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Abstract

Metabolic syndrome (MetS) is a common feature in obesity, comprising a

cluster of abnormalities including abdominal fat accumulation, hyperglyce-

mia, hyperinsulinemia, dyslipidemia, and hypertension, leading to diabetes

and cardiovascular diseases (CVD). Intake of carbohydrates (CHO), particu-

larly a sugary diet that rapidly increases blood glucose, triglycerides, and

blood pressure levels is the predominant determining factor of MetS. Com-

plex CHO, on the other hand, are a stable source of energy taking a longer

time to digest. In particular, resistant starch (RS) or soluble fiber is an excel-

lent source of prebiotics, which alter the gut microbial composition, which in

turn improves metabolic control. Altering maternal CHO intake during preg-

nancy may result in the child developing MetS. Furthermore, lifestyle factors

such as physical inactivity in combination with dietary habits may synergisti-

cally influence gene expression by modulating genetic and epigenetic regula-

tors transforming childhood obesity into adolescent metabolic disorders. This

review summarizes the common pathophysiology of MetS in connection with

the nature of CHO, intrauterine nutrition, genetic predisposition, lifestyle

factors, and advanced treatment approaches; it also emphasizes how dietary

CHO may act as a key element in the pathogenesis and future therapeutic

targets of obesity and MetS.
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1 | INTRODUCTION

The prevalence of MetS has markedly increased through-
out the world over the past few decades1 and afflicts any-
where from 10% to 84% of the population depending on
age, gender, ethnicity, and lifestyle.2 This complex disor-
der consists of a cluster of metabolic dysregulations
including central obesity, atherogenic dyslipidemia, insu-
lin resistance (IR), and hypertension, and is associated
with an increased risk of multiple chronic diseases.2–5 It
has been demonstrated that people with MetS have a
twofold increased risk of cardiovascular diseases (CVD),
a fivefold increased risk of diabetes, and a 1.5-fold
increased risk of mortality in general compared to
healthy individuals.3,6,7 Though the exact etiology of this
disorder is not known, it is strongly believed that abdomi-
nal obesity and IR are the potential pathogenic factors,
for the development of MetS.8

The appetite control theory reveals that diets rich in
nonregulated nutrients impair regulatory control of
energy intake.9 CHO are the primary macronutrient that
determines energy intake in the body10; ingestion of
high-glycemic-index (GI) CHO raises postprandial

insulin, which increases hunger, calorie intake, and
body-fat accumulation.11 High GI sugar alone can con-
tribute to metabolic diseases,12 even with adequate levels
of energy consumption.13 A high CHO diet mediates
obesity-induced MetS through redox imbalance, proin-
flammatory signaling pathways activation, and genera-
tion of oxidative stress, in several metabolic tissues.14–16

In fact, nutritional programming of the disorder starts in
early life development,17 and altered maternal CHO
intake during the gestational period seriously affect fetal
outcomes, facilitating childhood obesity and adult meta-
bolic disorders.18,19 In addition, the metabolism of CHO
is influenced by various other factors including their
chemical nature and their content of amylose, amylopec-
tin, fibers, heat, pH, etc.20–22 It has been shown that a
diet high in refined or processed starches and sugars that
have lost the majority of fibers (~40% insoluble dietary
fiber) and nutrition value can produce substantial swings
in blood glucose and insulin levels,23,24 proceed TG
accumulation, the key driver of central obesity triggering
adipocytokine dysregulation, and generation of inflam-
mation, IR, MetS, and cardio-metabolic complica-
tions.25,26 On the other hand, complex CHO, that is,
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slowly digestible, such as whole grain, bran, as well as
nondigestible and lente CHO have been shown to
improve postprandial insulinemia, gut satiety peptides,
gut microbiota, hyperlipidemia, lean body mass, inflam-
mation and, ultimately, lower the prevalence of MetS and
T2DM.27–30 Recently short-chain fatty acids (SCFAs)
derived from dietary fibers have been used as potential
therapeutic targets in the management of various meta-
bolic disorders.27–31 For example, SCFAs (acetate, propio-
nate, and butyrate) are the main metabolic products of
gut microbiota. These SCFAs activate several G-protein-
coupled cell surface receptors and release numerous hor-
mones and signaling molecules such as GLP-1 and PYY,
which act on adipocyte and balance energy homeostasis
by increasing adipogenesis, leptin, and decreasing lipoly-
sis.32 Furthermore, some SCFAs from intestinal epithelial
cells enter the hepatic portal vein and activate AMPK,
PPAR-α, and FGF21, which increase adiponectin and
energy expenditure.32–34 However, the complex interac-
tions between a variety of biological factors such as die-
tary CHO, lifestyle, genetics, epigenetics, maternal
programming, and individual components of MetS have
not been thoroughly described. Therefore, the present
review attempts to critically discuss CHO intake with all
those lifestyle factors in the context of genetics, epige-
netics, and maternal programming to explore how these
complex interactions are implicated in the pathogenesis
of MetS. Furthermore, an alteration of the types of CHO
consumed may be a potential alternative therapeutic
option for alleviating MetS and its complications like dia-
betes, CVD, and nonalcoholic fatty liver disease
(NAFLD). Potential future therapeutics have been
highlighted, particularly those that may be utilized as
multi-target ligands and consumption of certain CHO
may be the complement of advanced drugs to
prevent MetS.

