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Abstract— This paper presents the stability analysis of 

fuzzy-model-based control systems.  Staircase membership 

functions are introduced to facilitate the stability analysis.  

Through the staircase membership functions approximating 

those of the fuzzy model and fuzzy controller, the information of 

the membership functions can be brought into the stability 

analysis.  Based on the Lyapunov stability theory, stability 

conditions in terms of linear matrix inequalities are derived in a 

simple and easy-to-understand manner to guarantee the system 

stability.  The proposed stability analysis approach offers a nice 

property that includes the membership functions of both fuzzy 

model and fuzzy controller in the LMI-based stability conditions 

for a dedicated fuzzy-model-based control system.  Furthermore, 

the proposed stability analysis approach can be applied to the 

fuzzy-model-based control systems of which the membership 

functions of both fuzzy model and fuzzy controller are not 

necessarily the same.  Greater design flexibility is allowed for 

choosing the membership functions during the design of fuzzy 

controllers.  By employing membership functions with simple 

structure, it is possible to lower the structural complexity and the 

implementation cost.  Simulation examples are given to illustrate 

the merits of the proposed approach.

Index Terms— Fuzzy Control, Linear Matrix Inequality, 

Stability Analysis, Staircase Membership Functions, T-S Fuzzy 

Model

I. INTRODUCTION

UZZY-model-based (FMB) control approach [1] offers a 

systematic and effective way to handle nonlinear control 

problems.  With the powerful Takagi-Sugeno (T-S) fuzzy 

model [2]-[3], a nonlinear plant can be generally and 

systematically represented as an average weighted sum of 

some local linear state-space models.  The T-S fuzzy model 

separates the linear and nonlinear dynamics of the nonlinear 

plant.  This semi-linear property of the T-S fuzzy model 

allows that some linear analysis and control approaches can be 

applied to facilitate stability analysis and controller synthesis.  

The FMB control approach has been applied successfully in 

various applications such as tracking control [4], chaotic 
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synchronization and communication [5]-[6], regulation of 

DC-DC switching converters [7] and stabilization of inverted 

pendulum [8].

Based on the T-S fuzzy model, a fuzzy controller [9] was 

proposed to close the feedback loop to form a FMB control 

system.  It was shown in [9]-[10] that the FMB control system 

is guaranteed to be asymptotically stable by a set of linear 

matrix inequalities (LMIs) [11].  The solution to the LMIs can 

be found numerically by using convex programming

techniques.  As the stability analysis in [9]-[10] did not 

consider the membership functions of both T-S fuzzy model 

and fuzzy controller, the stability conditions are valid for any 

arbitrary membership functions and thus very conservative.  

However, for the same reason, there is no restriction on the 

design of the membership functions of fuzzy controller.  As a 

result, the implementation cost of the fuzzy controller can be 

lower by using some simple membership functions.  For 

relaxation of stability analysis, a parallel compensation 

distribution (PDC) design approach was proposed [12] that the 

fuzzy controller shares the membership functions of the T-S

fuzzy model.  Although the conservativeness of the stability 

analysis can be relaxed compared with that in [9]-[10], the 

structural complexity of the fuzzy controller may be increased 

under such a design criterion when the membership functions 

of the T-S fuzzy model are complex.  Under the PDC design, 

further relaxed stability conditions were achieved in [13]-[20].  

Various analysis approaches based on the T-S fuzzy model 

can also be found in the literature.  Stability analysis of the 

FMB control systems was studied using circle criteria in 

[21]-[22].  Switching/sliding mode control techniques were 

employed to analyze the system stability and controller 

synthesis in [23]-[24].  In [25]-[26], adaptive control 

technique was combined with the fuzzy logic theory to come 

up with an adaptive fuzzy control scheme.  The parameter 

values of the fuzzy controller are updated in an online manner 

to stabilize the nonlinear plant.

In this paper the focus is on the stability analysis of FMB 

control systems [9]-[10] with state-feedback fuzzy controller.  

