (Yang and Deb 2009), and the hunting location in harris hawks optimization (HHO) (Heidari

et al. 2019) are all randomly selected. This method is used in a majority of the MHS algorithms (Askarzadeh 2016; Mirjalili

et al. 2017; Heidari et al. 2019; Ghafil and Jármai 2020; Zhao et al. 2020; Faramarzi et al. 2020)

Probabilistic This method uses elitism and randomness. The probability of being selected according to the fitness values of the individuals in

the community is determined. Therefore, the individual with the highest suitability value is also most likely to be selected. The

roulette wheel and tournament methods are the most common probabilistic selection methods. Parents in GA (Holland 1975)

and onlooker bees in ABC (Karaboga and Basturk 2007) can be selected using this method. It is used to some extent in MHS

algorithms
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information about the FDB method can be obtained from

the reference study (Kahraman et al. 2020).

4.5 COA

The coyote optimization algorithm (COA) is a population-

based algorithm inspired by the species Canis latrans

(Pierezan and Coelho 2018). Unlike many other MHS

methods, in the COA, the population is divided into sub-

groups and consists of packs. Each pack consists of a

certain number of coyotes and an alpha individual. The

alpha represents the best coyote of a pack. In addition, the

COA algorithm focuses on sharing the social structure and

behavior of the coyotes. The social condition of cth coyote

in pth pack in the tth instant of time is represented by the

vector socp;tc ¼ x1; x2; . . .; xDimensionð Þ.
The adaptation of the cth coyote to the environment is

represented by fitp;tc 2 R (cost of the objective function in

the optimization process). As with other stochastic algo-

rithms, the initial social conditions are set randomly within

the population of coyotes. The COA calculates the cultural

tendency of the pack based on the information from the

coyotes, assuming that the coyotes share their social con-

ditions and are organized to contribute to the maintenance

of the pack. The cultural tendency (cultp;tj Þ of the pth pack

is calculated as given in Eq. (52).

cultp;tj ¼
Op;t

Ncþ1ð Þ
2

;j
; Nc is odd

Op;t
Nc
2
;j
þ Op;t

Nc
2 þ1ð Þ;j

2
; Otherwise

8><
>: ð52Þ

where Op;t represents the community ranked according

to the social conditions of the coyotes in the pth pack in the

tth instant of time. According to Eq. (52), the cultural

tendency of the pack is represented by the social conditions

of the median coyote in the pack.

In the COA algorithm, the cultural interaction between

packs is represented by d1, and d2. d1 and d2 are the alpha

effect and pack effect, respectively, which are calculated as

given in Eq. (53).

d1 ¼ alphap;t � socp;tcr1
and d2 ¼ cultp;t � socp;tcr2

ð53Þ

where cr1 and cr2 represent randomly chosen coyotes.

Hence, the new social condition of the coyotes is updated

using the d1 and d2; as given in Eq. (54).

new socp;tc ¼ socp;tc þ r1 � d1 þ r2 � d2 ð54Þ

where r1 and r2 are weight coefficients that are randomly

generated in the range [0, 1] and represent the alpha and

pack effects, respectively. The new social status (fitness

value) of a coyote, given in Eq. (54), is represented by

new socp;tc . If the new social status of the coyote is better

than before, as shown in Eq. (55), it will be accepted into

the pack. Otherwise, it will be rejected.

socp;tþ1
c ¼ new socp;tc ; new fitp;tc \fitp;tc

socp;tc ; Otherwise

�
ð55Þ

The birth of new coyotes is a combination of the social

situations of two randomly selected parents. In this process,

environmental effects are also taken into account. The birth

of new coyotes is modeled as given in Eq. (56).

pupp;tj ¼
socp;tcr1

; rndj\Ps or j ¼ j1
socp;tcr2

; rndj [Ps þ Pa or j ¼ j1
Rj; Otherwise

8<
: ð56Þ

where r1 and r2 represent the randomly selected coyotes, j1
and j2 represent the randomly selected genes (dimensions

of the problem) of these coyotes; Ps and Pa are scatters and

association possibilities, established to support cultural

diversity among coyotes: Ps = 1/Dimension and Pa =

(1-Ps)/2.

4.6 Proposed Method: LRFDBCOA

Recently, the different studies (Pierezan et al. 2019; Thom

de Souza et al. 2020;Pierezan et al. 2021; Boursianis et al.

2020; Fathy et al. 2019;Yuan et al. 2020; Chin and Salam

2019) have been carried out by researchers to enhance the

performance of classic COA, and the LRFDBCOA (Lévy

Roulette Fitness-Distance Balance Coyote Optimization

Algorithm) was developed in this study using the Lévy

flight and the probabilistic FDB selection method to

improve the performance of the COA.

The survival success of the coyotes depends on all

coyotes in the pack sharing the social conditions. This

functioning in nature is modeled in the COA as shown in

Eq. (52). Equation (52) shows that the cultural tendency of

each pack in the COA is represented by the social condi-

tions of the median coyote in the pack. However, there is

nothing in nature to indicate that the interaction among

coyotes occurs in this way. In other words, representing the

cultural tendency of the pack with a median coyote is not

an accurate or effective approach in terms of imitating

nature. Instead, there is a need to develop a method that

will successfully mimic the interaction among the coyotes

and the cultural tendency of the pack as they occur in

nature.

First, this study developed a new approach for calcu-

lating the cultural tendency of the pack for the COA. The

aim was to develop a more effective solution than that of

the current approach, which deviates from the operation in

nature. According to this approach, the cultural tendency of

the pack cannot be represented by the median coyote in the

pack because the selection of a pack median coyote is not

known to happen in nature. The cultural tendency of the
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pack can only be represented by coyotes with social con-

ditions that can make the most contribution to the pack. In

the proposed approach, the FDB selection method intro-

duced in Sect. 4.4 was used to determine the coyote able to

provide the maximum contribution to the pack and improve

the social conditions of the pack. Accordingly, a new

method was defined for calculating the cultp;t. The cultp;t

given in Eq. (52) is used in the COA to calculate the new

social conditions of the coyotes. Therefore, changes in the

process of determining cultp;t also created major changes in

the COA. Equations (53)–(55) are directly affected by this

change. Accordingly, the steps given in Algorithm 2 are

followed to determine the cultural tendency of the pack in

the proposed LRFDBCOA.

In this study, a second change was made in the design of

the algorithm apart from the FDB method in order to

increase the diversity ability of the COA and establish the

exploitation–exploration balance. For this purpose, changes

were made in the method used to mimic the birth of coy-

otes. Lévy flight was proposed to model their birth. As

explained in Sect. 4.3, Lévy flight is an effective method to

represent the movements and behavior of bio-inspired

MHS algorithms and to improve exploration capabilities.

Therefore, the use of Lévy flight in the design of the COA,

which is a bio-inspired algorithm, was suited to an effec-

tive imitation of nature. Accordingly, Eq. (56), used to

mimic the birth of coyotes, was redesigned. Instead of

randomly generating the rndj in Eq. (56), Lévy distribution

was used. Accordingly, in the proposed LRFDBCOA

algorithm, the birth of a coyote is performed as given in

Eq. (57).

rndj ¼ L s; c; lð Þ ¼
ffiffiffiffiffiffi
c
2p

r
1

s� lð Þ3
.
2

; pupp;tj

¼
socp;tcr1

; rndj\Ps or j ¼ j1
socp;tcr2

; rndj [Ps þ Pa or j ¼ j1
Rj; otherwise

8<
: ð57Þ

As mentioned above, two major changes were made in

the design of the COA in order to imitate nature more

successfully. These changes are represented by ‘‘ten-

dency = coyote selected to represent the cultural trend of

the pack’’ and ‘‘rndj = parameter used in the birth of a

coyote.’’ Due to the changes made in tendency and rndj,

five different COA variants were designed in this study.

Information on the ‘‘tendency’’ and ‘‘ rndj ’’ parameters of

the base model and the variations of the COA is summa-

rized in Table 4.

The pseudo-code of the proposed LRFDBCOA is given

in Algorithm 3. The ways in which the proposed method

differs from the COA are explained in Lines 9 to 17 in

Algorithm 3.

Algorithm 2. The steps to calculate the cultural tendency of the pack based on FDB scores of coyotes 
in the proposed LRFDBCOA
1. Begin
2. for each p pack do
3. Calculate the coyotes’ adaptation/fitness values 
4. Calculate the coyotes’ distance to the alpha: use Eq. (48) and create a Dp-vector as given in 

Eq. (49) 
5. Normalize the fitness and distance vectors of coyotes
6. Calculate the FDB scores of coyotes: use the Eq. (50) and create Sp-vector as given in Eq. 

(51).
7. Calculate the selection probabilities of coyotes based on their FDB scores and then select 

the coyote by using roulette wheel.             

8. end for
9. End
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Algorithm 3. The pseudo code of the proposed LRFDBCOA algorithm
1. Begin
2. NP and Nc: Create NP packs with Nc coyotes, randomly. 
3. for each p pack do
4. Calculate the coyote’s adaptation 
5. end for
6. while (termination criterion is not achieved do: up to max number of fitness evaluations)

for each p pack do
7. Selection Phase
8. Select the alpha coyote of the pack based on the coyotes’ adaptation (fitness 

values) 
9. New defined in proposed method: Use the Algorithm 2 to calculate the social tendency of the pack 

(do not use the Eq. (52) defined in COA)
10. Exploration and Exploitation Phases
11. for each c coyotes of the p pack do
12. Change the new social condition of coyote (use the  Eq.54)
13. Calculate the coyote’s adaptation 
14. Update the new social condition of coyote (use the Eq. 55).
15. end for
16. Population Update Phase
17. New defined in proposed method: Use the Eq. (57) to birth of new a coyote (do not use Eq. 56 in 

COA) and death process in pack (please see the Algorithm 1 in [3])
18. end for
19. Transition between packs
20. Update the coyotes’ ages 
21. end while

.