2 | PATHOPHYSIOLOGY OF METS

In recent decades, numerous research projects have been
carried out on MetS however, the exact etiology and
pathophysiology are still not completely understood.4,8,35

Many causal factors and mechanisms for the initiation,
development, and transition of MetS to diabetes and
CVD (Figure 1) have been proposed. The key contribu-
tors are discussed in the following sections.

2.1 | Abdominal obesity

In our current era, obesity is a global health problem. It
is one of the conditions of MetS and factors for the

development of multiple chronic diseases such as hyper-
tension, diabetes, CVD, osteoarthritis, cancer, etc. There
is substantial evidence supporting the notion that this
complex, heterogeneous, and multifactorial disease
depends on genetic, biological, and behavioral factors,
which account for 40% to 70% of the individual differ-
ences.36,37 Although obesity is one of the traits most
influenced by genetics, behavioral factors including lack
of physical activity, sedentary lifestyle, and high-calorie
intake from CHO, particularly simple CHO diets have a
strong influence on weight gain, obesity, and MetS.25,38

Simple CHO rapidly increases blood glucose levels, and
the surplus energy/glucose is quickly converted to neu-
tral fat triacylglycerol and deposited primarily into adipo-
cytes.39 Long-term intake of high-calorie simple sugar or
high-fat diets leads to alterations in fatty acid transport
resulting in excessive deposition into nonadipocytes
(e.g., liver, heart, muscle, pancreas) (Figure 1).40,41 Vis-
ceral fat depots are the predominant determining factors
for increased cardiometabolic risk.42 The excess accumu-
lation of fat in intra-abdominal adipose tissue, which
comes from the disruption of subcutaneous adipose tissue
expansion and ectopic deposition of TG, leads to multiple
abnormalities including hypertriglyceridemia, increased
free fatty acid, the release of proinflammatory cytokines,
and consequent inflammation, liver IR, increased liver
VLDL production, reduced clearance of TG-rich lipopro-
teins, lower HDL-cholesterol levels, and higher amount
of small and dense LDL particles (Figure 1).43,44 It has
been demonstrated in the early 1980s that compared to
BMI, the ratio of waist to hip circumference (WHR) is
more predictive of metabolic and cardiovascular compli-
cations.42 Besides genetics, the broad etiological factors of
the visceral fat depot are age, gender, and ethnicity.45

