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Abstract: Crossbreeding, mutation breeding, and traditional transgenic breeding take much time to
improve desirable characters/traits. CRISPR/Cas-mediated genome editing (GE) is a game-changing
tool that can create variation in desired traits, such as biotic and abiotic resistance, increase quality and
yield in less time with easy applications, high efficiency, and low cost in producing the targeted edits
for rapid improvement of crop plants. Plant pathogens and the severe environment cause considerable
crop losses worldwide. GE approaches have emerged and opened new doors for breeding multiple-
resistance crop varieties. Here, we have summarized recent advances in CRISPR/Cas-mediated GE
for resistance against biotic and abiotic stresses in a crop molecular breeding program that includes
the modification and improvement of genes response to biotic stresses induced by fungus, virus, and
bacterial pathogens. We also discussed in depth the application of CRISPR/Cas for abiotic stresses
(herbicide, drought, heat, and cold) in plants. In addition, we discussed the limitations and future
challenges faced by breeders using GE tools for crop improvement and suggested directions for future
improvements in GE for agricultural applications, providing novel ideas to create super cultivars
with broad resistance to biotic and abiotic stress.

Keywords: CRISPR/Cas9; CRISPR/Cas12; CRISPR/Cas13; base editing; Prime Editing; biotic and
abiotic stresses

1. Introduction

Plants produce food, fuel, and feed, which are essential in daily human and animal
life for nourishment and growth. In the process of plant growth, they will be affected by a
variety of biological stresses (bacteria, viruses, fungi, and insects) and abiotic stresses [1–5].
Due to continuous global climate change and anthropogenic activity, the impact of abiotic
stresses on crop growth and development is becoming more serious. Abiotic stresses,
including drought, salinity, waterlogging, heat/cold, and heavy metals, significantly reduce
agricultural production worldwide. Therefore, the ability to breed new species that are
tolerant to various stresses in order to reduce yield loss will be a sustainable way to
overcome these obstacles and meet the growing needs of human beings. Different types of
biotic stresses involve a complex interplay among pathogens and host plants based on the
susceptibility/resistance of crop plants to any disease. The latest advances in molecular
tools have provided insights into a wide array of pathogen infection mechanisms and
their interactions with specific crop plants. The insertions/deletions (Indels) mutations by
artificial or natural phenomena might be involved in altering these interactions and hinder
the pathways involved in the mode of infection [6,7].

Traditional crop breeding such as crossbreeding is an effective method that has been
widely used to modify various plant species. Crop productivity and varieties can be
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increased effectively through crop breeding programs. In modern agriculture, the key
methodologies used for breeding purposes are transgenic breeding, mutation-breeding,
and GE-mediated breeding for crop improvement [8]. Cross-breeding and genetic recombi-
nation require years to introduce desirable alleles and increase variability [8]. Transgenic
breeding is easy and well-known, improving crop traits by the exogenous transformation
of genes into economically important elite varieties greatly shortens the breeding time.
Still, this method inserts specific genes into the genome at random locations through
plant transformation, which results in varieties containing foreign DNA. Compared to
crossbreeding, mutation-breeding, and traditional transgenic breeding, GE-mediated crop
breeding is fast, efficient, and accurate (Figure 1). GE improves a targeted trait in a very
fast and short time and exactly revising the target gene or regulatory sequence or chang-
ing the DNA and/or RNA bases in elite varieties. The current GE technique includes
meganuclease (MegN), zinc-finger nucleases (ZFNs), transcription activator-like effec-
tor nucleases (TALENs), and clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9) [7,9–11]. In 2013, genetic
modifications through the CRISPR/Cas9 method were developed in plants and revolution-
ized the field by eliminating the barriers to targeted GE. The CRISPR system has been used
in wheat, rice, tobacco, and Arabidopsis thaliana [12–25]. Till now, GE has been practiced in
more than 50 plant species, and it will revolutionize plant breeding [26–40] (Table 1).
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Figure 1. Evolution of crop breeding techniques. Crossbreeding takes a great deal of time (8–10 years)
to improve desirable characters/traits (in a particular species for disease tolerance or resistance)
through crossing an elite variety line with a donor variety line and selecting the new outstanding
offspring with desirable characters/traits. To introduce new progeny with desirable traits from the
donor variety line to the elite variety line, the selected offspring must be backcrossed to the elite
variety line for several years to remove undesirable related traits. In mutation breeding, mutations are
used to improve traits in the time (6–7 years) of the genome through chemical treatment or physical
irradiation to create novel genetic variations. Transgenic breeding is easy and well-known, improving
crop traits within (4–6 years) by the exogenous transformation of genes into economically important
elite varieties. Genome editing: improving a targeted trait in a very fast and short time (2–3 years)
and exactly revising the target gene or regulatory sequence or changing the DNA and/or RNA bases
in elite varieties.
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Table 1. CRISPR/Cas system applied in major plant species.

Plants Species Codon-Optimization Target Gene Cas Promoter sgRNA
Promoter

Mutation
Frequency (%) References

Arabidopsis thaliana Arabidopsis codon
optimized

ADH1, TT4,
and RTEL1 PcUbi4-2 AtU6-26 2.5–70.0 [28]

Arabidopsis thaliana Arabidopsis
codon-optimized ADH1 PcUbi4-2 AtU6 HDR 42.8 [29,30]

Arabidopsis thaliana Maize
codon-optimized

TRY, CPC,
and ETC2 2_35S U6-26 and

U6-29 42–90 [14]

Arabidopsis thaliana Human
codon-optimized FT and SPL4 AtICU2 AtU6 10.00–84.78 [15]

Arabidopsis thaliana
Streptococcus

thermophilus and
Staphylococcus aurous

ADH1 PcUbi4-2 AtU6-26 6.1–98.5 [16]

Citrus sinensis Human
codon-optimized CsPDS CaMV 35S CaMV 35 S 3.2–3.9 [41]

Nicotiana
benthamiana

Chlamydomonas
reinhardtii

codon-optimized
GFP CaMV 35S AtU6-26 N/A [17]

Nicotiana
benthamiana Plant codon-optimized NbFLS2 and

NbBAK1 35S AtU3 and
AtU6 N/A [42]

Nicotiana
benthamiana Plant codon-optimized NbPDS and

NbIspH 35S AtU6-26 75–85 [18]

Nicotiana
benthamiana

Plant and human
codon-optimized XT 35S U6-26 11 [19]

Nicotiana tabacum Plant codon-optimized NtPDS and
NtPDR6 2_35S AtU6-26 81.8–87.5 [20]

Nicotiana tabacum Plant codon-optimized mCherry 35S-PPDK U6 N/A [21]

Oryza sativa Rice codon-optimized CAO1 and
LAZY1 OsUbi OsU3 83–92 [22]

Oryza sativa Rice codon-optimized
OsPDS,

OsMPK2, and
OsBADH2

2_35S OsU6 HDR7.1–50 [12]

Oryza sativa Plant codon-optimized OsBEL 2_35S AtU6-26 2–16 [23]

Oryza sativa Rice codon-optimized
SWEET1a,
SWEET1b,

and SWEET11
OsUbi1 OsU6 12.5–100 [24]

Oryza sativa Rice codon-optimized
OsCPK6,

OsMPK16 and
OsCPK7

Ubi N/A 7.69–97.92 [43]

Oryza sativa Plant codon-optimized OsTubA2 Ubi OsU6 12.7 [44]
Oryza sativa Plant codon-optimized Wx Ubi-1 OsU3 N/A [45]
Oryza sativa Plant codon-optimized OsBADH2 Ubi OsU6 N/A [46]

Sorghum bicolor
Monocot

codon-optimized
synthetic

DsRED2 Rice Actin 1 OsU6 N/A [17]

Solanum
lycopersicum

Nicotiana
codon-optimized SHR and SCR 35S AtU6 N/A [31]

Solanum
lycopersicum Codon-optimized RIN Ubi4 AtU6 N/A [32]

Solanum
lycopersicum

Human
codon-optimized

SlPDS and
SlPIF4 CaMV 35S AtUBQ and

AtU6-26 72.7–100 [33]

Triticum aestivum Rice codon-optimized TaMLO 2_35S TaU6 26.5–38 [34]

Triticum aestivum Plant codon-optimized

TaMLOA1,
TaMLOB1,

and
TaMLOD1

Ub1 TaU6 23–38 [47]

Triticum aestivum Rice codon-optimized TaLOX2 2_35S TaU6 45 [34]
Zea mays Plant codon-optimized ZmIPK 2_35S ZmU3 16.4–19.1 [35]
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Table 1. Cont.