The performances of the algorithms given in Table 4 are

presented in Subsection 6.2. (Determining the best FDB-

COA method on benchmark test suites).

5 Experimental settings

Comprehensive experiments were conducted to objectively

compare the FDB-based COA variations and the competing

algorithms introduced in Sect. 6 and to clearly demonstrate

Table 4 Tendency and rndj
settings of the COA algorithm

and its variations

Algorithms (CAO and its variations) Settings

COA (base algorithm) a. tendency = median

b. rndj = random

Case1: Levy COA a. tendency = median

b. rndj = Levy flight

Case2: Roulette COA a. tendency = roulette

b. rndj = random

Case3: Levy roulette COA a. tendency = roulette

b. rndj = Levy flight

Case4: FDB COA a. tendency = FDB

b. rndj = random

Case5: Levy roulette FDB COA (proposed method) a. tendency = FDB roulette

b. rndj = Levy flight

Median: sort coyotes based on their social conditions (fitness values) and then select the median coyote.

Roulette: calculate the selection probabilities of coyotes based on their social conditions and then select the

coyote by using roulette wheel. FDB: sort coyotes based on their FDB scores and then select the best

coyote. FDB roulette: calculate the selection probabilities of coyotes based on their FDB scores and then

select the coyote by using roulette wheel
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their performances. Important points of the study are

summarized below:

• The source codes of all competing algorithms used in

this article were shared by their developers. For the

hyperparameters tuning of competing algorithms, the

settings suggested by the developers in their original

study were taken as reference.’’

• A hybrid strategy was followed to handle constraints in

constrained optimization problems. Solution candidates

who did not meet or violate the constraints did not

participate in the search process. Instead, a hybrid

penalty approach was adopted. According to the hybrid

approach adopted, either the version of the solution

candidate that meets the constraints was kept in the

population or a new solution candidate was created

Table 5 Friedman test results for competing 28 MHS algorithms

Algorithms Dimension = 30 Dimension = 50 Dimension = 100 Mean

rank
Classic CEC2014 CEC2017 Classic CEC2014 CEC2017 Classic CEC2014 CEC2017

MFLA (Tang et al. 2019) 7.0049 7.8529 8.0127 8.3843 8.4114 8.7578 9.0092 7.8627 9.3069 8.2892

BSA (Civicioglu 2013) 8.2513 7.7291 7.8359 8.8503 7.8275 8.3510 8.4003 8.7268 8.9193 8.3213

TLABC (Chen and Xu

2018)

7.2676 7.7291 8.6846 7.9359 8.8392 9.5719 8.1670 8.5248 10.1389 8.5399

EFO (Abedinpourshotorban

et al. 2016)

8.3382 8.4879 8.3768 9.4935 8.7660 7.4052 9.9719 9.6160 7.2144 8.6300

SOS (Cheng and Prayogo

2014)

9.8072 8.9337 8.8333 9.5176 9.3941 9.2546 9.6026 9.4993 9.9346 9.4197

ASO (Zhao et al. 2019) 10.6474 10.9020 9.7529 10.5598 9.6588 9.7725 10.4601 9.7039 9.5056 10.1070

WDE (Civicioglu 2020) 10.3425 11.2516 10.9935 9.6033 10.7706 10.2190 9.5392 10.6304 9.1758 10.2806

PSO (Eberhart and Kennedy

1995)

12.6954 11.4967 10.0817 12.0010 11.4346 10.1353 11.6379 10.3477 8.9278 10.9731

COA (Pierezan and Coelho

2018)

11.9987 12.1879 11.7261 11.7366 11.8542 12.0297 11.8556 11.7245 11.7366 11.8722

ABC (Karaboga and

Basturk 2007)

10.2369 12.8899 13.7588 9.5157 12.9029 13.1699 8.6922 13.1137 13.2562 11.9485

AEFA (Anita and Yadav

2019)

11.9676 13.6827 12.4474 11.2507 12.3595 11.5160 11.6141 11.8170 11.7356 12.0434

CS (Yang and Deb 2009) 10.8366 12.0137 10.9418 11.3229 12.8703 11.8559 12.3324 14.5935 13.6755 12.2714

DE (Storn and Price 1997) 12.6428 11.4830 12.7199 13.1023 12.7480 12.4356 14.0941 13.8627 12.8284 12.8797

HHO (Heidari et al. 2019) 13.6810 12.8552 14.4944 13.4742 12.6660 13.6804 13.2879 12.1484 12.7252 13.2236

ISA (Gandomi 2014) 14.0386 12.5676 10.9078 14.8686 13.9046 11.9121 14.2405 14.2719 12.9304 13.2936

CKGSA (Mittal et al. 2016) 14.9971 17.0173 14.7758 14.4908 15.7095 15.0248 14.5242 14.2425 13.4183 14.9111

YYPO (Punnathanam and

Kotecha 2016)

13.8438 15.3686 15.9735 14.1892 15.3516 15.6242 14.5190 16.3105 15.7667 15.2163

GSA (Rashedi et al. 2009) 15.1258 17.4827 16.2477 14.5007 15.3660 15.7902 14.1033 14.6461 13.9641 15.2474

GWO (Mirjalili et al. 2014) 16.4794 14.0618 15.4915 16.7533 14.1961 15.5641 16.8415 14.3114 15.7575 15.4952

MS (Wang 2018) 16.9552 16.4778 16.0199 16.4121 15.4915 15.6944 15.6147 14.3546 14.7722 15.7547

LSA (Shareef et al. 2015) 15.5931 16.3624 14.5647 15.3739 17.0951 15.7386 15.0333 16.8791 16.6752 15.9239

SSA (Mirjalili et al. 2017) 17.0516 17.3085 16.3310 16.1634 16.9373 15.2444 14.8163 15.9405 14.5379 16.0368

WOA (Mirjalili and Lewis

2016)

17.4170 16.1399 19.4699 16.5709 15.9500 18.3641 16.0245 14.7905 18.0964 16.9804

BOA (Arora and Singh

2019)

21.2974 19.9742 21.1052 21.1373 19.8565 20.9101 21.4592 19.0703 20.4873 20.5886

MFO (Mirjalili 2015) 21.4503 20.7454 20.6252 22.2428 21.6163 21.5474 22.5729 22.5892 22.5441 21.7704

SCA (Mirjalili 2016) 21.8706 19.4500 21.0425 22.3781 20.2941 21.7013 23.5163 22.4288 23.3333 21.7794

CGSA (Mirjalili and

Gandomi 2017)

26.5222 26.4739 27.0582 26.5261 26.6101 26.9941 26.3464 26.8412 26.8353 26.6897

CSA (Askarzadeh 2016) 27.6395 27.0745 27.7268 27.6448 27.1180 27.7353 27.7235 27.1520 27.8007 27.5128
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instead. The first method was applied at a rate of 90%

and the second method at a rate of 10%.

• In order to ensure fairness among competing algo-

rithms, the maximum number of fitness evaluations

(maxFEs) was used as the search process termination

criterion. The maxFEs value was set as 10,000 *

dimensions for all algorithms.

• Four different types of optimization problems (uni-

modal, multimodal, hybrid, and composition) were used

to reveal the performance of the algorithms for different

problem types.

• Experiments were repeated on 30-, 50, and 100-dimen-

sional test functions to investigate the performance of

the algorithms for different dimensions of problems in

search spaces.

• In order to ensure the performance of the algorithms,

three different benchmark test suites (classic (Kahra-

man et al. 2020), CEC14 (Liang et al. 2013), and

CEC17 (Awad et al. 2017)) and 90 test functions were

used in these suites.

• All algorithms were run 51 times for each test function

to provide sufficient and strong evidence for the

statistical analysis. In order to test the statistical validity

of the experiments, nonparametric Friedman and Wil-

coxon tests were applied (Carrasco et al. 2020). The

Wilcoxon pairwise test was conducted for a 5% level of

significance.

• The experiments were implemented in MATLAB�
R2018a and run on an Intel� CoreTM i7-4770 K CPU

@ 3.50 GHz and 16 GB RAM and 9 64-based

processor.

6 Results and analysis

The data obtained from the experiments carried out on the

performance of the MHS algorithms were analyzed, and

the optimization of the OPF problem was determined.

Comprehensive experiments were conducted to test and

verify the performance of the LRFDBCOA. The items

included are listed below:

• First, according to their performance, we determined

the best five algorithms out of 28 up-to-date and

powerful MHS algorithms found in the literature.

• Next, the performance of different variations of the

FDB-COA algorithm was examined on the benchmark

test suites.

• Then, comparisons were made between the top five

MHS algorithms and the LRFDBCOA proposed in this

study.

• Finally, the OPF problem was solved using the

LRFDBCOA and the top five MHS algorithms and

the best method was determined for solving the problem

utilizing renewable energy systems.