Therefore, population-specific cutoff values are suggested
while defining MetS.46,47 As demonstrated by-different
prospective studies, waist/height ratio rather than BMI
and WHR is an accurate index for predicting dyslipide-
mia, hypertension, and MetS.48,49 Despite several simple
methods available to assess abdominal adiposity, proac-
tive management of this disorder at an early stage is of
serious concern.50–52 It has been shown from epidemio-
logical and experimental studies that physical activity/
exercise could induce mobilization of visceral fat and
reduce central adiposity.53 However, a high CHO diet sig-
nificantly increases triglycerides, fasting insulin, IR, and
visceral fat despite minor effects on body weight gain and
fasting blood glucose levels.54 In contrast, a very low
CHO diet greatly enhances the loss of total, visceral and
intermuscular fat, by preserving lean mass and improving
insulin sensitivity in obese patients, especially older
adults.55 A cross-sectional study of the Spanish popula-
tion showed a significant reduction in central obesity by
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eating four times a day food containing a variety of
wholegrain cereals and dairy products.56 By contrast, fol-
lowing the Healthy Eating Index, and implementing
intermittent or Continuous Energy Restriction for
12 weeks reduced body weight by at least 7%.57 All the
evidence suggests that CHO restriction particularly sim-
ple CHO by following healthy meal patterns and timing,
performing moderate intensity of regular physical activ-
ity, monitoring central obesity, and measuring circulatory
TG may prevent or delay the onset of MetS or at least in
part halt the progression of its related disorders even in
high-risk older adults who are the most prone to MetS.

2.2 | Insulin resistance

MetS, widely known as IR syndrome, play a central role
in the pathogenesis of T2DM and CVD.58,59 IR is defined

as a deficient response of cells to insulin, which is charac-
terized by dysregulation of glucose, glycogen, and lipid
metabolism. Gerald Reaven first introduced the concept
of IR in connection to MetS in 1988, and Haffner et al.
supported his notion by using prospective data from 2217
subjects in the SanAntonio Heart Study in 1992.60,61 IR
often appears as hyperinsulinemia62,63 in various tissues,
such as skeletal muscle, liver, adipose tissue, heart, etc.,
and at multiple levels of the cells of these tissues, from
the surface to the nucleus.64 The etiopathogenesis of IR is
obesity, particularly central obesity, which disrupts the
proper balance between cytokine and hormone genera-
tion (cytokines such as TNF-α, IL-1β, plasminogen-
activator inhibitor-1, and hormones like visfatin, resistin,
adipsin, leptin, adiponectin, etc.) and promotes the secre-
tion of large concentrations of free fatty acids (FFA) from
visceral adipose tissue.65,66 These FFAs, enter the portal
vein for direct transport to the liver and accumulate as

FIGURE 1 Pathophysiological mechanisms in metabolic syndrome.
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intrahepatic TG,67,68 and are as such the leading cause of
NAFLD (Figure 3).69 NAFLD is a growing problem asso-
ciated with IR that induces systemic inflammation,
hepatic lipotoxicity, lipoapoptosis, altered cell signaling,
liver damage, and cardiovascular death.67,68,70 The
increased triglycerides in the liver and muscles may also
be due to reduced mitochondrial oxidative activity,71,72

particularly, the inhibition of mitochondrial biogenesis of
nuclear-encoded genes, namely peroxisome proliferator-
activated receptor gamma (PPARγ) coactivator 1 α (PGC-

1α), and PGC-1β. It has recently been shown that the die-
tary sugar fructose impairs hepatic fatty acid oxidation by
reducing mitochondrial size, and function, and increas-
ing acetylation of long-chain acyl-coenzyme A dehydro-
genase and carnitine palmitoyltransferase 1 (CPT1) at
transcriptional and posttranslational levels.72

In muscle, FFA reduces insulin sensitivity by downre-
gulation of insulin receptors, resulting in the inhibition
of insulin-mediated glucose uptake,73,74 hyperglycemia,
and hyperinsulinemia.66 Recently, it has been shown that

FIGURE 2 Altered CHO intake potentiates ROS generation, inflammation, and lipogenesis through different signaling pathways and

aggravates MetS. A high carbohydrate diet aggravates obesity-induced MetS through inflammation and oxidative stress. In inflammatory

pathways, multiple cytokines, hyperglycemia, FFA, ROS, gut microbiota (dysbiosis), etc. activate the nuclear transcription factor NF-kβ via

PAMPs/LPS, TLR4/2, TRAF6, IKKβ, and MAPK, which promote up-regulation of pro-inflammatory cytokines and enzymes, that are, TNF-

α, IL-6, CCL2, NLRP3, pro-IL-1β, iNOS, and COX2, resulting in obesity-associated inflammation, IR and MetS. Moreover, ROS activate the