Plants Species Codon-Optimization Target Gene Cas Promoter sgRNA
Promoter

Mutation
Frequency (%) References

Zea mays Human and maize
codon-optimized ZmHKT1 2_35S

Ubi1AtU6-26,
OsU3, and

TaU3
N/A [14]

Zea mays Maize
codon-optimized PSY1 ZmUbi2 ZmU6 0.18–78.83 [36]

Zea mays Human
codon-optimized Zmzb7 2_35S ZmU3 19–31 [37]

Zea mays Maize
codon-optimized

LIG, MS26,
and MS45 Ubi ZmU6 HDR0.13–3.9 [38,48]

Zea mays Plant codon-optimized SHRUNKEN2,
GBSS (WX) CaMV 35S Ubi and U6-2 N/A [49]

Zea mays Plant codon-optimized ZmPLA1 CaMV 35S Ubi and U6-2 87.06 [39]
Zea mays Plant codon-optimized ZmBADH2 Ubi ZmU6 N/A [50]

Zea mays Plant codon-optimized ZmFCP1 and
ZmCLE7 ZmUbi U6 N/A [51]

Brassica oleracea Streptococcus pyogenes BolC.GA4.a 35S U6-26 10 [40]
Cucumis sativus Plant codon-optimized eIF4E 35S AtU6 N/A [52]

Cucumis sativus Plant codon-optimized
GmPDS11

and
GmPDS18

ZmUbi AtU6 and
GmU6 11.7–48.1 [25]

Gossypium hirsutum Plant codon-optimized GhCLA Ubi GhU6-7 1–94.12 [53]

Gossypium hirsutum Plant codon-optimized GhCLA and
GhPEBP Ubi GhU6-7 26.67–57.78 [54]

Gossypium hirsutum Plant codon-optimized DsRed2 and
GhCLA1 Ubi GhU6 66.7–100 [55]

Gossypium hirsutum Plant codon-optimized GhCLA Ubi GhU6-7 2.18–17.14 [56]
Gossypium hirsutum Plant codon-optimized GhFAD2 Ubi GhU6-7 69.57 [57]

Gossypium hirsutum Plant codon-optimized GhCLA and
GhPGF Ubi GhU6-7 68.4–89.7 [58]

Gossypium hirsutum Plant codon-optimized GhCLA and
GhPEBP CaMV 35S GhU6-7 64 [59]

Gossypium hirsutum Plant codon-optimized GhCLA CaMV 35S
and Ubi GhU6-7 44.6–97.2 [60]

Glycine max Soybean
codon-optimized

DD20 and
DD43 GmEF1A2 GmU6 HDR59–76 [61]

Based on the composition of the CRISPR locus, this system has been divided into two
classes: Class 1 requires multiple effector proteins with subtypes I, III, and IV, while class
2 requires only a single effector protein with subtypes II, V, and VI. The mode-of-action of
GE by site-directed nucleases (SDNs) is that once present in a cell by insertion/expression
and or transfection, the SDN is capable of cutting the genome at a targeted site. The
cellular DNA-repair mechanisms fix the cut sites either by the non-homologous end joining
(NHEJ) or by homology-directed repair (HDR). As NHEJ can be an error-prone process,
indels can appear at the respective genomic site, leading to a loss-of-function edited gene
sequence due to frameshift mutations. GE by using SDNs, can be categorized into three
types: SDN-1 introduces small insertions or deletions which carry no additional or re-
combinant DNA. SDN-2 introduces short insertions or editing of a few base pairs by an
external DNA-template sequence. The SDN-3, using a similar method to SDN-2, can be
considered transgenic due to the insertion of large DNA pieces [62,63]. Since its introduc-
tion, in recent years, constant improvements have been made to make CRISPR systems
easier and more suitable for different constraints, such as CRISPR/Cas9 [12,13,42,55],
CRISPR/Cas12a[53,58,64–66], CRISPR/Cas12b [56], CRISPR/Cas13 [67,68], base editing
tools [43,54,59,69–72], and CRISPR transcriptional activation (CRISPRa) [73–77] (Figure 2).
A new form of GE technology, known as Prime Editing (PE) has recently been developed
which is capable of achieving various forms of editing, for example, some base-to-base
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transfer, such as all transformations (C→T, G→A, A→G, and T→C) and transversion
mutations (C→A, C→G, G→C, G→T, A→C, A→T, T→A, and T→G), as well as small
indels without double-stranded breaks in the DNA. Since PE has enough versatility to
accomplish specific forms of editing in the genome, it has great potential to grow superior
crops for different purposes, including production, avoiding various biotic and abiotic
stresses, and enhancing the quality of plant products [45,46,49–51,57,70,71,78–80].
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Figure 2. The methodology of major CRISPR/Cas systems. (A) CRISPR/Cas9 induces double-
stranded breaks (DSBs) in DNA strands. (B) CRISPR/Cas12a cleaves the target DNA and introduces
DSBs. (C) CRISPR/Cas methods can achieve different research goals: (a–c) are results of non-
homologous end-joining NHEJ, and (d,e) are results of the homology-directed repair HDR repair
pathways using a donor DNA template. (D–F) Base editing tools mainly include Cytidine Base Editor
(CBE), Adenine Base Editor (ABE), and Prime Editor (PE). (D) CBE converts C-G base pairs to T-A
base pairs at the target site. (E) ABE converts A-T base pairs to G-C base pairs at the target site.
(F) PE is a new base editing system, which enables precise sequence substitution, insertion, and
deletion. PE mainly consists of a Cas9 nickase (nCas9), an engineered reverse transcriptase (RT), and
pegRNA. PegRNA includes PBS (Primer Binding Site) sequence and RT Template. (G) CRISPR/Cas13
consists of a Cas13, a crRNA, and a target RNA. Cas13:crRNA complexes bind target RNA and cleave
the target RNA. (H) CRISPR transcriptional activation (CRISPRa) consists of a nuclease-deficient Cas9
(dCas9) and transcription activation domain (TAD). CRISPRa activates the transcription of single or
multiple target genes.

CRISPR/Cas method has become the most popular among editing technologies and,
thus far, has revealed the greatest potential to overcome the developing challenges (such
as yield and biotic and abiotic stresses) of agriculture [9,81–83]. For example, mutations
conferring resistance to various diseases in lettuce also exist [84]. Resistance against
powdery mildew has been successfully acquired in barley by creating mutants at the
mildew resistance locus o (MLO) [85]. The mutation at MLO is remarkable because it
provides extraordinary, stable, and precise resistance for two decades against mildew
without breakage of alleles; this long-lasting resistance is because of gene knockout [86,87].
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Herein, we have summarized the recent developments and advances of CRISPR/Cas GE
techniques to enhance crop resistance in biotic resistance (fungi, viruses, and bacteria)
and abiotic (drought, salt, cold, and heat) resistance in sustainable agriculture, and dis-
cussed the advantages, limitations, and future prospects of the CRISPR/Cas system in
modern agriculture.