It was revealed in [27]-[31] that the information of 

membership functions plays an important role for relaxation of 

stability analysis result.  Some constraints on membership 

functions were proposed [27]-[31] to carry the boundary 

information of the membership functions into the stability 

analysis.  As a result, the system stability of the FMB control 

system is guaranteed by the stability conditions for certain sets 

[27]-[31] of membership functions subject to the 
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membership-function constraints, under the PDC design 

approach.  As the membership functions are not included in 

the stability conditions [13]-[20], [27]-[31], the information of 

the membership functions is not fully utilized in the stability 

analysis.  In this paper, we aim at offering LMI-based stability 

conditions including the membership functions of both fuzzy 

model and fuzzy controller to aid the stable design of a 

dedicated FMB control system in a simple and 

easy-to-understand manner.  The difficulty on bringing the 

membership functions into the stability conditions is mainly 

due to the continuity of the membership functions.  When the 

membership functions are considered, it can be found that the 

number of LMIs becomes infinity that the solution cannot be 

found practically using convex programming techniques.  In 

this paper, in order to include the membership functions to the 

stability conditions, staircase membership functions are 

employed to approximate the continuous membership 

functions of the T-S fuzzy model and fuzzy controller.  It is 

worth mentioning that the staircase membership functions are 

for stability analysis only and not necessarily implemented 

physically.  As the staircase membership functions have finite 

number of discrete values, it circumvents the difficulty by 

converting the infinite number of LMIs into a finite one.  

Furthermore, unlike the stability analysis approaches in 

[13]-[20], [30]-[31], the stability analysis proposed in this 

paper does not require that the T-S fuzzy model and fuzzy 

controller shares the same premise membership functions.  

Consequently, it offers a greater design flexibility for the 

membership functions of the fuzzy controller.  By employing 

some simple membership functions, the structural complexity 

and implementation cost of the fuzzy controller can be lower.  

Based on the Lyapunov stability theory, stability conditions in 

terms of LMIs are derived to achieve a stable FMB control 

system.

The organization of this paper is as follows.  In section II, 

the T-S fuzzy model and fuzzy controller are briefly 

presented.  In section III, the system stability of the FMB 

control system is investigated based on the Lyapunov stability 

theory through the proposed staircase membership functions.  

In section IV, simulation examples are given to illustrate the 

merits of the proposed fuzzy control approach.  In section V, a 

conclusion is drawn.

II. FUZZY MODEL AND FUZZY CONTROLLER

The fuzzy model [2]-[3] and the fuzzy controller are briefly 

presented in this section.  The fuzzy model systematically 

represents the nonlinear plant in a general framework to 

facilitate the stability analysis and controller synthesis.  A 

fuzzy controller designed based on the fuzzy model is 

employed to close the feedback loop to form a FMB control 

system.

A.  Fuzzy Model

Let p be the number of fuzzy rules describing the nonlinear 

plant.  The i-th rule is of the following format:

Rule i: IF  is  AND … AND  is 

            THEN (1)

where  is a fuzzy term of rule i corresponding to the 

known function , � = 1, 2, ..., �; i = 1, 2, ..., p; � is a 

positive integer;  and  are known 

constant system and input matrices, respectively;  is 

the system state vector and  is the input vector.  The 

system dynamics is described by,

(2)

where

,  for all i (3)

(4)

is a nonlinear function of x(t) and , � = 1, 2, 

…, �, are the grades of membership corresponding to the 

fuzzy terms of .

B.  Fuzzy Controller

A fuzzy controller with c fuzzy rules is to be designed for 

the nonlinear plant.  The j-th rule of the fuzzy controller is of 

the following format.

Rule j: IF  is  AND … AND  is 

            THEN (5)

where  is a fuzzy term of rule j corresponding to the 

function , � = 1, 2, ..., �; j = 1, 2, ..., c; c is the 

number of rules; � is a positive integer;  is the 

feedback gain of rule j to be designed.  The inferred output of 

the fuzzy controller is given by,

(6)

where

,  for all j, (7)

(8)

is a nonlinear function of x(t) and , j = 1, 2, ..., 

c, are the grades of membership corresponding to the fuzzy 

terms .

III. STABILITY ANALYSIS

The system stability of the FMB control system is 

investigated using the Lyapunov stability theorem in this 

section.  It can be seen that the stability analysis is very simple 

and easy-to-understand through the staircase membership 

functions.  Considering the fuzzy model of (2) and the fuzzy 
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controller of (6) connected in a closed loop, the FMB control 

system is obtained as follows.