All experimental data obtained were analyzed using

nonparametric statistical test methods. The experiments

Table 6 Friedman test ranking of COA variations

Algorithms Dimension = 30 Dimension = 50 Dimension = 100 Mean rank

Classic CEC2014 CEC2017 Classic CEC2014 CEC2017 Classic CEC2014 CEC2017

LRFDBCOA 2.4964 2.5327 2.2415 2.6797 2.6111 2.3529 2.8484 2.6003 2.4794 2.5381

LRCOA 2.5212 2.5078 2.2428 2.9261 2.7915 2.5562 3.0778 2.8480 2.7569 2.6920

LFDBCOA 3.2163 3.3340 3.1546 2.9654 3.1356 3.0575 2.9670 3.0997 3.1912 3.1246

RCOA 3.4046 2.9820 3.4003 3.3778 3.0350 3.1523 3.2245 3.1817 2.8425 3.1779

COA 4.6660 4.7712 4.9840 4.4686 4.5837 4.9196 4.3928 4.4369 4.7703 4.6659

LCOA 4.6954 4.8722 4.9768 4.5824 4.8431 4.9614 4.4895 4.8333 4.9598 4.8016

Table 7 Wilcoxon test comparison of results for COA and its variations

vs. COA ? / = /- Dimension = 30 Dimension = 50 Dimension = 100

Classic CEC2014 CEC2017 Classic CEC2014 CEC2017 Classic CEC2014 CEC2017

LRFDBCOA 26/2/2 28/1/1 29/1/0 23/2/5 25/4/1 27/2/1 23/1/6 24/6/0 22/8/0

LRCOA 25/3/2 27/1/2 28/1/1 23/3/4 24/5/1 25/3/2 23/1/6 24/6/0 22/8/0

LFDBCOA 25/2/3 19/6/5 22/5/3 24/3/3 17/9/4 23/4/3 23/2/5 16/9/5 15/12/3

RCOA 26/2/2 22/4/4 26/2/2 25/3/2 19/7/4 21/4/5 24/1/5 20/6/4 22/6/2

LCOA 14/10/6 5/17/8 5/15/10 13/9/8 2/19/9 4/10/16 13/6/11 5/16/9 2/17/11
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Fig. 2 Convergence curves of algorithms for unimodal/multimodal/hybrid/composition problem types in CEC2017 (D = 30, 50 and 100)
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Fig. 2 continued
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were conducted according to the standards defined in

CEC14 (Liang et al. 2013) and CEC17 (Awad et al. 2017)

for testing and comparing MHS algorithms.

6.1 Determining the top-5 MHS algorithms
on benchmark test suites

The 28 MHS algorithms were compared to each other, and

the top five algorithms in terms of the performance were

determined.

6.1.1 Statistical analysis

Table 5 shows the rankings of the competing algorithms

according to the Friedman analysis method. The search

performances of the algorithms were compared for the

D = 30, 50, and 100 dimensions of 90 test problems in the

classic, CEC14, and CEC17 benchmark suites. Thus, nine

different experiments were carried out in total to analyze

the performance of each algorithm on three different

benchmark suites and three different problem dimensions.

Each row of Table 5 shows the performance of an

algorithm. The Friedman ranking of the algorithms is given

for each of the nine experiments in the columns of the

table. In the last column, the average rank of the algorithms

is listed. According to the results of the Friedman analysis,

the top five algorithms showing the best search perfor-

mance among twenty-eight competing algorithms were:

MFLA (Tang et al. 2019), BSA (Civicioglu 2013), TLABC

(Chen and Xu 2018), EFO (Abedinpourshotorban et al.

2016), and SOS (Cheng and Prayogo 2014), respectively.

These five algorithms were used in the experiments

described in the sections that follow.

Table 8 Algorithm

complexities
Dimension T0 T1 COA LCOA RCOA LRCOA LFDBCOA LRFDBCOA

D = 30 0.05 1.88 226.89 254.80 215.18 236.97 311.22 321.16

D = 50 2.78 233.11 259.09 216.79 236.72 339.32 346.55

D = 100 6.93 246.25 275.17 228.62 250.30 416.03 445.17

Table 9 Friedman test ranks for LRFDBCOA (proposed) and the compared algorithms

Algorithms Dimension = 30 Dimension = 50 Dimension = 100 Mean Rank

Classic CEC2014 CEC2017 Classic CEC2014 CEC2017 Classic CEC2014 CEC2017

LRFDBCOA 2.8712 3.0961 2.5585 3.1899 3.2101 2.6013 3.4036 3.3523 2.6977 2.9979

MFLA 3.3232 3.2830 3.3588 3.4379 3.3363 3.4036 3.5203 3.1729 3.4944 3.3700

EFO 3.4199 3.5392 3.6634 3.5020 3.4539 3.2592 3.5647 3.6154 3.0843 3.4558

BSA 3.6137 3.5160 3.5631 3.5732 3.4261 3.6745 3.3382 3.5301 3.7013 3.5485

TLABC 3.5242 3.5775 3.9716 3.4474 3.6987 4.0788 3.3820 3.5180 4.0075 3.6895

SOS 4.2477 3.9882 3.8846 3.8497 3.8748 3.9827 3.7912 3.8114 4.0147 3.9383

Table 10 The ranks obtained by the Wilcoxon test for compared algorithms

vs. LRFDBCOA ? / = /- Dimension = 30 Dimension = 50 Dimension = 100

Classic CEC2014 CEC2017 Classic CEC2014 CEC2017 Classic CEC2014 CEC2017

MFLA 19/5/6 5/5/20 4/4/22 20/3/7 6/4/20 3/4/23 23/1/6 8/4/18 2/5/23

EFO 14/4/12 4/2/24 11/6/13 17/1/12 5/4/21 11/8/11 19/1/10 6/4/20 11/7/12

BSA 12/6/12 3/2/25 5/4/21 13/4/13 1/8/21 6/6/18 14/4/12 8/7/15 10/5/15

TLABC 19/4/7 7/0/23 4/1/25 21/3/6 8/3/19 4/3/23 21/2/7 8/4/18 4/5/21

SOS 18/2/10 3/1/26 2/1/27 19/0/11 3/0/27 3/3/24 20/0/10 3/5/22 1/3/26
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Fig. 3 Convergence curves of

algorithms for

unimodal/multimodal/

hybrid/composition problem

types in CEC2017 (D = 30, 50

and 100)
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Fig. 3 continued
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6.2 Determining the best FDB-COA method
on benchmark test suites

The performances of the FDB-based COA algorithms

developed in the study were analyzed statistically. Sec-

tion 4.6 (Proposed LRFDBCOA method) should be read

again to review the features of the competing algorithms in

this section.

6.2.1 Statistical analysis

The performance of the six competing algorithms was

compared using 90 test functions and the Friedman anal-

ysis for three different problem dimensions.

In Table 6, the Friedman rankings of the competing

algorithms are given according to the data obtained from

nine different experiments. In the last column of Table 6,

the mean rank of the algorithms obtained from all the

experiments is given. Accordingly, the LRFDBCOA

showed a great advantage over its competitors in all

experiments. Among the COA variations, the only algo-

rithm that had a worse search performance than the base

model of COA was the Lévy COA. The other four varia-

tions were superior to the base model of the COA. To

understand the reason for this situation, Table 4 in Sect. 4.6

should be reviewed. Accordingly, the method of selecting

the ‘‘tendency’’ of the pack in the COA variations was

different from that of the COA base model and performed

better than it. In the failed COA variation (Case 1: Lévy

COA), the method of selecting the tendency of the pack

was the same as in the base model. Thus, it is clear that the

‘‘tendency’’ selection in the COA had failed. Instead of

selecting the median coyote of the pack, it is more effective

to select individuals from the pack using the roulette wheel,

as in Case 2. As a result, the Lévy flight and the FDB

selection method significantly improved the design faults

and search performance of the COA algorithm.

Table 7 is prepared in order to analyze the binary

comparison results between the base model and the FDB

variations of the COA. The Wilcoxon test results between a

Table 11 Algorithm complexity
Dimension LRFDBCOA MFLA EFO BSA TLABC SOS

D = 30 228.47 826.01 303.63 12.78 240.97 166.88

D = 50 258.70 847.78 467.76 21.21 246.55 167.36

D = 100 333.13 934.19 846.32 39.22 269.43 182.08

0.00

200.00

400.00

600.00

800.00

1000.00

LRFDBCOA MFLA EFO BSA TLABC SOS

D=30 D=50 D=100

Fig. 4 Algorithm complexity

for 30, 50, and 100 dimensions

Table 12 Cost and emission coefficients of the thermal generators for the modified IEEE 30-bus test system

Modified IEEE 30-bus test system

Bus no Thermal

Generator

m n o p r r b S x l POZs

1 Th1 0 2 0.00375 18 0.037 4.091 -5.554 6.49 0.0002 6.667 [55 66] [80 120]

2 Th2 0 1.75 0.0175 16 0.038 2.543 -6.047 5.638 0.0005 3.333 [21 24] [45 55]

8 Th3 0 3.25 0.00834 12 0.045 5.326 -3.55 3.38 0.002 2 [25 30]
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COA variation and the base model are given in each row of

Table 7. According to the binary comparison results, the

LRFDBCOA method we developed in the study displayed

an overwhelming performance compared to the base COA

algorithm. For example, when D = 30, the comparison

result between the COA and the LRFDBCOA for the 30

test functions in the CEC2017 benchmark suite was 29/1/0.

This indicated that the LRFDBCOA method performance

was superior to the COA in 29 of 30 benchmark problems,

and only one of the test problems had an equal score.