2. CRISPR/Cas Technique for Disease Resistance

Biotic stresses, such as bacterial, viral, and fungal diseases, as well as herbivores,
damage plant products every year, affecting 11% to 30% of worldwide agriculture pro-
duction [88]. Plant defense against pathogens can reduce the effects of disease on plant
growth and productivity, which is highly relevant to the lack of food availability in the
world with the increasing population. Improvements in new methods or GE techniques
have improved the new resistant crops, reducing yield losses due to plant defense. Until
now, CRISPR/Cas techniques were mostly used against viral infection and for fungal and
bacterial disease resistance (Figure 3). The CRISPR/Cas system has been used to develop
resistance to many pathogen species [26,89] (Table 2).

Table 2. CRISPR/Cas induced plant resistance against various diseases.

Plant Species Objective Gene Transformation Method
CRISPR/Cas9 Induced

Resistance against
Plant Pathogens

References

Nicotiana benthamiana CP, Rep, and IR Agrobacterium tumefaciens-mediated
transformation

Tomato Yellow Leaf
Curl Virus (TYLCV)
and Beet Curly Top

Virus (BCTV)

[90]

Nicotiana benthamiana LIR and Rep/RepA Agrobacterium tumefaciens-mediated
transformation

Bean Yellow Dwarf
Virus (BeYDV) [91]

Nicotiana benthamiana GFP1, GFP2, HC-Pro,
and CP

Agrobacterium tumefaciens-mediated
transformation

Turnip mosaic virus
(TuMV) [92]

Nicotiana benthamiana
and Arabidopsis thaliana

ORF1,2,3, CP and
30UTR

Agrobacterium tumefaciens-mediated
transformation

Cucumber mosaic virus
(CMV) and Tobacco
mosaic virus (TMV)

[93]

Nicotiana benthamiana
and Arabidopsis thaliana CP, Rep, and IR Agrobacterium tumefaciens-mediated

transformation
Bean Yellow Dwarf

Virus (BeYDV) [94]

Arabidopsis thaliana eIF(iso)4E Agrobacterium tumefaciens-mediated
transformation

Turnip mosaic virus
(TuMV) [95]

Arabidopsis thaliana eIF4E1 Agrobacterium tumefaciens-mediated
transformation

Clover yellow vein
virus (ClYVV) [96]

Solanum tuberosum P3, CI, NIb and CP Agrobacterium tumefaciens-mediated
transformation Potato virus Y (PVY) [97]

Solanum tuberosum eIF4E Agrobacterium tumefaciens-mediated
transformation Potato virus Y (PVY) [98]

Solanum tuberosum eIF4E1 Protoplast transformation Potato virus Y (PVY) [99]

Solanum lycopersicum SlPelo and SlMlo1 Agrobacterium tumefaciens-mediated
transformation

Tomato yellow leaf curl
virus (TYLCV) [100]

Solanum lycopersicum PMR4 Agrobacterium tumefaciens-mediated
transformation

Powdery mildew
(Oidium

neolycopersici)
[101]

Ipomoea batatas SPCSV-RNase3 Agrobacterium tumefaciens-mediated
transformation

Sweet potato chlorotic
stunt virus (SPCSV)

and sweet potato
feathery mottle virus

[102]

Hordeum vulgare Rep, MP, and LIR Agrobacterium tumefaciens-mediated
transformation

Wheat dwarf virus
(WDV) [103]
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Table 2. Cont.

Plant Species Objective Gene Transformation Method
CRISPR/Cas9 Induced

Resistance against
Plant Pathogens

References

Solanum lycopersicum JAZ2 Agrobacterium tumefaciens-mediated
transformation

Bacterial speck disease
(Pseudomonas syringae
pv. tomato DC3000)

[104]

Solanum lycopersicum SlMlo1 Agrobacterium tumefaciens-mediated
transformation

Powdery mildew
(Oidium neolycopersici) [105]

Solanum lycopersicum PL Agrobacterium tumefaciens-mediated
transformation

Fungal disease (Botrytis
cinerea) [106]

Solanum lycopersicum ACET1a and ACET1b Agrobacterium tumefaciens-mediated
transformation

Fungal disease (Botrytis
cinerea) [107]

Solanum lycopersicum SlDMR6 Agrobacterium tumefaciens-mediated
transformation

Broad-spectrum
disease resistance [108]

Vitis vinifera WRKY52 Agrobacterium tumefaciens-mediated
transformation

Gray mold (Botrytis
cinerea) [109]

Vitis vinifera MLO-7 PEG-mediated protoplast
transformation

Powdery mildew
(Erysiphe necator) [110]

Vitis vinifera VvMLO3 Agrobacterium tumefaciens-mediated
transformation

Powdery mildew
(Erysiphe necator) [111]

Oryza sativa SEC3A Protoplast transformation with
Cas9/gRNA expression binary

Rice blast disease
(Magnaporthe oryzae) [112]

Oryza sativa SWEET13 Agrobacterium tumefaciens-mediated
transformation

Bacterial blight
(Xanthomonas oryzae p

v.oryzae)
[113]

Oryza sativa OsSWEET11 and
OsSWEET14

Agrobacterium tumefaciens-mediated
transformation

Bacterial blight
(Xanthomonas oryzae p

v.oryzae)
[17]

Oryza sativa OSERF922 Agrobacterium tumefaciens-mediated
transformation

Rice Blast Magnaporthe
oryzae [114]

Oryza sativa eIF4G Agrobacterium tumefaciens-mediated
transformation

Rice tungro spherical
virus (RTSV) [115]

Oryza sativa Bsr-d1, Pi21 and
ERF922

Agrobacterium tumefaciens-mediated
transformation

Rice blast and bacterial
blight [116]

Oryza sativa SWEET11, SWEET13,
and SWEET14

Agrobacterium tumefaciens-mediated
transformation

Bacterial blight
Xanthomonas oryzae pv.

Oryzae
[117]

Oryza sativa Xa13promoter Agrobacterium tumefaciens-mediated
transformation

Bacterial blight
Xanthomonas oryzae pv.

Oryzae
[118]

Triticum aestivum TaMlo1 Agrobacterium tumefaciens-mediated
transformation

Powdery mildew
(Blumeria graminis f. sp.

Tritici)
[47]

Triticum aestivum TaEDR1 Agrobacterium tumefaciens-mediated
transformation

Powdery mildew
(Blumeria graminis f. sp.

Tritici)
[79]

Citrus sinensis LOB1 Agrobacterium tumefaciens-mediated
transformation

Citrus canker
(Xanthomonas citri
subspecies citric)

[119]

Citrus sinensis
Phytoene desaturase
(CsPDS CsLOB1)

promoter

Agrobacterium tumefaciens-mediated
transformation

(Carotenoid biosynthesis)
Citrus canker resistance [120]

Citrus sinensis CsWRKY22 Agrobacterium tumefaciens-mediated
transformation

Citrus canker
Xanthomonas citri subsp.

Citri
[121]

Malus domestica DIPM-1DIPM
2DIPM-4

PEG-mediated protoplast
transformation

Fire blight (Erwinia
amylovora) [110]
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Figure 3. Future applications of CRISPR/Cas in plants against the biotic and abiotic stress.
CRISPR/Cas represents the future of genome editing technology and the potential use of the
CRISPR/Cas system in various disciplines under biotic and abiotic stresses of agriculture. With the
maturity of genome editing (GE) technology and the development of new GE tools, the application
of CRISPR/Cas is becoming more and more extensive. CRISPR/Cas can now achieve gene knockout,
knock-in, and knock-up in plants, replacing a single base to cause amino acid changes, etc. There-
fore, CRISPR/Cas can be used to modify key genes of biotic and abiotic stresses, improving crop
growth and development and coping with various environmental stresses to create more germplasm
resources that meet human needs.