(9)

Remark 1:  The system stability of the FMB control system is 

guaranteed by the LMI-based stability conditions in [9]-[10], 

[27]-[29].  Under a particular case (the PDC design [12]), 

when c = p and mi(x(t)) = wi(x(t)) for all i, relaxed stability 

conditions can be found in [12]-[20], [30]-[31].  Under the 

PDC design approach, the membership functions of the fuzzy 

model are required for implementation of the fuzzy controller.  

As a result, the design flexibility of the membership functions 

for the fuzzy controller vanishes.  Furthermore, it may 

increase the implementation cost when the membership 

functions are complex.

The system stability of the FMB control system of (9) is 

investigated by the following quadratic Lyapunov function 

candidate.

(10)

where  and .  It can be shown below that 

 (equality holds when x(t) = 0) is guaranteed by 

satisfaction of some LMIs which implies the asymptotic 

stability of the FMB control system (i.e., x(t) � 0 as time t �

�).  For brevity, wi(x(t)) and mj(x(t)) are denoted as wi and mj,

respectively.  In the following analysis, the equality of 

=  =  = 1 given by the properties of the 

membership functions in (3) and (7) is utilized to facilitate the 

stability analysis.  From (9) and (10), we have,

(11)

Denote X = P�1
, z(t) = X�1

x(t) and  where 

, j = 1, 2, ..., c, are arbitrary matrices to be 

determined.  From (11), we have,

(12)

where ;  and  are 

staircase membership functions approximating the continuous 

wi and mj, respectively, to facilitate the stability analysis.  The 

staircase membership functions  and  are proposed in a 

way that they satisfy the properties of membership functions 

in (3) and (7), respectively, namely, ,

,  and  which lead to 

.  It should be noted that  and  are 

introduced for stability analysis only and not necessarily 

implemented physically.  An example of the continuous and 

staircase membership functions is shown in Fig. 1.  It can be 

seen that the continuous membership function is approximated 

by a staircase membership function with finite number of 

levels.

Remark 2:  It can be seen from (12) that the inequality of 

 is the necessary and sufficient stability 

condition to ensure  (equality holds when z(t) = 0)

which implies the asymptotic stability of the FMB control 

system of (9).  However, as wi and mj are continuous 

membership functions, the inequality of 

contains an infinite number of LMIs (each LMI is 

corresponding to a single value of wi and mj) that the solution 

cannot be solved practically using convex programming 

techniques.  Instead of investigating  and to 

make sure that the inequality is satisfied, it was proposed in 

[9]-[10] that Qij < 0 for all i and j are the stability conditions.  

Indeed, Qij < 0 for all i and j will satisfy ,

however, for any shapes of membership functions.  As the 

membership functions of wi and mj are not considered, the 

stability conditions [9]-[10] are thus very conservative.

Remark 3:  The staircase membership functions of  and 

are chosen in a way that they consist of finite number of 

discrete values to approximate the continuous membership 

functions wi and mj.  Consequently, referring to (12), the 

staircase membership functions  and  can be regarded as 

some sampled points of the continuous membership functions 

of wi and mj.  It can be seen from (12) that if 

, V̇ (t) � 0  is mainly determined by 

 which can be regarded as the 
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approximation of .  As the staircase 

membership functions of  and  consist of finite number 

of discrete values, the inequality of 

contains finite number of LMIs.  Furthermore, the inequality 

of  consists of the staircase membership 

functions dedicated to the fuzzy model and fuzzy controller 

but not for any shapes of membership functions.  It can be 

seen that the idea is simple and the novelty of the proposed 

analysis approach is to investigate  using 

the staircase membership functions which turn the infinite 

LMI stability conditions into finite ones.  The above presents 

the concept and motivation of the proposed stability analysis 

approach through the staircase membership functions.  In the 

following, stability analysis is carried out mathematically

based on the Lyapunov stability theory.

To facilitate the stability analysis, the property of the 

membership functions is utilized to introduce some slack 

matrices.  Based on the property of the membership functions 

in (3) and (7), we have the following equality.

, (13)

where  is an arbitrary matrix.