NLRP3 inflammasome that plays a key role in innate immunity and inflammation while TXN, NADPH, and SIRT inhibit the expression of

caspase 1/inflammasome, which releases inflammatory molecules from pro-IL-1 β to IL-1β. In redox signaling, ROS (HO• and O2•�) are
derived predominantly from mitochondrial damage and activation of both cytosolic and mitochondrial enzymes, co-enzymes, and proteins

such as, NADPH oxidase, TXNIP, NAD, etc. ROS then activate antioxidant signaling including NRF-2 and AP-1 signaling which stimulates

transcription of metabolic and antioxidant genes (i.e., G6PD, TKT, IDH, CPT1, SOD, CAT, and GPX) to suppress the excessive ROS. In

addition, a sugary diet promotes denovo lipogenesis in the liver, increases CRP, and TG with VLDL, and ultimately enhances IR and

NAFLD to MetS. AP1, activator protein-1; CAT, catalase; CCL2, C–C motif chemokine ligand 2; CHO, carbohydrate; CPT1, carnitine

palmitoyltransferase I; COX2, cytochrome c oxidase subunit II/cyclooxygenase-2; CRP, C-reactive protein; FFA, free fatty acid; G6PD,

glucose-6-phosphate dehydrogenase; GPx, glutathione peroxidase; IDH, isocitrate dehydrogenase; IKKβ, IκB kinase; IL, interleukin; iNOS,

inducible nitric oxide synthase; JNKs, c-Jun N-terminal kinases; Keap1, kelch-like ECH-associated protein 1; LPS, lipopolysaccarides;

MAPKs, mitogen-activated protein kinases; NADPHO, NADPH-oxidase; NF-kβ, nuclear factor kappa beta; NLRP3, NLR family pyrin

domain containing 3; Nrf2,nuclear factor E2-related factor 2; PAMPs, pathogen-associated molecular patterns; SOD, super oxide dismutase;

TKT, transketolase; TLR4, toll-like receptor 4; TNF-α, tumor necrosis factor alpha; TRAF6, TNF receptor associated factor 6, TXNIP,

thioredoxin-interacting protein.
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fatty acid accumulation strongly activates mitochondrial
fission in muscle due to the excessive availability of nutri-
ents and this initiates the onset of IR.75 Hyperglycemia
impairs insulin signaling (postreceptor defects) by the
production of reactive oxygen species (ROS) (Figures 2).76

The reduction in insulin signaling is primarily observed
in the PI3K-PKB/Akt pathway through the inhibition of
the insulin receptor substrate (IRS)/phosphoinositide-
3-kinase (PI-3 K)/protein kinase B (PKB) axis.77 It has
been shown that overnutrition or a high-fat diet directly

impairs IRS2 expression and its function by altering
intracellular signaling, resulting in a worsening of glu-
cose metabolism.64 Moreover, chronic hyperglycemia and
hyperlipidemia suppress ATP synthesis by down-
regulation of ATP synthase beta-subunit protein in INS-1
cells.78 Interestingly, a low-calorie diet significantly
increased insulin sensitivity and reduced inflammation
in only 13 days, in obese females.79 Recently, a double-
blind phase II clinical trial showed improvement in insu-
lin sensitivity in patients with severe obesity and MetS

FIGURE 3 Therapeutic potential of dietary carbohydrates and novel compounds in reducing obesity associated metabolic syndrome via

gut microbiota modulation and AMPK activity. Complex CHO include RS and/or fiber are not digestible in the small intestine; in large

intestine, however, the CHO are fermented and release bioactive compounds or metabolites. SCFAs (acetate, propionate and butyrate) are

the main metabolic product of gut microbiota. These SCFAs activate several G-protein-coupled cell surface receptors, for example, GPR

41/43, which releases hormones and signaling molecules, GLP-1 and PYY that increase insulin action, glucose uptake, and balance the

energy homeostasis with increased adipogenesis, leptin, and decreased lipolysis. Some SCFAs from intestinal epithelial cells, which are

released near the hepatic portal vein, activate AMPK, PPAR-α, and FGF21; these increase adiponectin and energy expenditure. The activated

AMPK reduces gluconeogenesis, IR, lipid accumulation, and inflammation via inhibitory phosphorylation of PEPCK, G6Pase, HMGCR,