2.1. CRISPR/Cas-Mediated Fungal Resistance in Plants

Many fungal pathogens cause lethal diseases in crop plants, such as rust, mildew, rot,
and smut, which not only damage yield yearly in the biosphere but also damage the quality
of the product. CRISPR/Cas has improved mycological resistance in various crop species
based on the available information of the genomic mechanisms involved in crop-pathogen
interactions. Defined candidate genes and gene products have provided the potential
to increase plant defense against fungi [106,107]. In three crop varieties, RNA-guided
Cas9 endonuclease was used to target MLO loci, such as tomato (Solanum lycopersicum),
grapevine (Vitis vinifera), and wheat [47,100,105,110,111], and transgene-free plants have
been generated [122]. An MLO encoded protein is localized in the cell membrane and
contains seven transmembrane domains, which universally exist in all dicots and mono-
cots [123]. Plants carrying loss-of-function alleles (mlo) of the MLO, such as A. thaliana,
tomato, and barley, confer durable resistance against powdery mildew [124–126]. Us-
ing precision GE to target the MLO-B1 locus of the wheat genome to generate a 304K
deletion Tamlo-R32 mutant maintains wheat growth and yield while providing robust
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powdery mildew resistance [86]. Out of three MLO home alleles, one (TaMLO-A1) has been
mutated by CRISPR/Cas9 in triticum aestivum and displayed resilient resistance against
Blumeria graminis f. sp. tritici infection [47]. The CRISPR/Cas-mediated transgene-free and
self-pollinated tomato variety, which was developed by deleting the 48 bp fragment in the
SlMlo1 gene (out of 16 important SlMlo genes), offers resistance against powdery mildew
Oidium neolycopersici [105].

In grapevine, loss of VvMLO7 function by RNAi reduced sensitivity against pow-
dery mildew Erysiphe necator [127]. In parallel, the knockout of VvMLO7 and VvMLO3
using CRISPR/Cas9 enhanced resistance to powdery mildew in grapevine [110,111]. In
apple (Malus Domestica) protoplasts, RNP-based technology has been successfully used
to edit three (DIPM-1, DIPM-2, and DIPM-4) genes to create resistance against fire blight
Erwinia amylovora [110]. CRISPR/Cas9 scheme was used to target the VvWRKY52 tran-
scription factor with four guide RNAs. The results showed 21% biallelic mutations in
regenerated plants, and these plants confer resistance to the fungus Botrytis cinerea com-
pared with monoallelic mutant plants [109]. To accelerate the GE application in woody
plants, another approach based on transient leaf transformation together with disease
assays was first demonstrated by researchers in Theobroma cacao [128]. Pathogenesis-
Related 3 (NPR3) gene (the immune system suppressor) was targeted in cacao leaves,
transiently by CRISPR/Cas9 system, so the leaves showed enhanced resistance against
Phytophthora tropicalis. GE of a fungicide resistant gene PcMuORP1 by CRISPR/Cas9 eluci-
dates a novel selection marker for Phytophthora (a genus of oomycetes) species [129]. In rice,
CRISPR/Cas9-mediated disruption of OsSEC3A and OsERF922 genes confer resistance
against rice blast disease [112,114]. In addition, the pi21 gene in rice also induced durable
resistance to rice blast [116]. Furthermore, resistance to Magnaporthe oryzae disease in
rice was enhanced by generating the OsSEC3A mutants and showed a pleiotropic type of
phenotype with an increase in salicylic acid (SA) concentration, and several genes were in-
duced related to SA- and pathogenesis related genes [112]. To conclude, all these successful
fungal disease resistance results determined the advantage, efficacy, and potential of the
CRISPR/Cas-based editing system to enhance resistance in crop plants.

2.2. CRISPR/Cas-Mediated Viral Resistance in Plants

Plant viruses are among the most common pathogens and cause hazardous diseases
in a variety of economically important crops. There are five main groups based on viral
genomes characters: sense-single-stranded-RNA (ssRNA+), antisense-single stranded-RNA
(asRNA-), single-stranded-DNA (ssDNA), double-stranded-DNA (dsDNA), and double-
stranded-RNA (dsRNA) viruses [130]. A rolling-circle amplification system is required
to replicate the virus genome through recombination-mediated duplication or by a ds-
DNA replicative form [131]. Their genome holds a mutual fragment of 220 bp, which is
prearranged in one (A, monopartite) or two (A and B, bipartite) constituents [132]. The
Geminiviridae are a large family (over 360 species) of ssDNA plant viruses that cause signifi-
cant losses to agriculturally and economically important crop plants worldwide [131], such
as Malvaceae, Solanaceae, Fabaceae, Euphorbiaceae, and Cucurbitaceae [133]. The commercial
term for a large genus of geminiviruses is Begomoviruses. Begomoviruses mostly pro-
duce diseases in dicotyledonous plants, for example, Nicotiana tabacum and sweet potato
(Ipomoea batatas), and these viruses are mostly transmitted via the whitefly or leafhop-
per [103,134]. CRISPR/Cas9 system was used in Nicotiana benthamiana and A. thaliana to
target two different geminiviruses: Bean yellow dwarf virus (BeYDV) and Beet severe curly
top virus (BSCTV), respectively [91,94]. Recently, CRISPR/Cas9 techniques have also been
applied to attain resistance against Begomoviruses [90]. In the (BSCTV) genome, 43 candi-
dates were selected to target their coding and non-coding regions using CRISPR/Cas9 [94].
In inoculated leaves, virus accumulation was significantly reduced in all CRISPR/Cas9 con-
structs at variable levels. However, the highest resistance was observed in A. thaliana and
N. tabacum to virus infection displaying the maximum expression level of sgRNAs and Cas9.
Similar results have been detected by employing 11 sgRNAs in N. benthamiana, targeting
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the non-nucleotide sequence, Rep-binding sites, Rep motifs, and the hairpin of BeYDV [91],
and decreased up to 87% load of the targeted viral. A tobacco rattle virus (TRV) vector was
used to deliver the sgRNA molecules to the N. benthamiana, stably overexpressing the
Cas9 endonuclease to target the Tomato yellow leaf curl virus (TYLCV) genome [90]. In
that study, the CRISPR/Cas approach was effectively implemented to cleave and target the
virus genome during duplication to confer resistance against TYLCV [90,100,135] (Table 2).

By using specific sgRNAs, several genome loci of TYLCV (non-coding and coding
sequences) were targeted in their intergenic region (IR), the RCRII motif replication protein
(Rep), and the viral capsid protein (CP). Targeting the IR stem-loop invariant structure
showed the lowest viral accumulation and replication [90]. A similar CRISPR/Cas9 system
was established to target the geminiviruses monopartite beet curly top virus (BCTV), and
bipartite Merremia mosaic virus (MerMV), which possess a similar IR stem-loop sequence.
CRISPR/Cas9 system-edited BCTV and MerMV viruses displayed tempered symptoms,
indicating that combined resistance against various viral strains can be achieved by a single
sgRNA specific for the conserved region of the pathogen.