6.2.2 Convergence analysis

The convergence curves of the six competing algorithms

are given in this subsection. To examine the convergence

capabilities of the algorithms, four different types of

problems were selected from the CEC2017 comparison

package: F1 (unimodal), F4 (multimodal), F11 (hybrid),

and F22 (composition) test functions.

Unimodal-type problems are used to evaluate the

exploitation capabilities of algorithms. Figure 2 (a, b, c)

shows that when the convergence curves of competing

29

28

25

27

30 26

23 24

15 18 19

20

21

22

17

1614

13 12 10

11 9

6
8431

7

52

Fig. 5 Modified IEEE 30-bus

test system with

wind/solar/combined solar-

small hydro energy sources

Table 13 Cost model coefficients of the renewable energy systems

Direct cost coefficients ($/MW) Overestimation cost coefficients ($/MW) Underestimation cost coefficients ($/MW)

Wind

(bus 5)

Solar (bus 11

and 13)

Small hydro

(bus 13)

Wind

(bus 5)

Solar

(bus 11)

Combined solar-small

hydro (bus 13)

Wind (bus

5)

Solar

(bus 11)

Combined solar-small

hydro (bus 13)

ws,i = 1.7 pvs,i = 1.6 smh,i = 1.5 COw,i = 3 COpv,i = 3 COpvsh,i = 3 CUw,i = 1.4 CUpv,i = 1.4 CUpvsh,i = 1.4
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algorithms for the 30, 50, and 100 dimensions of the F1

problem of the unimodal type, the COA and LCOA

exhibited similar performances. The LRFDBCOA showed

a better convergence performance than its competitors in

all dimensions. This indicated that the Lévy flight and the

probabilistic FDB selection method strengthened the

exploitation ability of the COA. Multimodal-type problems

are used to evaluate the exploration capabilities of algo-

rithms. The convergence curves of the competing algo-

rithms for the 30, 50, and 100 dimensions of the

multimodal-type F4 problem seen in Fig. 2d–f show that

the LRFDBCOA proposed in this study was more capable

of providing diversity. This superiority was much greater,

especially in a low-dimensional search space. Hybrid and

composition-type problems are used to analyze the bal-

anced search ability of algorithms. In other words, algo-

rithms must manage their exploitation–exploration abilities

in a strong and balanced manner in order to perform suc-

cessfully in these problem types. The convergence curves

of the competing algorithms for the 30, 50, and 100

dimensions of the hybrid-type F11 problem and the com-

position-type F22 problem seen in Fig. 2g–l) show that the

proposed LRFDBCOA was superior to its competitors in

providing the exploitation-exploration balance. This

advantage points out that the Lévy flight and the proba-

bilistic FDB selection method improved both the

exploitation and the exploration capabilities of the COA.

Table 14 The simulation results of the LRFDBCOA and other algorithms for Case 1

Parameters Min Max Case 1

EFO MFLA BSA TLABC SOS COA LRFDBCOA

PTh1 (MW) 50 140 137.5877 139.8829 139.9789 139.9974 139.9980 139.9792 139.9873

PTh2 (MW) 20 80 56.6585 50.5138 52.1119 50.9846 50.5824 49.8491 51.2010

PTh8 (MW) 10 35 21.6502 23.7983 21.2251 24.7177 25.2911 27.9764 24.6560

PWS (MW) 0 75 46.4233 47.4055 47.0275 45.9827 45.8298 43.5496 45.5876

PPVS (MW) 0 50 14.6639 14.1298 14.2995 14.3052 14.2730 14.2523 14.3419

PPVSHS (MW) 0 50 13.1548 13.9757 15.1134 13.6563 13.6560 14.0807 13.8851

V1 (p.u.) 0.95 1.10 1.0722 1.0725 1.0778 1.0771 1.0761 1.0785 1.0761

V2 (p.u.) 0.95 1.10 1.0576 1.0554 1.0586 1.0623 1.0613 1.0610 1.0608

V5 (p.u.) 0.95 1.10 1.0287 1.0282 1.0258 1.0381 1.0372 1.0334 1.0368

V8 (p.u.) 0.95 1.10 1.0277 1.0343 1.0376 1.0394 1.0395 1.0378 1.0392

V11 (p.u.) 0.95 1.10 1.0169 1.0139 1.0629 1.0671 1.0280 1.0432 1.0530

V13 (p.u.) 0.95 1.10 1.0230 1.0619 1.0612 1.0549 1.0606 1.0484 1.0616

T11 0.90 1.10 1.0377 1.0637 0.9974 1.0278 1.0939 1.0234 1.0355

T12 0.90 1.10 0.9461 0.9382 0.9859 0.9907 0.9095 0.9726 0.9623

T15 0.90 1.10 1.0159 0.9967 0.9837 0.9692 0.9776 0.9842 0.9810

T36 0.90 1.10 1.0093 0.9663 0.9709 0.9683 0.9715 0.9752 0.9707

QSH10 0 30 12.2670 28.5037 19.2969 25.1488 29.6332 15.7415 23.5934

QSH36 0 30 29.8151 17.2639 12.0394 10.8001 11.2352 9.6683 10.3356

QTh1 (MVAr) -50 140 1.2961 3.4024 9.5009 0.3084 -0.5969 6.9890 0.4454

QTh2 (MVAr) -20 60 20.5941 8.2203 9.1315 14.0067 13.4763 13.8058 11.6862

QTh8 (MVAr) -15 40 23.9349 27.1792 33.5442 25.3247 27.4122 32.2713 27.9792

QWS (MVAr) -30 35 20.4451 17.7995 13.1227 21.8872 21.8150 20.8258 22.0449

QPVS (MVAr) -20 25 2.2925 -1.1505 7.2817 12.1925 5.7549 7.4704 8.4091

QPVSHS(MVAr) -20 25 5.8100 13.6626 9.8389 3.7999 8.2752 8.8052 9.5660

Total cost ($/h) 797.8251 794.9914 795.1813 794.4727 794.4718 794.9165 794.4258

Emission (t/h) 2.0768 2.3973 2.4123 2.4146 2.4146 2.4114 2.4131

Carbon Tax ($/h) 41.5361 47.9466 48.2453 48.2917 48.2919 48.2281 48.2614

Ploss (MW) 6.7383 6.3060 6.3558 6.2439 6.2303 6.2873 6.2587

VD (p.u.) 0.3835 0.7824 0.8439 0.8892 0.8309 0.5637 0.8374

L-index 0.1478 0.1389 0.1390 0.1380 0.1389 0.1417 0.1388
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6.2.3 Algorithm complexity

Experiments were conducted to calculate the algorithm

complexities of FDB-based COA variations developed in

the study and to compare them with the base algorithm.

The algorithm complexities of competing algorithms are

given in Table 8.

The IEEE CEC 2014 (Liang et al. 2013) definition

document was taken as a guide in the calculation of algo-

rithm complexity. Accordingly, three parameters were used

to calculate the complexity of the algorithm: T0, T1, and

T2, with T0 as the time for algorithms to calculate a test

program defined in CEC 2014, T1 time it takes the algo-

rithm to calculate the F18 test problem once, and T2 as the

mean time it takes the algorithm to calculate the F18 test

problem five times. The complexity of the algorithm is

calculated by T2� T1ð Þ=T0. The computational com-

plexities of the competing algorithms are given according

to these definitions in Table T6. Lévy flight and the FDB

selection method increased the algorithm complexity of the

COA. This is normal because both methods were added as

new calculation processes in the search process life cycle

of the COA. The increase in computational complexities

was less than double compared to the base model of the

COA, which is a reasonable increase.

6.3 Comparison of LRFDBCOA and the top five
MHS algorithms

By making comparisons among the MHS algorithms in the

literature, the MFLA, EFO, BSA, TLABC, and SOS were

determined to be the top five algorithms, and in a com-

parison among the COA variations, the LRFDBCOA was

determined as the best variation. Comparisons between the

LRFDBCOA developed in this study and the top five

algorithms were then analyzed statistically.

6.3.1 Statistical analysis

First, the performances of six competing algorithms for 90

test problems in benchmark suites were compared. The

rankings of the six competing algorithms according to the

Friedman method for nine different situations are given in

Table 9. In the last column of Table 9, the general ranking

of the algorithms is given. TLABC and LRFDBCOA were

the two algorithms that were least affected by the change in

problem dimension compared to their competitors. This

indicates that TLABC can be a competitive algorithm for

optimization studies in high-dimensional search spaces.

Accordingly, the proposed LRFDBCOA demonstrated an

obvious superiority over its competitors in all benchmark

suites for D = 30, 50, and 100. Statistical analysis results

indicated the success of the proposed method for different

problem types and dimensions.

The Wilcoxon pairwise comparison results between the

LRFDBCOA and its five competitors are given in Table 10.

Accordingly, the LRFDBCOA showed a superior perfor-

mance compared to its competitors in the CEC2014 and

CEC2017 suites. On the other hand, it showed a perfor-

mance similar to its competitors in the classic benchmark

suite. However, test problems in suites CEC2014 (Liang

et al. 2013) and CEC2017 (Awad et al. 2016) were rotated

and shifted versions of test problems in the classic

benchmark suite. The classic benchmark suite actually

consists of problems that make it easy for algorithms to

find their global solution. Global solution points of the

(a) (b)

Fig. 6 a Convergence characteristics of the algorithms, b voltage profiles of the load buses for Case 1
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problems in the classic benchmark suite are zero. There-

fore, the design of the base models of MHS algorithms can

have mechanisms to produce this value, and thus, they can

converge to the global solution in every study. However,

the situation changes for CEC2014 and CEC2017 bench-

mark suites, whose global solution is different from zero.