SREBP1C, CHOP, STAT1/3, etc. Moreover, the SCFAs can inhibit LPS/TLR4-driven inflammatory responses that are crucial for obesity

induced MetS. In addition, SCFAs increase intestinal TGR5 receptor upregulation, restore gut microbiome, and bile acid homeostasis

through FXR and TGR5 signaling. Activation of FXR and TGR5 in bile acid species bind to their receptors and increase insulin sensitivity

through the FXR-pAkt-GLUT2 and TGR5-Akt-mTOR signaling pathway. Furthermore, calorie restriction upregulates SIRT1 and

downregulates TXNIP improving metabolism and insulin sensitivity through AMPK activity and AKT signaling, respectively. AKT, protein

kinase B; AMPK, AMP-activated protein kinase; CHOP, CCAAT/enhancer-binding protein homologous protein; FGF21, fibroblast growth

factor 21; FXR, farnesoid X receptor; G6Pase, glucose 6-phosphatase; GLP-1, glucagon-like peptide 1; GLUT2, glucose transporter 2;

GPCR41/43, G-protein-coupled receptors 41/43; HMGCR, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase; PEPCK,

phosphoenolpyruvate carboxykinase; PPAR-α, peroxisome proliferator-activated receptor alpha; PTEN; phosphatase and tensin homolog;

PYY, peptide tyrosine tyrosine; SREBP1C, sterol regulatory element-binding transcription factor 1; SIRT1, sirtuin 1; TGR5, G-protein-

coupled bile acid receptor.
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from a single dose of daily oral-fecal microbial transplan-
tation with low-fermentable fiber supplementation.80

Furthermore, a time-restricted feeding schedule (10 hr
interval) for 12 weeks improved cardiometabolic health
in patients who had MetS and were receiving high doses
of statin and antihypertensive drugs.81 Apart from habit-
ual diet and weight loss, endurance training reduced oxi-
dative damage and improved insulin sensitivity, cytokine
profile, and muscle mass.82,83 Therefore, it can be sug-
gested that a low-calorie diet, microbiota, fermentable
fiber, and physical activity may be useful therapeutics to
reduce the risk of IR, hyperglycemia, and dyslipidemia-
associated MetS.

2.3 | Oxidative stress and MetS

Oxidative stress is defined as a disparity in the generation
and degradation of ROS,84 it may also be due to reactive
nitrogen species (RNS).85 Indeed, stress can arise from
obesity and generally increase ROS (i.e., O2•�, •OH and
H2O2)/RNS (e.g., peroxynitrite ONOO–), predominantly
via the inactivation of the antioxidant systems generated
from various oxidation pathways cause cellular damage
of lipids, proteins (particularly mitochondrial proteins
and enzymes) and nucleic acids (DNA and RNA).16,86 As
a result, metabolic dysregulation and alterations in cell
signaling and other cellular functions have been causally
associated with various diseases, including MetS, diabe-
tes, CVD, neurodegenerative diseases, and cancer.87–89

Mitochondria are considered the primary organ and
nicotinamide-adenine dinucleotide phosphate (NADPH)
oxidase is the crucial enzyme responsible for the produc-
tion of ROS in both cytosol and mitochondria
(Figure 2).86 Several studies have found that patients with
MetS have lower levels of various antioxidant enzymes
such as glutathione peroxidase (GPx), catalase (CAT),
and superoxide dismutase (SOD) in plasma and higher
levels of NADPH oxidase along with several oxidative
stress markers, mainly lipid peroxidation products mal-
ondialdehyde (MDA), 4-hydroxynonenal (HNE), and oxi-
dized LDL.90–92 These highly reactive molecules induce
cellular dysfunction of key regulatory enzymes such as
pyruvate dehydrogenase complex, proteins
(e.g., cytochrome c), and damage vascular endothelial
cells, such as that observed in macro-and microvascular
diseases.86,93 For example, ROS generated from NADPH
oxidase and thioredoxin-interacting protein (TXNIP)
stimulate inflammatory pathways mitogen-activated pro-
tein kinase (MAPK) and IκB kinase α/β (IKKα/β), and
ASK1 and JNK through the transcription upregulation of
nuclear factor-κB (NF-κB) and AP1. This, in turn, acti-
vate the NLRP3 inflammasome triggering the expression