The traditional SpCas9 system recognizes only dsDNA, so the defense against RNA-
based viruses is difficult to attain. Nevertheless, the characterization and search for associ-
ated nucleases have steered to the discovery of LwaCas13a from (Leptotrichia wadei) and
FnCas9 from (Francisella novicida), which have the ability to bind and cut the RNA [102].
FnCas9 was reported to demonstrate resistance against RNA viruses [93]. The sgRNAs
designed to target the RNA of cucumber mosaic virus (CMV) and tobacco mosaic virus
(TMV) in N. benthamiana and A. thaliana transgenic plants showed a significant reduc-
tion in TMV and CMV by 40–80% compared to wild-type (WT) plants [93]. It demon-
strated that FnCas9-mediated application could be deliberated as a CRISPR interference
(CRISPRi) apparatus, similar to the mitigation of gene expression by catalytically inactive
proteins of SpCas9 [136]. A similar study was carried out with Cas13a for manipulating
the RNA genome of turnip mosaic virus (TuMV) using RNA-guided ribonuclease [92].
The minimum spread and replication of TuMV was observed in tobacco leaves by using
the most proficient virus interference, detected with CRISPR RNA excision of GFP2 and
HC-Pro genes.

Furthermore, the pre-CRISPR RNA was processed by Cas13 (due to its innate ability)
into functional CRISPR RNA to target many viral mRNAs simultaneously. This may
provide an alternative system to improve its efficiency distinctly [92,97,137]. A second
strategy is to achieve viral resistance by editing the specific plant genes that are responsible
for virus resistance traits [52,95,115]. RNA viruses need plant host factors to preserve their
normal life cycle, containing the eukaryotic translation initiation factors eIF4E, eIF4G, and
eIF(iso)4E [138]. Host susceptibility gene eIF4E was targeted at two different sites to create
resistance against plant potyviruses by CRISPR/Cas9 [52,98,99]. A similar approach in
A. thaliana plants induced site-specific mutations at eIF(iso)4E locus and conferred complete
resistance to single-stranded RNA potyvirus -TuMV by 1 bp deletions and 1 bp insertions
without any off-target modification [95]. Recently, resistance to rice tungro spherical virus
(RTSV) was developed by the mutagenesis in eIF4G alleles [115]. In addition, no negative
effects on the growth of mutant plants were observed in studies by Macovei et al. and Pyott
et al., although additional research should be conducted to verify and test the durability
and efficacy of recessive resistance edited plants [95,115].

2.3. CRISPR/Cas-Mediated Bacterial Resistance in Plants

Many pathogenetic bacteria cause diseases in crops, and the crops show several types
of symptoms [139]. Compared to fungal and viral resistance, few studies have been reported
about the utilization of CRISPR/Cas against bacterial diseases in crop plant species. The
Xanthomonas oryzae pv. Oryzae causes host gene expression to induce susceptibility by uti-
lizing the type III transcription-activator-like effectors (TALEs) system. The X. oryzae pv.
oryzae effector protein PthXo2 targets the host sucrose transporter gene OsSWEET13 and
is recognized as a sensitive gene for pathogen progression. Disease susceptibility was con-
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ferred by transferring the indica rice IR24 OsSWEET13 allele to japonica rice Kitaake, while
CRISPR/Cas9-mediated mutations in the allele offered resistance against bacterial blight [113].
Recently, a mutation in the promoter of three rice genes confers broad-spectrum resistance
against bacterial blight in rice [117]. CRISPR/Cas9 was used to edit the promoter of the Xa13,
a pluripotent gene for recessive resistance to bacterial blight in rice to obtain the highly resis-
tant rice that does not affect agronomic traits [118]. Downy mildew resistance 6 (DMR6) is a
well-known negative regulator of plant defense. In tomato, DMR6 ortholog SlDMR6-1 was
reported to be up-expressed during Pseudomonas syringae pv. tomato pathogen progression and
Phytophthora capsici infection [140]. By targeting the SlDMR6-1 (exon-3), the mutated plants
conferred wide-spectrum resistance against P. capsici, Xanthomonas gardneri, P. syringae, and
X. perforans [108,140,141]. The tomato bacterial speck disease (causal agent Pseudomonas syringae)
causes stomatal opening using coronatine (COR) to facilitate bacterial progression. This stom-
atal response in A. thaliana relies on AtJAZ2 (Jasmonate ZIM-domain-2), a COR co-receptor.
The JAZ2 does not have the C-terminal Jas domain (JAZ2∆jas) that avoids stomatal opening
using COR [142]. The homologous gene of AtJAZ2 in tomato is SlJAZ2 [104]. Resistance against
the model pathogen Pseudomonas syringae pv. tomato DC3000 (Pto) DC3000 was developed by
targeting the dominant JAZ2 repressor- SlJAZ2∆jas by using CRISPR/Cas9 technology that
prohibited stomatal opening. Improving and refining the CRISPR/Cas9 and CRISPR/Cas12a
systems provide a new opportunity to edit perennial crops species such as citrus to introduce
resistance against citrus greening disease [143].

After producing successful bacterial disease-resistant tomato and A. thaliana, the
CRISPR/Cas9 system recently effectively produced citrus bacterial canker (CBC) (causal
agent Xanthomonas citri subsp. citri (X. citri) resistant citrus plants. The X. citri is the most
widespread disease in commercially cultivated citrus [41]. CBC resistance was firstly
reported in Duncan grapefruit by altering the PthA4 effector binding elements in the pro-
moter of the Lateral Organ Boundaries 1 (CsLOB1) gene [119]. A significant decline in Xcc
symptoms was detected in the mutated lines with no additional phenotypic alterations
confirming the link between CBC disease susceptibility and CsLOB1 promoter activity Cit-
rus (Citrus sinensis) (Osbeck) Wanjincheng orange [120]. In Wanjincheng orange, editing of
CsWRKY22 by CRISPR/Cas9 reduces susceptibility to X. citri [121]. CBC disease resistance
was enhanced by deleting the EBEPthA4 sequence completely from both CsLOB1 alleles,
and no additional changes were observed in plants with altered CsLOB1 promoter. Recently,
the CRISPR/Cas9-FLP/FRT system has been successfully induced in apple cultivars to
reduce fire blight susceptibility [144]. In conclusion, these fruitful results demonstrate that
CRISPR/Cas has the potential to not only create bacterial resistance in annual and biennial
crop species but also confer durable bacterial disease resistance in perennial crop plants.

3. CRISPR/Cas-Mediated Abiotic Stress Resistance in Plants

Abiotic stresses, such as salinity, drought, heavy metals, temperature, etc., pose a
significant challenge to crop production and result in a substantial decrease in yield world-
wide [145]. Climate change threatens agriculture and food security. Excessive greenhouse
gas emissions are responsible for the frequent occurrence of high temperatures and drought
stress in crop plants [146,147]. It is predicted that a 1 ◦C increase in atmospheric tem-
perature will reduce the yield of maize, rice, and wheat by 21–31%, 10–20%, and 6%,
respectively [147–149]. Notably, the negative effects of such abiotic stresses are more severe
in South Asia and Africa, where food scarcity is already prevalent [146]. Thus, the breeding
of climate-smart crops that can tolerate abiotic stresses would be a sustainable strategy for
addressing these challenges.

3.1. CRISPR/Cas-Mediated Tolerance against Abiotic Stress in Plants

GE techniques, such as CRISPR/Cas systems, have significantly revolutionized crop
improvement by enhancing resistance against abiotic stresses [145,150,151]. By activating
or suppressing the target genes, GE technology is also an important tool for understanding
the functions of genes involved in the resistance against abiotic stresses in plants [152,153].