The statistical scores given in Table 10 are clear evidence

of this situation.

In summary, the Wilcoxon pairwise comparison results

given in Table 10 largely overlap with the Friedman

ranking results given in Table 9. The performances of the

algorithms varied greatly according to the benchmark

suites and especially the problem dimensions. The

performance of the LRFDBCOA in all the benchmark

suites improved with increasing problem dimensions. The

results of the analysis in Table 10 show that the proposed

algorithm demonstrated a remarkable and competitive

performance over strong competitors.

6.3.2 Convergence analysis

The convergence curves of the proposed LRFDBCOA and

five competitors are given in this subsection. For this

purpose, four different types of problems were selected

from the CEC2017 benchmark suite and the convergence

Table 15 The simulation results of the LRFDBCOA and other algorithms for Case 2

Parameters Min Max Case 2

EFO MFLA BSA TLABC SOS COA LRFDBCOA

PTh1 (MW) 50 140 130.1000 129.1403 128.0882 128.7389 128.8891 128.8455 128.7466

PTh2 (MW) 20 80 56.1998 59.2527 58.3252 58.2420 58.4653 57.5418 58.2355

PTh8 (MW) 10 35 16.4542 14.5834 16.5135 15.2763 15.2322 16.2462 15.3222

PWS (MW) 0 75 50.3351 53.0337 52.8288 53.8302 53.7682 53.0041 53.7833

PPVS (MW) 0 50 20.1600 17.8931 17.7322 17.5955 17.6404 17.6177 17.5955

PPVSHS (MW) 0 50 16.3767 15.3856 15.7339 15.5163 15.2194 15.9704 15.5163

V1 (p.u.) 0.95 1.10 1.0586 1.0743 1.0706 1.0751 1.0748 1.0761 1.0752

V2 (p.u.) 0.95 1.10 1.0449 1.0624 1.0576 1.0620 1.0620 1.0590 1.0620

V5 (p.u.) 0.95 1.10 1.0064 1.0381 1.0305 1.0399 1.0399 1.0350 1.0401

V8 (p.u.) 0.95 1.10 1.0111 1.0386 1.0349 1.0383 1.0384 1.0354 1.0381

V11 (p.u.) 0.95 1.10 1.0496 1.0199 1.0611 1.0747 1.0487 1.0129 1.0876

V13 (p.u.) 0.95 1.10 1.0102 1.0589 1.0758 1.0621 1.0620 1.0648 1.0620

T11 0.90 1.10 1.0156 0.9960 1.0205 1.0241 1.0399 0.9918 1.0222

T12 0.90 1.10 1.0174 0.9925 0.9922 0.9518 0.9532 0.9843 0.9508

T15 0.90 1.10 0.9872 0.9807 1.0014 0.9816 0.9812 1.0056 0.9813

T36 0.90 1.10 0.9484 0.9660 0.9876 0.9656 0.9675 0.9659 0.9660

QSH10 0 30 23.6662 29.8645 19.5542 15.5251 24.2063 29.9463 11.8968

QSH36 0 30 14.0734 10.5510 13.0468 10.6664 10.5242 11.0677 10.6754

QTh1 (MVAr) -50 140 2.5162 -3.2344 -3.3814 -1.2108 -2.1321 7.0859 -1.0530

QTh2 (MVAr) -20 60 29.3935 18.6641 11.9407 12.9952 13.3647 6.0226 12.7214

QTh8 (MVAr) -15 40 21.3964 34.9816 23.9873 28.9643 28.1961 31.8665 28.3391

QWS (MVAr) -30 35 10.7136 20.9740 15.8783 21.8264 21.6945 20.8118 22.0352

QPVS (MVAr) -20 25 15.0133 -8.8493 11.2118 15.0159 7.1326 -11.2917 19.9454

QPVSHS(MVAr) -20 25 0.3890 8.3110 20.7115 9.3168 9.4231 16.0361 9.2526

Total Cost ($/h) 852.4095 850.2734 850.4709 850.1257 850.1514 850.3883 850.1252

Total Cost with Valve ($/h) 826.1771 825.4952 827.2132 825.9422 825.7486 826.0562 825.9308

Emission (t/h) 1.3116 1.2389 1.1629 1.2092 1.2201 1.2166 1.2097

Carbon Tax ($/h) 26.2324 24.7782 23.2577 24.1835 24.4028 24.3322 24.1944

Ploss (MW) 6.2258 5.8889 5.8219 5.7993 5.8146 5.8256 5.7994

VD (p.u.) 0.2614 0.8501 0.7354 0.8905 0.8628 0.8013 0.8918

L-index 0.1435 0.1385 0.1419 0.1377 0.1383 0.1391 0.1377
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performances of the algorithms for D = 30, 50, and 100

were analyzed.

When the convergence curves given in Fig. 3 are ana-

lyzed for each problem type, it can be seen that the pro-

posed LRFDBCOA converged more successfully to the

global solution compared to its competitors. In particular,

the performance of the proposed algorithm was remarkable

for all three dimensions of the multimodal-type problems

requiring diversity capability and for the hybrid and com-

position-type problems requiring balanced search capabil-

ity. The convergence graphics indicated the power of the

LRFDBCOA exploitation and exploration capabilities.

6.3.3 Algorithm complexity

Experiments were conducted based on the information

defined for algorithm complexity in the previous section to

compare the computing times of LRFDBCOA and five

competing algorithms. Accordingly, the calculation times

of the six competing algorithms are given in Table 11.

According to the information given in Table 11, the

algorithm with the lowest calculation time was the BSA

and the algorithm with the highest was the MFLA. The

calculation time of the LRFDBCOA, which was the first

among the algorithms, was also reasonable. Figure 4 shows

the calculation times of the algorithms depending on the

problem dimension.

6.4 Determining the best method of solving
the OPF problem incorporating
wind/solar/combined solar-small hydro
energy sources

The (proposed) LRFDBCOA, COA, EFO, MFLA, BSA,

TLABC, and SOS algorithms were studied on a modified

IEEE 30-bus test system incorporating wind, solar, and

combined solar-small hydro energy systems to solve the

OPF problem. The system parameters of the IEEE 30-bus

test system were taken from referenced studies (Chaib et al.

2016; Biswas et al. 2018b) and are shown in Table 12. In

this study, the reactive power limits of the renewable

energy systems were set as -0.4 9 Pres,i
max p.u. and

0.5 9 Pres,i
max p.u. (Biswas et al. 2017, 2018b) and Pres,i-

max was the maximum active power of the renewable

energy systems. The single-line diagram of the modified

IEEE 30-bus test system including thermal, wind, solar,

and combined solar-small hydro energy systems is shown

in Fig. 5. For the test system whose single-line diagram is

given in Fig. 5, the locations of renewable energy sources

used instead of traditional sources were accepted as in Ref.

(Biswas et al. 2018b).

Table 13 explains the direct, overestimation, and

underestimation cost coefficients of the wind, solar, and

combined solar-small hydro power systems. The calcula-

tion of the power flow equations of the proposed OPF

problem incorporating RESs was carried out using MAT-

POWER 6.0 software (Zimmerman et al. 2011; MAT-

POWER). All the optimization methods used were run 30

times to simulate the proposed test conditions in the course

of the simulation process in order to statistically examine

(a) (b)

Fig. 7 a Convergence characteristics of the algorithms, b voltage profiles of the load buses for Case 2
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the obtained results. The simulation studies were identified

according to the following test cases.

• Case 1: Optimizing a quadratic cost function for the

thermal generating systems, and a cost model of the

wind/solar/combined energy systems.

• Case 2: Optimizing a cost function using a valve point

effect with emission and taxes for the thermal gener-

ating systems, and a cost model of the wind/solar/com-

bined energy systems.

• Case 3: Optimizing a cost function using a valve point

effect and POZs for the thermal generating systems, and

a cost model of the wind/solar/combined energy

systems.

• Case 4: Optimizing an objective function with an

improved voltage stability incorporating the thermal

generating systems and the wind/solar/combined energy

systems.

• Case 5: Optimizing an objective function with a voltage

deviation incorporating the thermal generating systems

and the wind/solar/combined energy systems.