and secretion of IL-1β, TNF-α, IL-6, iNOS, COX2, and
CCL2, exacerbating inflammatory cascades and IR-
associated MetS eventually worsening cardiometabolic
outcomes (Figure 2).86,94,95 Nutritional stress, that is,
from diets high in sugar and fat promotes obesity-
induced oxidative stress as evident from enhanced lipid
peroxidation, protein carbonylation, and lowers antioxi-
dant protection and superoxide dismutase activity.15,16 To
prevent oxidative stress, natural herbal remedies and
alternative medicine have favorable benefits even for
complex diseases.96–98 Recent findings suggest that
healthy diets containing high fiber CHO, antioxidant-rich
fruits and vegetables, omega-3 fatty acids, and low satu-
rated fats can reduce oxidative stress and protect the body
from oxidative damage, eventually, preventing the devel-
opment of ROS-mediated metabolic diseases.99

2.4 | Chronic inflammation

Obesity and its related metabolic diseases involving
inflammation are long term and chronic.100,101 The com-
plex inflammatory process involves a wide variety of
inflammatory cells, molecules, and pathways that con-
tribute to obesity-linked MetS, NAFLD, arthritis, T2DM,
CVD, cancer, etc.14,101–103 During inflammation, adipo-
cytes become enlarged and inflamed and secrete multiple
adipokines (i.e., leptin, resistin, adiponectin, and inflam-
matory cytokines including TNF-α, IL-1, and IL-6) that
have pro-inflammatory and anti-inflammatory proper-
ties.101,104,105 Many adipokines such as monocyte chemo-
tactic protein (MCP)-1, TNF-α, and IL-6 have been
reported to promote IR via inflammation and metabolic
dysfunctions, which is highly deleterious for vascular
functions.65,73,106 In fact, the expression levels of those
inflammatory factors, such as (MCP)-1, TNF-α, and IL-6
are upregulated in adipose tissue macrophages, which
increase from 10%–15% to 45%–60% with obesity.100 The
inflammatory markers induce endothelial dysfunction,
myocardial growth, metabolic dysregulation, IR, and
NAFLD through the activation of NF-κB and Jak/ STAT
and/or Ras/ERK/MAPK signaling cascade
(Figure 2).14,107,108 In contrast, adiponectin, the anti-
inflammatory cytokine, attenuates inflammatory
responses by diminishing the TLR4 signaling pathways
in different cell types,104,109 which consequently improve
metabolism, inflammation, atherosclerosis, and
CVD.110,111 Toll-like receptors (TLRs) primarily induce
low-grade chronic inflammation and IR by the activation
of TLR2 and TLR4 through pathogen-associated molecu-
lar patterns (PAMPs),109 which are enhanced by a leaky
or damaged gut. It has been shown that consumption of
high- fructose, imbalanced CHO, and a high-fat diet alters
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gut microbiota (dysbiosis) leading to increased intestinal
permeability and inflammation (Figure 2).112–116 Interest-
ingly, reduction of calorie intake, exercise, alternative
medicine, nutraceutical, and pharmacological agents can
reverse inflammation by TLRs dependent or independent
mechanisms.94,97,117,118 Recent studies highlight the mod-
ulation of gut-microbiota and metabolites by dietary
changes and amelioration of inflammation and age-
related metabolic disorders like obesity, MetS, hepatic
steatosis, and diabetes.112,114,115,119 The underlying mecha-
nisms of dysbiosis-mediated gut leakage are higher levels
of lipopolysaccharides (LPS) secretion, loss of epithelial
integrity, and poor mucosal immunity.112,119 Further, dys-
biosis itself can increase the intestinal CD36 receptor
expression and induce lipogenesis through long-chain
fatty acids (LCFAs) absorption, directly linked to abnor-
mal circulatory metabolites, metabolic endotoxemia, and
low-grade systemic inflammation (Figure 2).114,120,121 To
boost gut immunity and manage inflammatory diseases,
different probiotic, prebiotic, and synbiotic supplements
are currently being used and these have significant bene-
fits for MetS.122,123 Thus, modulation of diets, probiotics,
prebiotics, synbiotics, alternative medicine, and exercise
may restore the tissue microenvironment in the stomach,
particularly by restoring epithelial integrity and mucosal
immunity, which may slow down tissue inflammation,
ultimately improving MetS.