Proof:  Expanding the terms in (13) and utilizing the equality 

of  and , we have 

 =  = 

 = 0. QED

Furthermore, we consider  where 

 and , and 

for all i and j where �ij is a scalar to be determined.  From (12)

and (13), and with the just mentioned inequalities, we have,

(14)

It can be seen from (14) that  (equality holds for 

z(t) = x(t) = 0) can be achieved if 

 for all discrete 

values of  and  and  for all i and j.

It implies that the FMB control system of (9) is guaranteed to 

be asymptotically stable, i.e., x(t) � 0 when time t � �.  The 

stability analysis result is summarized in the following 

theorem.

Theorem 1:  The fuzzy-model-based control system of (9),

formed by the nonlinear plant represented by the fuzzy model 

in the form of (2) and the fuzzy controller in the form of (6)

connected in a closed loop, is guaranteed to be asymptotically 

stable if there exist pre-defined scalars  satisfying 

 and matrices 

, ,  and 

 such that the following LMIs are satisfied.

; , i = 1, 2, ..., p; j =1, 2, ..., c;

 for all valid discrete 

values of  and ;

, i = 1, 2, ..., p; j =1, 2, ..., c;

where the feedback gains are defined as , j =1, 2, 

..., c.
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Remark 4:  There must exist the values of �ij satisfying the 

inequalities of  for all i and j.  When the 

forms of wi, mj,  and  are known, the values of �ij can be 

found numerically or analytically.

Remark 5:  It can be shown that the solution (X and Nj) in 

[9]-[10] is also the solution of the stability conditions in 

Theorem 1.  It was reported in [9]-[10] that a stable FMB 

control system is asymptotically stable if there exist X and Nj

such that X > 0 and 

for all i and j under the case that the fuzzy model and fuzzy 

controller do not share the same premise membership 

functions.  From Theorem 1, choosing Wij = 0 for all i and j

and M = ��I < 0 where � > 0 is a scalar, the LMIs in Theorem 

1 become  and 

 for all i and j.  As Qij < 0 for all i and j, the 

second LMI is satisfied and there must exist a sufficiently 

small value of �ij such that the first LMI is satisfied.  As the 

staircase membership functions of  and  can be chosen 

arbitrarily, they can be chosen such that  is 

satisfied by a sufficiently small value of �ij.  Hence, it can be 

seen that the solution of the stability conditions in [9]-[10] is 

also the solution in Theorem 1.  However, the solution of 

stability conditions in Theorem 1 might not be that in [9]-[10].  

Furthermore, we consider the stability conditions in [27]-[29] 

which require that c = p.  If there exists a solution to the 

stability conditions in [27]-[29], it implies that 

.  In this case, considering the stability 

conditions in Theorem 1, we have  as 

and  can be regarded as the sampled points of wi and mj,

respectively.  Choosing Wij = 0 for all i and j, and M = ��I < 0 

where � > 0 is a scalar, the LMI of 

 in Theorem 1 

becomes  = 

 which is satisfied with 

a sufficiently small value of �ij subject to .

As the staircase membership functions of  and  can be 

chosen arbitrarily, they can be chosen such that 

 is satisfied by a sufficiently small value of 

�ij.  Similarly, the LMI of  in Theorem 1 

becomes  which is satisfied by choosing a 

sufficiently large positive value of �.  Hence, it can be seen 

that the solution of the stability conditions in [27]-[29] is also 

the solution of the proposed ones but may not be the other way 

round.

In the following, we consider the PDC design [12] to 

further relax the stability analysis.  Under the PDC design, we 

choose c = p and mi(x(t)) = wi(x(t)) for all i.  To investigate the 

system stability of (9) under the PDC design approach, we 

proceed from (14) with  and  for all i and 

j and rewrite (14) as follows.

(15)

It is required that the inequality of 

holds which can be written as  where 

.  It can be seen that W � 0 

implies .  From (15), we have 

(equality holds for z(t) = x(t) = 0)) when 

for all discrete 

values of  and  for all i and 

j.  The stability analysis result under the PDC design is 

summarized in the following theorem.