6.4.1 Case 1: Minimizing of total cost for thermal,
and wind/solar/combined energy systems

The minimization of the total cost value using the quadratic

cost function of the thermal units, and the cost models of

the wind/solar/combined energy systems is studied in Case

Table 16 The simulation results of the LRFDBCOA and other algorithms for Case 3

Parameters Min Max Case 3

EFO MFLA BSA TLABC SOS COA LRFDBCOA

PTh1 (MW) 50 140 137.7480 136.9346 138.3752 138.8896 139.1017 139.1683 138.6140

PTh2 (MW) 20 80 41.4850 55.8021 59.5181 55.0027 55.0020 55.2303 55.0121

PTh8 (MW) 10 35 21.6130 10.3993 10.7353 11.1978 10.9997 10.1602 11.1094

PWS (MW) 0 75 60.6827 53.3687 52.1623 52.2492 52.2668 51.9585 52.1073

PPVS (MW) 0 50 17.7170 17.9445 15.3712 17.5653 17.5471 17.6182 17.6220

PPVSHS (MW) 0 50 10.6866 15.2408 13.7786 14.8258 14.8273 15.6810 15.2551

V1 (p.u.) 0.95 1.10 1.0916 1.0780 1.0808 1.0766 1.0773 1.0762 1.0766

V2 (p.u.) 0.95 1.10 1.0750 1.0596 1.0633 1.0626 1.0628 1.0610 1.0619

V5 (p.u.) 0.95 1.10 1.0195 1.0382 1.0362 1.0398 1.0400 1.0399 1.0388

V8 (p.u.) 0.95 1.10 1.0214 1.0353 1.0311 1.0374 1.0376 1.0312 1.0367

V11 (p.u.) 0.95 1.10 0.9644 0.9921 1.0312 1.0675 1.0751 1.0752 1.0583

V13 (p.u.) 0.95 1.10 0.9922 1.0705 1.0578 1.0600 1.0589 1.0542 1.0625

T11 0.90 1.10 1.0013 1.0298 1.0151 1.0154 1.0216 1.1000 1.0157

T12 0.90 1.10 1.0998 0.9621 0.9000 0.9828 0.9646 0.9318 0.9831

T15 0.90 1.10 0.9819 0.9914 0.9967 0.9781 0.9758 0.9769 0.9819

T36 0.90 1.10 0.9940 0.9673 0.9581 0.9660 0.9663 0.9646 0.9640

QSH10 0 30 19.3215 28.1351 18.1197 21.1045 17.4203 30.0000 23.3638

QSH36 0 30 26.4629 15.4037 11.2037 10.9706 10.6782 9.7649 10.5094

QTh1 (MVAr) -50 140 16.9638 8.3814 9.1567 -1.2912 0.1738 1.2790 0.1244

QTh2 (MVAr) -20 60 58.6557 4.1064 15.7214 14.4256 13.8603 10.7485 12.7983

QTh8 (MVAr) -15 40 17.4980 30.8371 31.1571 27.6533 28.4866 13.1066 27.5005

QWS (MVAr) -30 35 -0.9202 23.1475 21.8042 22.0218 22.1504 23.6062 21.6830

QPVS (MVAr) -20 25 -12.5142 -12.4334 -1.9729 10.9848 14.8457 24.4750 7.6561

QPVSHS(MVAr) -20 25 -5.4122 16.1887 11.2638 7.7308 6.9020 5.3290 9.6643

Total Cost ($/h) 826.3048 817.9572 818.5020 817.6381 817.6373 817.2390 816.9996

Emission (t/h) 2.0972 1.9960 2.1842 2.2549 2.2851 2.2949 2.2163

Carbon Tax ($/h) 41.9436 39.9191 43.6837 45.0973 45.7022 45.8979 44.3259

Ploss (MW) 6.5321 6.2901 6.5407 6.3304 6.3347 6.4165 6.3199

VD (p.u.) 0.3922 0.7992 0.8243 0.8916 0.8863 0.8440 0.8841

L-index 0.1504 0.1391 0.1381 0.1379 0.1379 0.1384 0.1378
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1. The mathematical formulation of this case in Eq. (19) is

considered as the objective function to be minimized by

means of the proposed LRFDBCOA and the other opti-

mization algorithms. Table 14 displays the control vari-

ables optimized as well as the objective function values

from the LRFDBCOA and the other algorithms. Table 14

clearly shows that the total cost value achieved via the

LRFDBCOA was 794.4258 $/h, which is the best result

according to the results obtained from the EFO, MFLA,

BSA, TLABC, SOS, and the basic COA algorithms. The

LRFDBCOA simulation result was 0.4260%, 0.0711%,

0.0950%, 0.0059%, 0.00579%, and 0.0617% lower,

respectively, than the results from the other algorithms.

Figure 6a shows that the convergence characteristics of the

all optimization algorithms, and the voltage profile of all

load buses were within the acceptable range according to

the simulation results of the algorithms, as shown in

Fig. 6b.

6.4.2 Case 2: Minimizing of total cost with valve point
effects involving emission and carbon tax
for thermal, and wind/solar/combined energy
systems

In this case, the proposed LRFDBCOA and the other

optimization algorithms were applied to solve the OPF

(a) (b)

Fig. 8 a Convergence characteristics of the algorithms, b voltage profiles of the load buses for Case 3

(a) (b)

Fig. 9 a Convergence characteristics of the algorithms, b voltage profiles of the load buses for Case 4
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problem of the minimization of the total cost value using

the quadratic cost function with the valve point effect of

the thermal units, as well as the cost models of the

renewable energy systems. The results using the

LRFDBCOA compared with the results of the other algo-

rithms are given in Table 15. Table 15 clearly shows that

the result of LRFDBCOA was 850.1252 $/h, which is

0.26798%, 0.01742%, 0.04064%, 0.000058%, 0.00308%,

and 0.03093% lower than the results of the EFO, MFLA,

BSA, TLABC, SOS, and COA algorithms. The conver-

gence curves of the optimization algorithms for this case in

Fig. 7a clearly demonstrate that the LRFDBCOA effectu-

ally found the optimal solution compared with the other

optimization algorithms. Meanwhile, Fig. 7b shows that

the values of the voltage profile of all load buses were

within the specified limits.

6.4.3 Case 3: Minimizing of total cost considering POZs
of thermal and wind/solar/combined energy systems

Case 3 represents the minimization of the objective func-

tion, shown in Eq. (21), as the total cost using a quadratic

cost function with valve point effects and the POZs for

thermal generating units, as well as the cost models of the

renewable energy systems. The simulation result of the

proposed LRFDBCOA was 816.9996 $/h, which is the best

result when compared to the results from the EFO, MFLA,

BSA, TLABC, SOS, and COA algorithms. At the end of

Table 17 Simulation results of the LRFDBCOA and other algorithms for Case 4

Parameters Min Max Case 4

EFO MFLA BSA TLABC SOS COA LRFDBCOA

PTh1 (MW) 50 140 85.1799 139.7834 51.7683 66.2189 74.2005 93.8921 66.0009

PTh2 (MW) 20 80 61.4545 70.5384 60.4284 41.8664 80.0000 80.0000 47.1831

PTh8 (MW) 10 35 26.9362 34.6240 24.1534 24.0022 34.9438 35.0000 33.0482

PWS (MW) 0 75 44.0619 28.0730 75.0000 58.3318 43.0523 25.4244 43.0859

PPVS (MW) 0 50 28.8384 17.5218 26.7727 49.7972 48.6473 40.6095 50.0000

PPVSHS (MW) 0 50 41.5567 0.1981 48.2203 46.1789 6.7122 13.6544 47.5779

V1 (p.u.) 0.95 1.10 1.0827 1.6058 1.0492 1.0576 1.0675 1.0699 1.0468

V2 (p.u.) 0.95 1.10 1.0646 1.0572 1.0593 1.0607 1.0746 1.0595 1.0547

V5 (p.u.) 0.95 1.10 1.0171 1.0283 1.0258 1.0431 1.0527 1.0256 1.0472

V8 (p.u.) 0.95 1.10 1.0213 1.0320 1.0368 1.0432 1.0482 1.0338 1.0508

V11 (p.u.) 0.95 1.10 1.0200 1.0906 1.0630 1.0921 1.0791 1.0837 1.0932

V13 (p.u.) 0.95 1.10 1.0358 1.0509 1.0639 1.0674 1.0550 1.0798 1.0798

T11 0.90 1.10 0.9743 1.0144 1.0194 1.0233 1.0112 1.0156 1.0287

T12 0.90 1.10 0.9439 0.9352 0.9037 0.9010 0.9000 0.9284 0.9011

T15 0.90 1.10 0.9790 0.9452 1.0042 0.9974 0.9596 1.0034 1.0175

T36 0.90 1.10 0.9574 0.9455 0.9549 0.9500 0.9563 0.9487 0.9548

QSH10 0 30 21.6607 10.9909 15.5314 5.8572 0 13.9466 4.9025

QSH36 0 30 18.2051 0.7654 7.7617 0.1144 0 0 0.2699

QTh1 (MVAr) -50 140 27.0796 -9.8820 -35.2188 -25.5715 -28.5258 0.4000 -40.8598

QTh2 (MVAr) -20 60 28.8205 33.1294 55.1425 35.4262 53.0121 16.7810 27.0386

QTh8 (MVAr) -15 40 15.3442 36.0167 32.9836 32.3495 38.9424 21.4581 39.5353

QWS (MVAr) -30 35 7.9433 27.1857 4.2103 23.3947 30.1536 20.8407 34.0991

QPVS (MVAr) -20 25 -9.8207 22.7242 10.3507 24.3678 17.4886 19.1505 24.9628

QPVSHS(MVAr) -20 25 -1.4083 2.8395 14.8284 15.7780 4.5282 23.1209 24.5618

Total cost with valve ($/h) 904.6388 870.4089 940.1171 936.5367 925.4107 908.5237 940.2596

Emission (t/h) 0.1622 2.3855 0.0990 0.1111 0.1329 0.2199 0.1098

Carbon Tax ($/h) 3.2447 47.7109 1.9797 2.2211 2.6583 4.3986 2.1954

Ploss (MW) 4.6277 7.3407 2.9430 2.9955 4.1562 5.1804 3.4960

VD (p.u.) 0.7922 0.7430 0.8432 0.8476 0.8514 0.8496 0.8732

L-index 0.13940 0.13749 0.13763 0.13670 0.13665 0.13693 0.13648
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the optimization process, this result was 9.3052 $/h, 0.9576

$/h, 1.5024 $/h, 0.6385 $/h, 0.6377 $/h, and 0.2394 $/h

lower than the other algorithms. The optimized control

variables of all the optimization algorithms are given in

Table 16. Figure 8(a) shows the convergence curves of all

the algorithms to the optimal solution. The characteristic

curves of the voltage profiles of all load buses are shown in

Fig. 8(b).