2.5 | Genetic profile, environmental, and
lifestyle factors in relation to MetS

In the current environment, the genetic predisposition
to obesity may have a substantial effect on the MetS epi-
demic.124 Genetics alone can explain over 40% of the
heritability of obesity, while multiple crucial genes
(i.e., LEP, LEPR, SIM1, POMC, PCSK1, MC4R, etc.) are
directly involved in the early onset of the metabolic
disorder.125–127 The genetic factors of obesity have been
comprehensively examined in whole-genome association
studies,128,129 where strong associations between genetic
variants and the components of MetS were found. For
example, more than 900 genetic variants have been dis-
covered in relation to polygenic obesity,130,131 and
32 BMI- and 13 WHR-associated loci were identified in
overall and central adiposity, respectively.132,133 More-
over, 157 loci have been reproducibly linked with lipids,
90 loci with hypertension, and numerous loci with
T2DM,134 which were associated with increased fasting
insulin as well as, the risk of coronary artery diseases.
Various epigenetic modifications (e.g., DNA methyla-
tion, chromatin remodeling, and noncoding RNAs) con-
trol gene functions in metabolic diseases that have

recently been highlighted in observation of gene–
environment interaction.124,135,136 The environmental
and lifestyle factors predominantly influence gene acti-
vation are unhealthy diet [e.g., sugar-sweetened bever-
ages, high fructose corn syrup (HFCS), fried foods, etc.],
poor sleeping, socioeconomic status, environmental
toxins (e.g., heavy metals, hydrocarbon, benzene, insec-
ticides, etc.).137–139 Early exposure to those factors and
genetic predisposition to childhood obesity with abnor-
mal adipose tissue biology, ectopic fat deposition, and
IR, often lead to MetS in adolescence.138,140 The under-
lying mechanism is the expression of epigenetically
silenced genes while nutritional epigenetics can activate
the metabolic genes, thereby dysregulating energy bal-
ance and leading to obesity, MetS, and T2DM.141 The
NAD-dependent deacetylase sirtuin-1 (SIRT1) is a well-
known epigenetic regulator37,142 in energy metabolism
that controls food intake,37,143 adiposity,144 energy
expenditure,145 lifespan,146 etc. There is strong evidence
suggesting that high-calorie diets downregulate liver
nuclear receptors such as SIRT1, which are implicated
in abnormal glucose, lipid, and xenobiotic metabolism,
DNA damage, mitochondrial dysfunction, and immune
system alteration.147,148 Strikingly, during early calorie
restriction, hepatic SIRT1 is upregulated, which
enhances metabolism (glucose, protein, fatty acids, and
cholesterol) through the activation of fibroblast growth
factor 21 (FGF21) (Figure 2).148–150 FGF21 is a hepato-
kine that recently got substantial priorities for promis-
ing therapeutic targets of MetS.151 In obese Gottingen
minipigs, treatment with FGF 21 reduced food intake
(50%) and body weight (18 kg) after 14 weeks.152 How-
ever, the physiology of FGF-21 in humans remains to
be clarified.153 Furthermore, bioactive food components
such as isothiocyanates in cruciferous vegetables, isofla-
vones in soybean, and phytoestrogens in whole grains
may elicit protective epigenetic modifications through-
out life.138,154 Lately, gut microbiome and metabolomics
data demonstrated the altered gut- microbial community
(dysbiosis) as the causal factor for higher lipid absorp-
tion in the obese host,114 highlighting the reversal of
gut microbiota as the potential therapeutic option for
treating the MetS.