Theorem 2:  The fuzzy-model-based control system of (9),

formed by the nonlinear plant represented by the fuzzy model 

in the form of (2) and the fuzzy controller in the form of (6)

sharing the same premise membership functions (i.e., c = p, 

, i = 1, 2, ..., p) connected in a closed loop, 

is guaranteed to be asymptotically stable if there exist 

pre-defined scalars  satisfying 

 and matrices 

, ,  and 

 such that the following LMIs are satisfied.
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; ;

 for all valid discrete 

values of ;

, i, j = 1, 2, ..., p;

where the feedback gains are defined as , j =1, 2, 

..., p.

Remark 6:  By following the same line of logic in Remark 5, it 

can be shown that the solution of the existing stability 

conditions in [12]-[20], [30]-[31] is also that of Theorem 2.  If 

there exists a solution for the stability conditions in [12]-[20], 

[30]-[31] it implies that .  As  can be 

regarded as the sampled points of wi, it is obvious that 

.  We choose Wij = 0 for all i and j, M = 

��I < 0 where � > 0 is scalar, and  such that 

 with a sufficiently small value of �ij.  It can 

be seen that the LMI of 

 in Theorem 2 

becomes  = 

 which is satisfied by a

sufficiently small value of �ij subject to .

Similarly, the LMI stability condition of 

 in Theorem 2 becomes 

 which is satisfied by choosing a 

sufficiently large positive value of �.  Hence, it can be seen 

that the solution of the stability conditions in [12]-[20], 

[30]-[31] is also that of the proposed ones.  However, the 

solution of stability conditions in Theorem 2 might not be 

those in [12]-[20], [30]-[31].

Remark 7:  In this paper, only the system stability is 

considered.  The system performance can be realized by 

employing the LMI-based performance conditions in [28].  In 

[28], the scalar cost function 

, where 

and  are predefined weighting matrices, 

is employed to measure quantitatively the system 

performance.  LMI-based performance conditions [28] were 

derived to attenuate the scalar performance index J to a 

prescribed level of 	.

IV. SIMULATION EXAMPLES

Three simulation examples are given to illustrate the merits 

of the proposed stability conditions.

A.  Simulation Example 1

In this simulation example, a 3-rule fuzzy model in the form 

of (2) is considered and a 3-rule fuzzy controller in the form of 

(6) is employed to close the feedback loop.  The membership 

functions of the fuzzy model and fuzzy controller are 

considered to be different.  Consider a fuzzy model in the 

form of (2) with the following 3 rules [19].

Rule i:  IF x1(t) is 

     THEN , i = 1, 2, 3 (16)

where , ,

, , , , 2 

� a � 9, 2 � b � 22.  The membership functions of the fuzzy 

model are defined as follows and shown graphically in Fig. 2.

(17)

(18)

w3 (x1(t)) =

0                 for x1(t) < �2

x1 (t) + 2

12
     for � 2 � x1 (t) � 10

1                 for x1(t) > 10

�

�

�
�

�

�
�

(19)

A fuzzy controller in the form of (6) with the following 3 

rules is employed to stabilize the fuzzy model of (16).

Rule j:  IF x1(t) is 

            THEN , i = 1, 2, 3 (20)

The membership functions of the fuzzy controller are 

defined as follows and shown graphically in Fig. 2.

(21)

(22)

(23)

The staircase membership functions are employed to 

approximate the continuous membership functions of both 

fuzzy model and fuzzy controller.  The staircase membership 

functions are chosen as  and 

 for (h � 0.5)� < x1(t) � (h + 0.5)� where i

= 1, 2, 3 and h = �� ,... �10, �9, ... 10 ..., �.  As the grades of 

membership for x1(t) > 10 or x1(t) < �10 keep constant (for 

example, w1(x1(t)) = w1(10) for x1(t) > 10), we only need to 

consider h� = �10, �9, ... 10.
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The system stability of the FMB control system is examined 