Cells 2022, 11, 3928 12 of 28

CRISPR/Cas9 GE techniques have been applied to knockout the negative regulator of salt
stress responses in the A. thaliana, Solanum lycopersicum, Triticum aestivum and Hordeum vulgare
which are related to drought and salt stress tolerance [154–161]. Modified tomato variety
lines showed highly severe symptoms on leaves (leaf wilting) in drought stress conditions
compared to WT tomato plants. Knockout of Auxin Response Factor4 (SlARF4) in tomato
using CRISPR/Cas9 exhibits strong salt tolerance [155]. Using CRISPR/Cas9 to generate
OsDST varieties in indica mega rice cultivar MTU1010 is significant for improving drought
and salt tolerance [162]. In tomato, another CRISPR/Cas9-mediated GE for heat tolerance
has been accomplished by targeting the SlAGAMOUS-LIKE6 (SIAGL6) gene, resulting in
enhanced fruit setting under heat stress [163]. Moreover, OsANN3 and OsMYB30 genes
induce knockdown through CRISPR/Cas9 in japonica rice, which enhances the resistance
mutant line against cold stress [164,165]. In a refined study, nuclease-deficient Cas9 (dCas9)
or nickase Cas9 (nCas9) was fused to Petromyzon marinus cytidine deaminase (PmCDA1)
to make point mutations in rice, showing resistance against herbicide in the edited plant
lines [65]. In addition, mutagenesis in SiNPR1 by CRISPR/Cas9 was shown to minimize
drought stress tolerance in tomato cultivars [166].

Reactive oxygen species (ROS) serve as signaling molecules to regulate gene expres-
sion and plant defense against viral pathogens and symbiotic nitrogen fixation between
soil rhizobia and the plants [167–169]. However, overproduction of ROS, which is a typical
response of plants to oxidative and abiotic stresses, can cause a variety of growth abnor-
malities, including a decrease in photosynthesis rate, increased cell death, and even male
sterility, resulting in reduced crop yield [145]. Dozens of genes encoding antioxidant en-
zymes, such as glutathione S-transferases (GSTs), catalases (CATs), glutathione reductases
(GRs), superoxide dismutase (SOD), and numerous peroxidases (PODs), are involved in
the elimination of ROS molecules. These genes are known as the R genes and contribute to
abiotic stress tolerance [170]. Molecular breeders and geneticists have identified a number
of T genes related to abiotic stress tolerance and incorporated them into plants to achieve
tolerance. The CRISPR/Cas9 system was recently used to develop genetic plants that
constitutively overexpress the maize ARGOS8 gene by altering the natural promoter sides
of the ARGOS8 gene with the GOS2 promoter [171] (Table 3). The ARGOS8 edited line
showed vital alterations and improvement in grain production under field conditions
using drought stress without any production drawback under natural conditions [171].
Knockout of the soybean flowering major gene GmPRR37 using CRISPR/Cas9 exhibited
early flowering under natural long-day conditions, providing regionally adapted cultivars
for specific regions [172]. Yield potential can be increased through manipulating an ARE1
ortholog related to nitrogen utilization efficiency in wheat by CRISPR/Cas9 [173]. Simulta-
neous knockout of BnaMAX1 alleles resulted in increased semi-dwarfing and branching
phenotypes and more silique production, resulting in improved yield per plant relative
to WT, which provides desirable germplasm for further breeding of high yield in rape-
seed [174]. Moreover, contaminations of arable soils increased the heavy metals toxicity
in crops. However, breeders have improved rice cultivars with a low level of arsenic,
cadmium, and radioactive cesium by knocking out the OsARM1, OsNRAMP5, OsNRAMP1,
and OsHAK1 genes [175–179]. Recently CRISPR/Cas9 knockout abscisic acid receptor gene
(OsPYL) in rice showed increased grain yield in high-temperature stress tolerance and
reduced pre-harvest developing plants compared with WT [180]. Additionally, targeted
mutagenesis of the OsRR22 and OsmiR535 via CRISPR/Cas9 confers salinity tolerance, and
the OsMPT3 gene is an important gene for osmotic regulation in rice [181–183].
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Table 3. CRISPR/Cas induced resistance against abiotic stress.

Plant Species Objective Gene Transformation Methods

CRISPR/Cas9 Induced
Resistance in Plant

against Herbicide and
Abiotic Stress

References

Solanum lycopersicum SlMAPK3 Agrobacterium tumefaciens-mediated
transformation Drought resistance [154]

Solanum lycopersicum SlARF4 Agrobacterium tumefaciens-mediated
transformation

Salinity and Osmotic
tolerance [155]

Solanum lycopersicum SlHyPRP1 Agrobacterium tumefaciens-mediated
transformation salt stress-tolerant [156]

Solanum lycopersicum SlAGAMOUS-LIKE 6 Agrobacterium tumefaciens-mediated
transformation Heat resistance [163]

Zea mays ALS2 Agrobacterium tumefaciens-mediated
transformation Herbicide resistance [184]

Zea mays ZmALS1, ZmALS2 PEG-mediated protoplast
transformation Herbicide resistance [80]

Zea mays ARGOS8 Agrobacterium tumefaciens-mediated
transformation

Improve yield under
drought resistance [171]

Arabidopsis thaliana OST2 Agrobacterium tumefaciens-mediated
transformation

Reduced transpiration,
stomatal closure, and

abiotic stress
[150]

Arabidopsis thaliana UGT79-B2, and B3 Agrobacterium tumefaciens-mediated
transformation

Oxidative stress, salt and
cold tolerance [159]

Arabidopsis thaliana AVP1 PEG-mediated transformation Drought tolerance [77]

Oryza sativa OsEPSPS Particle bombardment
transformation glyphosate resistance [185]

Oryza sativa ALS Agrobacterium tumefaciens-mediated
transformation Herbicide tolerant [186]

Oryza sativa ALS-FTIP1e Agrobacterium tumefaciens-mediated
transformation

Imazamox herbicide
resistance [65]

Oryza sativa OsSAPK2 Agrobacterium tumefaciens-mediated
transformation Drought tolerance [153]

Oryza sativa OsAnn3 Agrobacterium tumefaciens-mediated
transformation Cold resistance [145]

Oryza sativa OsRR22 Agrobacterium tumefaciens-mediated
transformation Salinity tolerance [182]

Oryza sativa OsDST Agrobacterium tumefaciens-mediated
transformation

Drought and salt
tolerance [162]

Oryza sativa OsbHLH024 Agrobacterium tumefaciens-mediated
transformation Salt stress resistance [157]

Oryza sativa OsGTγ-2 Agrobacterium tumefaciens-mediated
transformation Salt stress resistance [158]

Oryza sativa OsmiR535 Agrobacterium tumefaciens-mediated
transformation

Drought and salinity
stress tolerance [183]

Oryza sativa PPO1 and HPPD PEG-mediated protoplast
transformation Herbicide resistance [187]

Oryza sativa OsACC Agrobacterium tumefaciens-mediated
transformation Herbicide resistance [188]

Oryza sativa OsTubA2 Agrobacterium tumefaciens-mediated
transformation

Dinitroaniline herbicide
resistance [44]

Oryza sativa OsMYB30 Agrobacterium tumefaciens-mediated
transformation Cold tolerance [165]

Oryza sativa OsHAK1 Agrobacterium tumefaciens-mediated
transformation

Heavy metal pollution
resistance [175]

Oryza sativa OsNRAMP5 Agrobacterium tumefaciens-mediated
transformation

Heavy metal pollution
resistance [176]

Oryza sativa OsNRAMP1 Agrobacterium tumefaciens-mediated
transformation

Heavy metal pollution
resistance [177,178]
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Table 3. Cont.