6.4.4 Case 4: Enhancement of the voltage stability
of the electrical power system

The improvement of the voltage stability of the modified

IEEE 30-bus test system incorporating the renewable

energy systems was examined to find the minimum L-index

value throughout the optimization process. At the end of

this process, the L-index value of the LRFDBCOA was

0.13648, which was 2.09469%, 0.73459%, 0.83557%,

0.16093%, 0.12440%, and 0.32863% lower than the results

of the EFO, MFLA, BSA, TLABC, SOS, and COA algo-

rithms. Figure 9a, b shows the convergence curves of all

the algorithms to the optimal solution and the values for the

voltage profiles of all load buses for all the algorithms were

within acceptable limits. The simulation results of all the

optimization algorithms given in Table 17 clearly demon-

strate that the optimized control variables remained within

the specified limits.

Table 18 The simulation results of the LRFDBCOA and other algorithms for Case 5

Parameters Min Max Case5

EFO MFLA BSA TLABC SOS COA LRFDBCOA

PTh1 (MW) 50 140 116.9263 89.8021 81.3880 53.9043 60.3017 87.1537 54.8208

PTh2 (MW) 20 80 54.8115 80.0000 69.6795 79.6307 64.6272 65.7082 72.7379

PTh8 (MW) 10 35 15.5077 35.0000 34.3415 33.8204 35.0000 24.5559 34.7664

PWS (MW) 0 75 31.3936 55.7682 65.3179 73.8541 73.0777 75.0000 73.3145

PPVS (MW) 0 50 37.9583 26.0253 34.1185 38.0535 50.0000 35.4802 49.3591

PPVSHS (MW) 0 50 33.2494 1.9118 2.6433 7.5989 3.6269 0 1.7407

V1 (p.u.) 0.95 1.10 1.0232 1.0018 1.0204 1.0007 0.9975 1.0038 0.9977

V2 (p.u.) 0.95 1.10 1.0277 1.0140 1.0240 1.0181 1.0082 1.0162 1.0136

V5 (p.u.) 0.95 1.10 0.9955 1.0101 1.0157 1.0159 1.0131 1.0167 1.0144

V8 (p.u.) 0.95 1.10 0.9936 1.0066 0.9966 1.0064 1.0063 1.0025 1.0074

V11 (p.u.) 0.95 1.10 1.0120 1.0166 0.9980 0.9936 1.0251 1.0192 1.0163

V13 (p.u.) 0.95 1.10 1.0345 1.0327 1.0242 1.0280 1.0382 1.0418 1.0370

T11 0.90 1.10 0.9978 1.0376 1.0048 1.0036 1.0390 1.0287 1.0252

T12 0.90 1.10 1.0115 0.9973 1.0313 1.0043 1.0117 0.9644 0.9716

T15 0.90 1.10 1.0021 0.9768 0.9639 0.9664 0.9793 0.9870 0.9794

T36 0.90 1.10 0.9574 0.9531 0.9534 0.9552 0.9526 0.9555 0.9555

QSH10 0 30 12.8399 30.0000 25.7331 21.2842 25.7771 12.3932 13.4644

QSH36 0 30 27.5002 10.7888 18.0184 16.8750 12.3288 17.5288 16.5713

QTh1 (MVAr) -50 140 -38.0235 -49.9897 -24.5498 -49.7509 -41.7567 -49.1666 -49.1776

QTh2 (MVAr) -20 60 56.8349 31.8624 33.3287 41.9907 17.9333 35.7177 33.5880

QTh8 (MVAr) -15 40 15.1769 37.0531 18.8045 38.6398 32.8215 33.7895 38.4453

QWS (MVAr) -30 35 23.5842 34.8644 33.9427 32.9989 34.7269 34.9824 33.5777

QPVS (MVAr) -20 25 4.9470 8.7534 0.0927 -1.5184 14.8768 10.7153 10.4784

QPVSHS(MVAr) -20 25 16.6061 14.3833 8.5100 11.1381 17.9022 20.7079 17.5753

Total cost with valve ($/h) 875.7828 914.1600 922.7228 937.7744 948.7740 931.5392 961.6882

Emission (t/h) 0.6142 0.1924 0.1489 0.1063 0.1054 0.1729 0.1036

Carbon Tax ($/h) 12.2848 3.8472 2.9790 2.1258 2.1074 3.4583 2.0727

Ploss (MW) 6.4469 5.1074 4.0888 3.4619 3.2334 4.4980 3.3395

VD (p.u.) 0.16941 0.12637 0.13058 0.12273 0.12268 0.12490 0.12187

L—index 0.1480 0.1471 0.1478 0.1475 0.1472 0.1473 0.1472
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(a) (b)

Fig. 10 a Convergence characteristics of the algorithms, b voltage profiles of the load buses for Case 5

Table 19 Comparison of the LRFDBCOA with results in the literature

Parameters Min Max MOEA/D-SF

(Biswas et al.

2018b)

SMODE-SF

(Biswas et al.

2018b)

MOEA/D-SF-Best PF

(Biswas et al. 2018b)

SMODE-SF-Best PF

(Biswas et al. 2018b)

LRFDBCOA

PTh1 (MW) 50 140 139.048 139.848 139.297 139.112 139.6864

PTh2 (MW)

POZ (of PTh2)
[30,40] [55,65]

20 80 53.763 55 55 55 53.9448

PTh8 (MW) 10 35 11.558 10 10.622 10 11.0491

PWS (MW) 0 75 52.616 53.391 52.38 53.714 52.2796

PPVS (MW) 0 50 17.593 16.818 17.348 16.167 17.5980

PPVSHS (MW) 0 50 15.319 14.989 15.328 16.057 15.3647

V1 (p.u.) 0.95 1.10 1.0785 1.0823 1.0806 1.0825 1.0897

V2 (p.u.) 0.95 1.10 1.0644 1.0672 1.0659 1.0646 1.0739

V5 (p.u.) 0.95 1.10 1.0436 1.0406 1.0384 1.0387 1.0493

V8 (p.u.) 0.95 1.10 1.0398 1.0345 1.0376 1.0316 1.0403

V11 (p.u.) 0.95 1.10 1.0876 1.0743 1.0866 1.0696 1.0445

V13 (p.u.) 0.95 1.10 1.0622 1.0668 1.0615 1.0633 1.0354

QTh1 (MVAr) -50 140 2.736 7.191 5.317 13.849 10.6035

QTh2 (MVAr) -20 60 21.153 27.547 26.047 21.72 28.6082

QTh8 (MVAr) -15 40 39.396 33.207 37.51 32.692 40.0000

QWS (MVAr) -30 35 27.549 24.238 22.139 24.92 26.5185

QPVS (MVAr) -20 25 24.836 20.801 24.903 20.113 -2.4839

QPVSHS(MVAr) -20 25 21.071 24.052 21.131 23.7 -10.6432

Total Cost with
Valve ($/h)

892.954 893.314 893.003 893.503 892.8925

Emission (t/h) 2.2772 2.3950 2.3134 2.2868 2.3704

Carbon Tax ($/h) – – – – 47.4086

Ploss (MW) 6.4975 6.6453 6.5753 6.6492 0.5226

VD (p.u.) 0.4567 0.4369 0.4464 0.4304 0.8213

L-index – – – – 0.1392
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6.4.5 Case 5: Minimizing of the voltage deviation

Minimizing the voltage deviation of the system was con-

sidered in Case 5. The simulation results of all the opti-

mization algorithms are given in Table 18. According to

these results, the optimal solutions obtained by the

LRFDBCOA, EFO, MFLA, BSA, TLABC, SOS, and COA

algorithms were 0.12187, 0.16941, 0.12637, 0.13058,

0.12273, 0.12268, and 0.12490, respectively. In other

words, the result of the proposed LRFDBCOA algorithm

was 28.06209%, 3.56097%, 0.871%, 0.70072%,

0.66025%, and 2.42594% lower than the results of the

other optimization algorithms. The convergence curves of

all the algorithms to the optimal solution and the voltage

profiles of all load buses for all the optimization methods

are shown in Fig. 10a, b.

6.4.6 Literature comparison and statistical analysis

The optimization process of the OPF problem in the liter-

ature comparison included the active power outputs of the

thermal generating units, wind, solar, and combined solar-

small hydro energy systems and the voltage values of the

generator buses (including the thermal generating units and

renewable energy systems). For the literature comparison,

the coefficients belonging to thermal generating units and

the line and bus parameters of the modified IEEE 30-bus

test system used were the same as those found in the ref-

erences (Biswas et al. 2018b). The simulation results of the

control and state variables of the proposed LRFDBCOA for

the OPF problem and of the MOEA/D-SF, SMODE-SF,

MOEA/D-SF-Best PF, and SMODE-SF-Best PF algo-

rithms recently reported in the literature are given in

Table 19. The best total cost achieved by the LRFDBCOA

was 892.8925 $/h, which was lower by 0.00688%,

0.04718%, 0.01237%, and 0.06832% than the optimal

solutions yielded by the algorithms in the literature,

respectively. The LRFDBCOA convergence curve to the

optimal solution is illustrated in Fig. 11 a,b showing that

the characteristic curve of the voltage profiles of all load

buses was within the acceptable minimum and maximum

limit values.