using the stability conditions in Theorem 1 with the help of 

MATLAB LMI toolbox.  For demonstration purposes, 

choosing � = 0.1 and � = 0.05, the stability regions are shown 

in Fig. 3 indicated by ‘o’ and ‘�’, respectively.  It can be 

found numerically that �11 = �0.006327, �12 = �0.003277, �13 = 

�0.001006, �21 = �0.003955, �22 = �0.005526, �23 = 

�0.003955, �31 = �0.001060, �32 = �0.003279 and �33 = 

�0.006326 for � = 0.1 and �11 = �0.003164, �12 = �0.001642, 

�13 = �0.000545, �21 = �0.001981, �22 = �0.002763, �23 = 

�0.001966, �31 = �0.000545, �32 = �0.001642 and �33 = 

�0.003164 for � = 0.05 which satisfy the inequalities of 

 for all i and 

j.  It is revealed from Fig. 3 that a smaller value of � is able to 

produce a larger stability region as the staircase membership 

functions are able to better approximate their corresponding 

continuous membership with smaller difference.  It should be 

noted that the staircase membership functions are not 

necessarily implemented physically and for stability analysis 

only.  For comparison purposes, the stability conditions 

[9]-[10], [27]-[29] for FMB control systems with fuzzy model 

and fuzzy controller not sharing the same membership 

functions are employed to check for the system stability.  

However, there is no stability region found with the stability 

conditions in [9]-[10], [27]-[29].  It can be seen from Fig. 3 

that the stability conditions in Theorem 1 are more relaxed 

comparatively in terms of larger stability region.  The 

simulation result also complies with Remark 5 that the 

solution of the stability conditions in [9]-[10], [27]-[29] is also 

that of the stability conditions in Theorem 1.  It should be 

noted that the stability conditions in [12]-[20] (which require 

that both fuzzy model and fuzzy controller sharing the same 

premise membership functions) are not applicable to the FMB 

control system considered in this simulation example.

B.  Simulation Example 2

In order to apply the stability conditions in [12]-[20], we 

consider the same fuzzy model of (16) and the fuzzy controller 

of (20), and both of them share the same membership 

functions defined in (17)-(19). The staircase membership 

functions are chosen as  for (h � 0.5)� < 

x1(t) � (h + 0.5)� where i = 1, 2, 3 and h = �� ,... �10, �9, ... 

10 ..., �.

Choosing � = 0.1 and � = 0.05, the stability regions given 

by the stability conditions in Theorem 2 are shown in Fig. 4 

indicated by ‘o’ and ‘�’, respectively.  It can be found 

numerically that �11 = �0.008177, �12 = �21 = �0.004115, �13 = 

�31 = �0.001337, �22 = �0.005538, �23 = �32 = �0.004115 and 

�33 = �0.008247 for � = 0.1 and �11 = �0.004145, �12 = �21 = 

�0.002070, �13 = �31 = �0.000681, �22 = �0.002773, �23 = �32 =

�0.002018 and �33 = �0.004162 for � = 0.05 which satisfy the 

inequalities of 

 for all i and j.

It can be seen that a smaller value of � is able to produce a 

larger stability region.  For comparison purposes, the stability 

conditions in [20] (with the parameter d = 4) and [30]-[31] 

(the upper bounds of the products of membership functions are 

used) are employed to check for the stability region for the 

same FMB control system and the stability regions given by 

different stability conditions are shown in Fig. 5.  It was 

reported in [20] that the stability conditions in [20] are 

superior to those in [12]-[19].  Hence, only the stability region 

given by [20] is shown but not those by [12]-[19].  It can be 

seen from Fig. 4 and Fig. 5 that the proposed stability 

conditions in Theorem 2 with � = 0.05 are able to produce a 

larger stability region.  The simulation result also complies 

with Remark 6 that the solution of the stability conditions in 

[12]-[20], [30]-[31] is also that of the stability conditions in 

Theorem 2 with a proper design of the staircase membership 

functions.

C.  Simulation Example 3

In this example, we consider the stabilization of an inverted 

pendulum on a cart to illustrate the stabilizability of the fuzzy 

controller with the support of the stability conditions in 

Theorem 1 and Theorem 2.  The inverted pendulum on a cart 

is described by the following dynamic equations [8].