Plant Species Objective Gene Transformation Methods

CRISPR/Cas9 Induced
Resistance in Plant

against Herbicide and
Abiotic Stress

References

Triticum aestivum TaALS-P174 particle bombardment
transformation Herbicide Resistance [189]

Triticum aestivum TaHAG1 Agrobacterium tumefaciens-mediated
transformation Salt tolerance [160]

Hordeum vulgare ITPK Agrobacterium tumefaciens-mediated
transformation Salt stress resistance [161]

Solanum lycopersicum SlNPR1 Agrobacterium tumefaciens-mediated
transformation Drought tolerance [166]

Brassica napus Two BnaMAX1
homologs

Agrobacterium tumefaciens-mediated
transformation Increases yield [174]

Brassica napus ALS Agrobacterium tumefaciens-mediated
transformation Herbicide resistance [190]

Glycine max GmPRR37 Agrobacterium tumefaciens-mediated
transformation Regional adaptation [172]

Citrullus lanatus ALS Agrobacterium tumefaciens-mediated
transformation

Bensulfuron herbicide
resistance [191]

3.2. CRISPR/Cas-Mediated Herbicide Resistance in Plants

Unwanted weeds grow everywhere in main field crops and compete with the uptake
of nutrients and fertilizers. In this situation, the yield of main crops is significantly reduced,
which imposes a huge loss to growers around the world. Key herbicides, such as chlorsul-
furon, glufosinate, and glyphosate, as well as many selective herbicides, are involved in
inhibiting the acetolactate synthase (ALS), 4-hydroxyphenylpyaunate dioxygenase (HPPD),
acetyl coenzyme A carboxylase (ACCase), protoporphyrinogen oxidase (PPO), and phy-
toene desaturase (PDS) [192–194]. The use of excessive herbicides damages the crops due
to low stress resistance against herbicide chemicals.

Currently, herbicides such as chlorsulfuron are widely used to target ALS1 and ALS2
genes [186]. The CRISPR/Cas9-edited ALS1 gene increases chlorsulfuron herbicides resis-
tance in soybean crops [61]. The rice gene OsEPSPS (5-enolpyruvylshikimate-3-phosphate
synthase) was replaced/knocked-in using CRISPR/Cas9 to confer glyphosate resistance in
plants [185]. Similarly, point mutations were introduced via CRISPR/Cas9 into the rice ALS
gene, conferring herbicide tolerance [48]. Moreover, CRISPR/Cas9 was used to induce the
loss-of-function mutation in maize ALS2, conferring tolerance against the herbicide [184].
A CRISPR/Cas9-mediated C287T point mutation in ALS resulted in an amino acid substi-
tution of A96V and two-point mutations (G590 and W483) in FTIP1e, conferring resistance
against imazamox [65]. Further manipulation of the CRISPR/Cas system has led to the
engineering of herbicide resistance, a single mutation in the ALS gene as the target for base-
editing [191]. Sufficient herbicide resistance is conferred in rice by designing large-scale
genomic inversion or duplication using CRISPR/Cas9 [187]. The base editors ABE, CBE,
and PE have recently been used to improve herbicide resistance [44,80,188,190]. Novel
transgene-free herbicide-resistant watermelon varieties were created by base-editing with
the potential of immediate field application to facilitate broadleaved weed control [191].
Herbicide-resistant mutants were obtained by direct evolution of the rice OsACC gene
through dual cytosine and adenine base editors STEME-1 and STEME-NG [188]. Moreover,
the M268T mutation generated in the endogenous OsTubA2 gene by ABE endowed dini-
troaniline herbicide resistance in rice without inducing fitness cost [44]. CBE was employed
to target ZmALS1 and ZmALS2 generating sulfonylurea herbicide-resistant mutants in
maize [80]. The A3A-PBE system was developed for conferring herbicide resistance in
allotetraploid Brassica napus [190]. The above studies recommend that each crop needs a
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particular GE technique and perspective of genome-engineering to improve desired traits,
agronomic traits, and yield under abiotic stress (Table 3).

4. CRISPR/Cas Systems of Advances, Limitations, and Prospective Applications

Although the CRISPR/Cas systems exhibit powerful ability in crop genetic improve-
ment, some limitations still need to be overcome in this field [195–200]. SpCas9 requires a
5′-NGG-3′PAM immediately adjacent to the 20 nt DNA target sequence because it can only
recognize NGG PAM sites, which limits its effectiveness. Although this restriction is vital,
the goal is to turn off the gene through selective mutagenesis in any situation (Figure 4).
Therefore, the main hard work to develop Cas9-like systems is underway, changing PAM
sequences or causing the single CRISPR/Cas9 from Streptococcus pyogenes to identify other
PAMs. For example, xCas9 is changed from SpCas9, which has been altered to identify
a wide range of PAM sequences with GAT, NG, and GAA in mammalian cells [201]. Ex-
panding the scope of CRISPR/Cas9-mediated GE in plants using an xCas9 and Cas9-NG
hybrid [202]. A recently developed variant of SpCas9 can target an expanded set of NGN
PAMs, and this enzyme was optimized for developing a near-PAMless SpCas9 variant
named SpRY (NRN > NYN PAMs). SpRY nuclease and base-editor variants are capable of
targeting almost all PAMs [203].

The delivery methods of CRISPR/Cas are divided into direct and indirect approaches. Di-
rect methods include polyethylene glycol (PEG)-mediated delivery and bombardment-mediated
delivery. Indirect methods include the floral dip method and Agrobacterium tumefaciens-mediated
delivery. Direct gene delivery methods are mostly used for the transient expression of the
genes. Indirect delivery based on Agrobacterium tumefaciens-mediated genetic transforma-
tion is mostly used in plants [204]. Nearly all GE tools in plants are based on tissue culture
and the plant regeneration process. However, the regeneration of many plant species
through tissue culture is a genotype dependent, time-consuming, cost-intensive, and labori-
ous process. CRISPR/Cas GE is difficult and challenging in forest woody plants because of
their lengthy propagation times, limited mutant resources, and low genetic transformation
efficiency [205]. Therefore, to achieve efficient and rapid delivery of the CRISPR/Cas
system to plants, the use of a suitable carrier can be considered depending on the purpose
of delivery. Delivery vectors are available as plasmid and viral and non-viral vectors. Viral
vectors that have been used in plants include bean yellow dwarf virus, tobacco mosaic
virus, potato virus X, and cowpea mosaic virus [60,206]. However, the capacity of viral
vectors limits the application of large fragment sequences or even large Cas proteins, and
the use of viral vectors may stimulate the defense of the plant immune system. These
non-viral vectors include a variety of materials, such as inorganic nanoparticles, carbon
nanotubes, liposomes, protein- and peptide-based nanoparticles, and nanoscale polymeric
materials. These novel non-viral vectors are very promising for future GE applications due
to their small size, low toxicity, ability to maintain biological activity, and ability to cross
many physical barriers in the domain. For citrus and grapes, Ribonucleoprotein RNP and
nano-biotechnology transgene-free editing methods, and transient expression of CRISPR
genes, can generate transgene-free and target gene edited plants. However, the efficiency is
still low, and intensive labor is required in order to improve the current technology and
develop new technologies [207].
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Figure 4. Limitations of the current CRISPR/Cas system. Using the CRISPR/Cas system in plants re-
quires Agrobacterium tumefaciens-mediated transformation, but it is a time-consuming, cost-intensive,
and laborious process. The selection of target genes is very limited. On the one hand, the function
of resistance genes is redundant, and knocking down a gene alone cannot achieve resistance. Con-
versely, the knockout of resistance genes is restricted by PAM, and sequences close to PAM must
be selected. CRISPR/Cas may introduce random off-target mutations in the plant genome. The
commercialization of CRISPR-edited crops has been disrupted as Cas proteins take many generations
to be completely isolated and obtain transgene-free crops. Currently, the homologous recombination
pathway (knock-in/gene replacement) is less efficient, and the efficiency of homologous donor se-
quence transformation into plant cells is low, resulting in low difficulty and efficiency of knock-in.
Therefore, the use of CRISPR/Cas-mediated homologous recombination in plants still has a long way
to go for efficient gene knock-in.
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CRISPR/Cas9 techniques can apply to other members of the kingdom Plantae, such
as bryophytes, algae, and pteridophytes. The model species liverwort has emerged as
an example of plant development, and the application of CRISPR/Cas9-mediated tar-
geted mutagenesis studies has been used in the molecular breeding of liverwort Foliage
(Marchantia polymorpha L.) [208]. Moreover, new fungus, bacteria, and virus species may be
found in nature, or known ones may be sensibly changed [209].