In this subsection, the five different test cases were

examined via the EFO, MFLA, BSA, TLABC, SOS, COA,

and LRFDBCOA algorithms, and the proposed

LRFDBCOA results efficiently for all cases on a modified

IEEE 30-bus test system using renewable energy systems.

Table 20 shows the minimum, mean, maximum, and

standard deviation values of all the optimization algorithms

used for the 30 runs in each case situation. Moreover, the

standard deviation of the proposed algorithm was small

when compared to the other algorithms, as shown in

Table 20. In addition, the Wilcoxon signed rank test for

successfully finding the optimum solution was applied to

the proposed LRFDBCOA and the results are shown in

Table 21.

The boxplot graphs of the algorithms allow easy

understanding and interpretation of their search

(a) (b)

Fig. 11 a The convergence curve of LRFDBCOA algorithm, b voltage profiles of the load buses
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performance. Boxplots of seven competing algorithms for

five different problem cases are shown in Fig. 12. Upon

examination, these boxplot graphs show that the minimum,

maximum, and mean/standard deviation margins of the

TLABC, SOS, COA, and LRFDBCOA were reasonable.

However, the EFO, MFLA, and BSA algorithms were

caught in local solution traps in all Cases. It is clear that

especially EFO and BSA algorithms experience premature

convergence in all cases. When all five of the boxplots are

examined, it is seen that the LRFDBCOA exhibited a more

stable and robust search than its competitors in all five

cases. Moreover, LRFDBCOA was able to find more

stable and better solutions than COA in all five cases. This

result indicates that LRFDBCOA could establish a strong

balance between exploitation–exploration. When compar-

ing the COA and LRFDBCOA algorithms, it is seen that

the boxplot graphs of the LRFDBCOA algorithm have

superior error and standard deviation values in all five

cases. This is clear evidence that LRFDBCOA improves

both exploitation and exploration capabilities of the base

algorithm.

7 Conclusions

This study presented an improved version of the COA

algorithm, LRFDBCOA, which was designed to be more

compatible with nature. Using the FDB selection method to

determine the cultural tendency of coyote packs and the use

of the Lévy flight method to mimic the birth of coyotes, the

balanced search performance, global exploration capabil-

ity, and local exploitation capabilities were improved.

Extensive experiments were conducted in which the search

performance of the proposed algorithm was tested and

verified. In the first stage of the experimental study, com-

parisons were made between 28 current and well-known

MHS algorithms found in the literature. For this purpose,

the performances of the algorithms were analyzed on 90

benchmark test problems in three different benchmark

suites using statistical test methods, and the five best-per-

forming algorithms were determined. In the second stage,

the LRFDBCOA was revealed to be the best among the

variations included in the study. In the third stage, com-

parisons between the LRFDBCOA and the top five algo-

rithms were presented. The LRFDBCOA outperformed its

competitors in 90 functions in four different types, three

different dimensions, and the classic, CEC 2014, and CEC

2017 benchmark suites. According to the nonparametric

statistical analysis results, the COA algorithm ranked ninth,

while the proposed LRFDBCOA ranked first. This indi-

cated that changes in the design of the COA algorithm had

been successful. This success was the result of a novel and

more effective COA design that of a bio-inspired MHS

algorithm using bio-inspired methods.

Table 20 Minimum, mean, maximum, and standard deviation of the

optimization algorithm simulation results for all cases

Methods Case 1 Case 2 Case 3 Case 4 Case 5

EFO

Min 797.8251 852.4095 826.3048 0.13940 0.16941

Mean 805.7329 856.9194 834.3373 0.14095 0.20837

Max 823.2660 873.0306 849.9712 0.1464 0.25456

Std 6.01260 3.53398 6.44491 0.00170 0.02284

MFLA

Min 794.9914 850.2734 817.9572 0.13749 0.12637

Mean 795.3909 850.3877 818.4493 0.13812 0.12991

Max 795.8850 850.5517 819.9820 0.13890 0.13253

Std 0.22689 0.07780 0.426108 0.00035 0.00154

BSA

Min 795.1813 850.4709 818.5020 0.13763 0.13058

Mean 796.5765 851.0571 819.8429 0.13842 0.13809

Max 797.9279 851.9135 822.2814 0.13936 0.15195

Std 0.61002 0.37684 1.02595 0.00038 0.00504

TLABC

Min 794.4727 850.1257 817.6381 0.13670 0.12273

Mean 794.5229 850.1374 817.8374 0.13718 0.12482

Max 794.6638 850.1542 818.6060 0.13785 0.12855

Std 0.04022 0.00759 0.38473 0.00027 0.00152

SOS

Min 794.4718 850.1514 817.6373 0.13665 0.12268

Mean 794.5194 850.1556 817.7352 0.13685 0.12338

Max 794.6876 850.1627 818.5937 0.13706 0.12423

Std 0.05076 0.00249 0.28336 0.000083 0.00035

COA

Min 794.9165 850.3883 817.2390 0.13693 0.12490

Mean 795.3913 850.6187 817.8163 0.13735 0.12954

Max 796.5997 851.1068 818.9504 0.13820 0.13689

Std 0.44087 0.17201 0.40438 0.00026 0.00293

LRFDBCOA

Min 794.4258 850.1252 816.9996 0.13648 0.12187

Mean 794.4498 850.1294 817.0072 0.13677 0.12375

Max 794.4739 850.1369 817.0175 0.1373 0.12698

Std 0.00966 0.00350 0.00437 0.00021 0.00149
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The LRFDBCOA algorithm proposed in the article

outperformed its competitors in different types of bench-

mark problems and proved its competitiveness. However, it

should be noted that there is no meta-heuristic search

algorithm capable of performing the best for all problems.

The proposed LRFDBCOA algorithm is a hybrid MHS

method. Therefore, the computational complexities of the

Levy, roulette, FDB methods have been added to the

computational complexity of the COA algorithm. This

situation caused the LRFDBCOA algorithm to have more

computational complexity compared to the BSA, SOS, and

TLABC algorithms. Besides, among the top six algorithms,

the computational complexity of LRFDBCOA is better

than the other two competing algorithms, MFLA and EFO.

When evaluated in terms of algorithm complexity,

LRFDBCOA ranked fourth among the six competitors with

the best search performance. On the other hand, in com-

parisons made over 90 benchmark problems, LRFDBCOA

is the algorithm with the best performance to find the

optimum solution. In particular, when the performance of

LRFDBCOA on the CEC 2014 and CEC 2017 benchmark

suites was examined, it was seen that it was a clear supe-

riority in pairwise comparisons against all of its competi-

tors. Moreover, the base algorithm COA ranked ninth

among 28 competing algorithms, while its improved ver-

sion, LRFDBCOA, ranked first. The proposed

LRFDBCOA demonstrated great success not only in

unconstrained benchmark problems, but also in a con-

strained and complex real-world optimization problem.

The proposed algorithm was applied to solve the

ACOPF problem, which included thermal, wind, solar, and

combined solar-small hydropower energy systems, and it

was able to outperform the other algorithms. In order to

confirm the effective performance of the LRFDBCOA, it

was tested on an IEEE 30-bus test system in different

operational situations. According to the simulation results,

it was proven by nonparametric statistical analysis methods

that the LRFDBCOA was superior to the EFO, MFLA,

BSA, TLABC, and SOS algorithms. It was clearly

demonstrated by these results that the proposed algorithm

was the best converging algorithm for the global solution.

In summary, the LRFDBCOA algorithm developed as a

result of this extensive and comprehensive study can con-

tribute to the literature as one of the most robust MHS

methods that can be used to solve constrained and uncon-

strained optimization problems of different types and

dimensions.

Source codes of the LRFDBCOA algorithm (proposed

method) can be accessed at this link: https://www.math

works.com/matlabcentral/fileexchange/87864-lrfdb-coa.

The link given above will be activated upon acceptance

of the article.

Table 21 Wilcoxon signed rank

test results for all test cases
EFO vs LRFDBCOA MFLA vs LRFDBCOA BSA vs LRFDBCOA

R ? R- p-value R ? R- p-value R ? R- p-value

Case number

Case 1 0 465 2 9 10–6 0 465 2 9 10–6 0 465 2 9 10–6

Case 2 0 465 2 9 10–6 0 465 2 9 10–6 0 465 2 9 10–6

Case 3 0 465 2 9 10–6 0 465 2 9 10–6 0 465 2 9 10–6

Case 4 0 465 2 9 10–6 0 465 2 9 10–6 0 465 2 9 10–6

Case 5 0 465 2 9 10–6 0 465 2 9 10–6 0 465 2 9 10–6

TLABC vs LRFDBCOA SOS vs LRFDBCOA COA vs LRFDBCOA

R ? R- p-value R ? R- p-value R ? R- p-value

Case number

Case 1 0 465 2 9 10–6 0 465 2 9 10–6 0 465 2 9 10–6

Case 2 39 426 69 9 10–6 0 465 2 9 10–6 0 465 2 9 10–6

Case 3 0 465 2 9 10–6 0 465 2 9 10–6 0 465 2 9 10–6

Case 4 20 445 12 9 10–6 142 323 62.683 9 10–3 2 463 2 9 10–6

Case 5 100 365 6.424 9 10–3 277 188 360.039 9 10–3 0 465 2 9 10–6
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(a) (b)

(c) (d)

(e)

Fig. 12 Boxplot characteristics of all algorithms for 30 runs: a Case 1, b Case 2, c Case 3, d Case 4, e Case 5
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