ẋ1(t) = x2 (t) (24)

ẋ2 (t) =

�F1(M +m)x2 (t) �m2l 2x2 (t)2 sin x1 (t) cos x1(t)

+F0mlx4 (t) cos x1(t)

+(M +m)mgl sin x1(t) �ml cos x1(t)u(t)

�

�

�
�
�

�

�

�
�
�

(M +m)(J +ml 2) �m2l 2 (cos x1(t))2
(25)

ẋ3 (t) = x4 (t) (26)

ẋ4 (t) =

F1mlx2 (t) cos x1 (t)

+(J +ml 2)mlx2 (t)2 sin x1(t) � F0 (J +ml 2)x4 (t)

�m2gl 2 sin x1 (t) cos x1(t) + (J +ml 2)u(t)

�

�

�
�
�

�

�

�
�
�

(M +m)(J +ml 2) �m2l 2 (cos x1(t))2
(27)

where x1(t) and x2(t) denote the angular displacement (rad) and 

the angular velocity (rad/s) of the pendulum from vertical 

respectively, x3(t) and x4(t) denote the displacement (m) and 

the velocity (m/s) of the cart respectively, g = 9.8 m/s
2
 is the 

acceleration due to gravity, m = 0.22 kg is the mass of the 

pendulum, M = 1.3282 kg is the mass of the cart, l = 0.304 m 

is the length from the center of mass of the pendulum to the 

shaft axis, J = ml
2
/3 kgm

2
 is the moment of inertia of the 

pendulum around the center of mass, F0 = 22.915 N/m/s and 

F1 = 0.007056 N/rad/s are the friction factors of the cart and 

the pendulum respectively, and u(t) is the force (N) applied to 

the cart.

The control objective is to balance the pole and drive the 

cart to the origin, i.e., xk(t) � 0, k = 1, 2, 3, 4, as time t � �.

It was reported in [8] that the nonlinear plant can be modelled 

by the fuzzy model in the form of (2) with the following 2 

rules.

Rule i:  IF x1(t) is 

            THEN , i = 1, 2 (28)

where ;
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,

,

, ;

,

 and the 

membership functions are defined as  = 

=  and  = 

 =  which are shown as the Gaussian 

shape in Fig. 6.

A fuzzy controller in the form of (6) with the following 2 

rules is employed to stabilize the nonlinear plant.

Rule j:  IF x1(t) is 

            THEN , j = 1, 2 (29)

There are two cases to be considered, i.e., the membership 

functions of the fuzzy model and fuzzy controller are the same 

or not.

1.  Mismatched Membership Functions

The membership functions of the fuzzy controller are 

considered to be different from those of the fuzzy model.  The 

membership functions of the fuzzy controller are chosen as

follows and shown graphically as the trapezoids in Fig. 6.

 =  = 

(30)

 =  = (31)

The staircase membership functions are chosen as 

 and  for (h � 0.5)� < 

x1(t) � (h + 0.5)� where i = 1, 2 and h = �� ,... �10, �9, ... 10 

..., �.  It can be found numerically that �11 = �0.177336, �12 = 

�0.066804, �21 = �0.114347 and �22 = �0.186624 which satisfy 

the inequalities of 

 for all i and 

j.

Considering the stability conditions in Theorem 1, with the 

help of MATLAB LMI toolbox, the feedback gains are 

obtained as G1 = [837.7968   57.4587   3.9187   57.8283] and 

G2 = [858.3272   59.0134   3.9928   58.5750].  The fuzzy 

controller is employed to control the nonlinear plant with the 

initial system state conditions of  and 

, respectively.  The system responses 

and control signal are shown in Fig. 7.  It can be seen from the 

figure that the fuzzy controller can successfully stabilize the 

nonlinear plant.

2.  Matched Membership Functions

The fuzzy controller sharing the same membership 

functions as those of the fuzzy model is employed to stabilize 

the nonlinear plant.  In this case, it can be found numerically 

that �11 = �0.199564, �12 = �21 = �0.063664 and �22 = 

�0.185515 which satisfy the inequalities of 

 for all i and j.

With the help of the MATLAB LMI toolbox to find the 

solution of the stability conditions in Theorem 2, the feedback 

gains are found as G1 = [531.4760   36.2053   2.7739   

45.9703] and G2 = [805.0605   45.3275   3.4105   50.7430].  

The system responses and control signal for the FMB control 

system with the initial system state conditions of 

x(0) =
4

9
� 0 0 0

�

�
�

�

�
�

T

 and ,

respectively, are shown in Fig 7.  It can be seen that the 

nonlinear plant can be stabilized by the fuzzy controller.