CRISPR/Cas9 may introduce off-target mutations in plants [9,140]. Off-targets can lead
to chromosomal rearrangements, causing damage at incompletely matched genomic loci,
and limiting the use of GE for therapeutic purposes. Off-target effects may also lead to loss
of functional gene activity, resulting in diverse physiological or signaling abnormalities [9].
Recently, whole-genome sequencing has been applied to recognize the cleavage at off-target
sites by Cas9 or Cas12a system nucleases in A. thaliana [210], cotton [211] and rice [212].
Bioinformatics tools, such as CCTop (https://crispr.cos.uniheidelberg.de), Cas-OFFinder
(http://www.rgenome.net/cas-offinder/), DISCOVER-Seq [213], Systemic evolution of
ligands by exponential amplification (SELEX), Integrase-deficient lentivirus (IDLV) cap-
ture, High-throughput genomic translocation sequencing (HTGTS), and so on, have been
established to manage with this issue [214]. In addition, significant advancements have
been made to reduce off-target action of CRISPR/Cas9. For instance, HF-Cas9 [215], Hy-
paCas9 [216], eSpCas9 [217], and Sniper Cas9 showed a significant reduction in off-target
levels while absorbent on target action [218]. Improving current delivery methods and
developing new methods will reduce barriers to the low-cost application of gene editing in
crops (Figure 4). To increase the range of delivery methods, the Agrobacterium, vector and
plant genes might be engineered to increase the efficacy of Agrobacterium tumefaciens-mediated
transformation [219].

CRISPR/Cas9 system has minimal effects on the control of RNA and DNA viruses.
Consequently, the advancement of an acceptable and effective CRISPR system is required
to overcome such types of issues against viruses. Findings indicate that the Cas13 proteins
(Cas13a, Cas13b, and Cas13c) have high potential as robust RNA regulators for RNA
viruses [93]. For example, CRISPR/Cas13a conferred RNA virus resistance in monocot
and dicot plants [182]. Targeted site gene editing was performed for designing eIF4E
resistance alleles that play essential roles in resistance against virus [96,220], and altering
the genes, which are responsible for increased metabolites (phytochemicals) that will
boost abiotic and biotic stress tolerance in plants, such as drought stress tolerance, disease
resistance (fungi, virus, bacteria, and phytoplasma), enhanced nutritional status, and
reduced generation [221,222].

Homologous recombination (knock-in/gene replacement) mediated by CRISPR/Cas
has been achieved in plants, but the editing efficiency is low [223,224]. Therefore, there
is still a long way to go to achieve efficient gene knock-in by CRISPR/Cas-mediated
homologous recombination in plants. The identification of more susceptible genes (S genes)
in a crop genome with the new genomics strategy as the target of CRISPR systems can
be achieved and remove unwanted traits [101]. On the contrary, more resistant genes (R
genes) need to be cloned and knocked-in the crop genome by an improved CRISPR/Cas
system via a homologous recombination-mediated DNA repair system. The molecular
weight of the Cas9/Cas12a proteins is relatively large, so they cannot be packed into viral
vectors for the direct delivery of Cas proteins into the plant cells without plant tissue
culture. Scientists need to design several sgRNAs in one vector for multiple gene editing
since the stress tolerance trait of the plant is determined by multiple genes. Accessibility of
next-generation sequencing technologies will offer more adequate and accurate genome
data for the assessment of target genes selection and sgRNA design in various cell types
and plant species. The efficiency and accuracy of newly generated genome editing tools,
including Base editors and Prime editor, are still far from satisfactory.

https://crispr.cos.uniheidelberg.de
http://www.rgenome.net/cas-offinder/
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5. Conclusions and Future Perspective

Since the 1990s, various genetically modified organisms (GMO), including carrot,
canola, Bt-cotton, Bt-potato, glyphosate-resistant soybean, and strawberry, have been
approved to be released for beneficial usages, such as food, feed, and processing in many
countries. With time, commercial cultivation of genetically modified (GM) food crops, for
example, soybeans, corn, and cotton, has expanded in some countries, particularly the
United States, Brazil, Argentina, India, Canada, and China. However, public skepticism
about accepting GM crops is due to concerns that GM may have adverse effects on the
environment or human health [225]. In China, a country with conservative attitudes
towards crops and food, nearly 80% of the Chinese public accepts foods labeled as GM-
free, about 40% accept GM-labeled foods, and those who are more aware of GM products
are more likely to accept GM-labeled foods [226]. Using GE promises to produce crops
with high yields, high quality, and good disease resistance. However, public attitudes
toward GMOs suggest that people are initially unlikely to accept these plants [225]. People
do not accept GE plants because they cannot tell the difference between GMO and GE
plants [62,199]. GE plants alter plant traits by introducing small mutations such as deletions,
insertions, and targeted mutations using CRISPR/Cas. These GE plants have resulted in
significant improvements in their agronomic traits. The mutations produced by GE plants
do not leave any foreign DNA behind. Additionally, the gRNA (guide RNA) used in the
CRISPR/Cas system is not rDNA (recombinant DNA), so GM and GE are fundamentally
different. In recent years, the use of CRISPR/Cas to generate transgene-free plants that
obtain the expected agronomic traits without introducing any foreign DNA has been widely
reported, thus exempting them from the definition and regulation of GMOs. Characterized
by high target programmability, specificity, and robustness, CRISPR/Cas enables precise
genetic manipulation of crop species, providing opportunities for creating germplasm
with beneficial traits and developing novel, more sustainable agricultural systems [227].
In recent years, CRISPR/Cas has worked as a revolutionary tool with high efficiency to
perform targeted GE, and it continues to progress rapidly through the invention of new
CRISPR-based editing tools to achieve different goals of genome engineering, such as
higher yield, pathogen-resistance, improved nutrients efficiency, and abiotic tolerance
in crop species [189,228–232]. Many countries such as the United States, Canada, Brazil,
Argentina, and Australia have exempted GE plants of SDN1-type and derived food and
feed from their GMO legislation or allowed commercialization based on a simplified case-
by-case procedure [233,234]. This will trigger the development of new plant varieties and a
range of genome-edited plant products with minor genetic changes are expected to enter
the global commodity market soon [63]. As science and technology advance, researchers
will further develop various GE tools to meet people’s needs and produce high-quality and
safe plants. The government must develop appropriate regulations to regulate the safety of
GE plants. The government should also facilitate communication between the public and
developers. If people understand the benefits of genome editing-mediated plant breeding
and trust the regulations, such transgene-free plants can be gradually integrated into society.
A sustainable future for agriculture can be imagined using this new and powerful GE tool.

As researchers, we must not avoid the challenges of providing clarity about CRISPR
breeding methods, which promise to be significant for achieving public trust and develop-
ing regulatory policies to govern the use of the CRISPR system in agriculture. Whatever
challenges remain, the newly developed CRISPR methods are just the tip of the iceberg.
These powerful new plant breeding tools can provide a sustainable future for agriculture,
and with that possibility comes a responsibility to alleviate the public and scientific worries
regarding its usage.
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