
Hakime Öztürk- PhD
- PostDoc Position at German Cancer Research Center
Hakime Öztürk
- PhD
- PostDoc Position at German Cancer Research Center
About
18
Publications
16,929
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,047
Citations
Introduction
Skills and Expertise
Current institution
Education
September 2012 - June 2014
Publications
Publications (18)
Despite decades of intensive search for compounds that modulate the activity of particular protein targets, a large proportion of the human kinome remains as yet undrugged. Effective approaches are therefore required to map the massive space of unexplored compound–kinase interactions for novel and potent activities. Here, we carry out a crowdsource...
Identification of high affinity drug‐target interactions is a major research question in drug discovery. Proteins are generally represented by their structures or sequences. However, structures are available only for a small subset of biomolecules and sequence similarity is not always correlated with functional similarity. We propose ChemBoost, a c...
Text-based representations of chemicals and proteins can be thought of as unstructured languages codified by humans to describe domain-specific knowledge. Advances in natural language processing (NLP) methodologies in the processing of spoken languages accelerated the application of NLP to elucidate hidden knowledge in textual representations of th...
Text-based representations of chemicals and proteins can be thought of as unstructured languages codified by humans to describe domain-specific knowledge. Advances in natural language processing (NLP) methodologies in the processing of spoken languages accelerated the application of NLP to elucidate hidden knowledge in textual representations of th...
Motivation: Prediction of the interaction affinity between proteins and compounds is a major challenge in the drug discovery process. WideDTA is a deep-learning based prediction model that employs chemical and biological textual sequence information to predict binding affinity. Results: WideDTA uses four text-based information sources, namely the p...
Identification of high affinity drug-target interactions (DTI) is a major research question in drug discovery. In this study, we propose a novel methodology to predict drug-target binding affinity using only ligand SMILES information. We represent proteins using the word-embeddings of the SMILES representations of their strong binding ligands. Each...
The identification of novel drug-target (DT) interactions is a substantial part of the drug discovery process. Most of the computational methods that have been proposed to predict DT interactions have focused on binary classification, where the goal is to determine whether a DT pair interacts or not. However, protein-ligand interactions assume a co...
Motivation:
The effective representation of proteins is a crucial task that directly affects the performance of many bioinformatics problems. Related proteins usually bind to similar ligands. Chemical characteristics of ligands are known to capture the functional and mechanistic properties of proteins suggesting that a ligand-based approach can be...
The identification of novel drug-target (DT) interactions is a substantial part of the drug discovery process. Most of the computational methods that have been proposed to predict DT interactions have focused on binary classification, where the goal is to determine whether a DT pair interacts or not. However, protein-ligand interactions assume a co...
The effective representation of proteins is a crucial task that directly affects the performance of many bioinformatics problems. Related proteins usually bind to similar ligands. Chemical characteristics of ligands are known to capture the functional and mechanistic properties of proteins suggesting that a ligand based approach can be utilized in...
Trastuzumab is a monoclonal antibody frequently used to prevent the progression of HER2+ breast cancers, which constitute approximately 20% of invasive breast cancers. microRNAs (miRNAs) are small, non-coding RNA molecules that are known to be involved in gene regulation. With their emerging roles in cancer, they are recently promoted as potential...
Motivation:
The amount of information available in textual format is rapidly increasing in the biomedical domain. Therefore, natural language processing (NLP) applications are becoming increasingly important to facilitate the retrieval and analysis of these data. Computing the semantic similarity between sentences is an important component in many...
During the last decades, the use of semantic text similarity has been adopted as a
major component in many Natural Language Processing tasks, including text retrieval,
summarization, and document categorization. Integration of semantic information acts
as a powerful tool for a better understanding and structuring of text. Among the many
domains tha...
Background
Molecular structures can be represented as strings of special characters using SMILES. Since each molecule is represented as a string, the similarity between compounds can be computed using SMILES-based string similarity functions. Most previous studies on drug-target interaction prediction use 2D-based compound similarity kernels such a...
β-lactamase mediated antibiotic resistance is an important health issue and the discovery of new β-lactam type antibiotics or β-lactamase inhibitors is an area of intense research. Today, there are about a thousand β-lactamases due to the evolutionary pressure exerted by these ligands. While β-lactamases hydrolyse the β-lactam ring of antibiotics,...