In this example, both fuzzy controllers using the same or 

different membership functions between fuzzy model and 

fuzzy controller are able to stabilize the nonlinear plant.  It can 

be shown in the previous two examples that the stability 

conditions in Theorem 1 are able to offer larger stability 

regions compared with Theorem 2. To apply the stability 

conditions in Theorem 1, it is require that the fuzzy controller 

must share the same set of membership functions as those of 

the fuzzy model.  However, this restriction does not apply to 

the stability conditions in Theorem 1.  Hence, simple 

membership functions can be employed to implement the 

fuzzy controller to lower the implementation cost.  Both 

Theorem 1 and Theorem 2 have its own advantages for the 

design of stable FMB control systems.  In general, at the 

beginning of the design, it is suggested to apply Theorem 1 

with simple membership functions to achieve a lower-cost 

fuzzy controller.  When stable design cannot be achieved, the 

membership functions of the fuzzy model are employed for 

the design of the fuzzy controller.  By taking the advantage of 

matched membership functions, Theorem 2 is employed to 

achieve a stable design of fuzzy controller for the nonlinear 

plant.
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V. CONCLUSION

The system stability of the fuzzy-model-based control 

systems has been investigated based on the Lyapunov stability 

theory in a simple and easy-to-understand manner.  Staircase 

membership functions have been introduced to approximate 

the continuous membership functions of both fuzzy model and 

fuzzy controller.  It allows the membership functions to be 

considered in the stability analysis for relaxation of stability 

conditions in terms of linear matrix inequalities.  Furthermore, 

unlike the traditional analysis approach, the proposed stability 

analysis does not require that both fuzzy model and fuzzy 

controller share the same membership functions.  Some simple 

membership functions can be employed for the fuzzy 

controller to lower the implementation cost.  Simulation 

examples have been given to illustrate the merits of the 

proposed fuzzy control approach.
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Fig. 1.  Example of continuous and staircase membership 

functions.

Fig. 2.  Membership functions of the fuzzy model: w1(x1(t))

(left triangle in solid line), w2(x1(t)) (trapezoid in dotted line) 

and w3(x1(t)) (right triangle in dash line).  Membership 

functions of the fuzzy controller: m1(x1(t)) (left z shape in solid 

line), m2(x1(t)) (Gaussian shape in dotted line) and m3(x1(t))

(right s shape in dash line).

Fig. 3(a).  Stability regions given by the stability conditions in 

Theorem 1 with � = 0.1 (‘�’) and � = 0.05 (‘o’).

Fig. 4.  Stability regions given by the stability conditions in 

Theorem 2 with � = 0.1 (‘�’) and � = 0.05 (‘o’).

Fig. 5.  Stability regions given by the stability conditions in 

[20] (‘�’) and [30]-[31] (‘o’).
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Fig. 6(a).   (Gaussian) and  (trapezoid).

Fig. 6(b).  μ
M1

2 (x1 (t))  (Gaussian) and μ
N1

2 (x1 (t))  (trapezoid).

Fig. 6.  Membership functions of fuzzy model and fuzzy 

controller for the inverted pendulum on a cart.

Fig. 7(a).  x1(t).

Fig. 7(b).  x2(t).

Fig. 7(c).  x3(t).

Fig. 7(d).  x4(t).
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Fig. 7(e).  u(t).

Fig. 7.  System responses and control signals of the inverted 

pendulum with fuzzy model and fuzzy controller not sharing 

the same membership functions.  Solid lines: 

x(0) =
4

9
� 0 0 0

�

�
�

�

�
�

T

.  Dotted lines: 

x(0) =
2

9
� 0 0 0

�

�
�

�

�
�

T

.

Fig. 8(a).  x1(t).

Fig. 8(b).  x2(t).

Fig. 8(c).  x3(t).

Fig. 8(d).  x4(t).

Fig. 8(e).  u(t).

Fig. 8.  System responses and control signals of the inverted 

pendulum with fuzzy model and fuzzy controller sharing the 

same membership functions.  Solid lines: 

.  Dotted lines: 

.