2.6 | Maternal programming in the
development of MetS

Although signs and symptoms of MetS are seen in adult-
hood, the seed may be sown during early life develop-
ment. In fact, fetal metabolic programming plays a key
role in adult metabolic disorders.155 An accumulating
body of evidence suggests that the development of MetS
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is induced by certain adverse exposures during the gesta-
tional period.156–158 Epidemiological and experimental
studies have shown that altered nutritional and behav-
ioral habits, seriously affecting intrauterine growth
(e.g., intrauterine growth retardation, small or large ges-
tational age baby) can increase the onset of childhood
obesity and metabolic diseases in later life.19,157 Adverse
intrauterine environments even introduce fetal long-term
irreversible changes in organ function by altering meta-
bolic signaling pathways.155 British Epidemiologists
Barker & Hales first hypothesized the Fetal Origins of
Adult Disease by arguing that the origin of many chronic
adult diseases may be found inadequate in utero nutri-
tional and metabolic programs.156 In addition, maternal
and postnatal overnutrition modulate central appetite cir-
cuits (e.g., neuropeptide Y and POMC) and fuel metabo-
lism.159,160 Undernourished mothers give birth to low
birthweight babies, who upon growing up if exposed to
excess calories, accumulate fat more easily leading to the
development of MetS.161,162 A study suggests that off-
spring's birth weight and their later obesity are positively
determined by maternal prepregnancy and/or gestational
obesity or weight gain.158 Excessive gestational weight
gain is the strongest predictor of large gestational age
babies rather than maternal pregravid BMI and diabetes,
confirmed from a database analysis of 12 701 singleton
term deliveries.163 Further, maternal early weight gain in
the first-trimester gestation is the prime of infant birth
weight, childhood BMI and adult T2DM.164,165 In fact,
diets high in simple sugars and fat promote maternal
overfeeding during the gestational and lactation periods,
resulting in accelerated growth rates, hyperphagia, and a
propensity to become obese offspring.18,147 The biochemi-
cal mechanisms of maternal obesity associated with off-
spring obesity and diabetes are maternal and fetal
dysregulation of glucose, lipid, amino acid, and insulin
metabolism.165 Maternal fatty acid metabolism has direct
detrimental effects on utero programming by altering FA
transport, esterification, and beta-oxidation.166 Nonhu-
man primate studies demonstrated that gestational diet is
the predominant determining factor for offspring meta-
bolic health.166 Epigenetic factors (e.g., diet and lifestyle)
strongly influence progeny outcomes through fetal meta-
bolic programming. For example, gut microbes and their
metabolites positively modulate host chromatin state,
enhancing histone poly-acetylation and SCFAs genera-
tion but high sugar drinks and processed diets suppress
microbial SCFAs production which in turn alters hepatic
gene expression.167 Although mother-offspring associa-
tions are stronger, both parents are currently being
emphasized for embryo programming.168 Therefore, the
fetal origins of the adult disease have become a wide area
of research, where scientists are still searching for the
best balance of CHO, proteins, fats, vitamins, and

minerals for the future development of low-risk babies
(Figure 3 needs to be replaced here, below this line).166

3 | NATURE OF CARBOHYDRATE,
METABOLISM AND SYNDROME

CHO are the preferred energy source for the human body
and accounts for more than half (60%) of the calories
consumed everyday.169 Most CHO are found naturally in
foods or can be added artificially as sweeteners, mainly in
processed foods and beverages. CHO are broadly classi-
fied as simple sugars and complex sugars. Monosaccha-
rides (e.g., glucose, fructose) and disaccharides (e.g., cane
sugar-sucrose, maltose, and milk sugar-lactose) are
defined as simple sugars due to their simple chemical
structure, while starch, glycogen, and dietary fibers are
dietary polysaccharides that have complex chemical
structures are termed as complex sugars or complex CHO
(Figure S1).169,170 However, excess intake of any form of
CHO is associated with metabolic impairment and the
development of multiple disorders associated with obesity
and MetS.171

The metabolism of CHO depends on various factors
including chemical nature (aldehydes or ketones), the
content of amylose and amylopectin, heat, pH, etc. Sim-
ple sugars do not require enzymatic hydrolysis to convert
into monosaccharides; therefore, it is metabolized more
quickly than complex sugars leading to a rapid increase
in blood glucose and insulin levels, often harmful in
those who are prone to developing diabetes (Figure 4).172

Among monosaccharides, glucose and fructose have a
similar molecular structure, but their metabolism is
markedly different.41 Glucose is metabolized in a diverse
range of bodily cells such as muscle, liver, brain, and kid-
ney. In hepatocytes, glucose is initially phosphorylated to
glucose 6-phosphate which is then proceed to oxidative
breakdown by the TCA cycle or it may enter biosynthetic
pathways such as the glycogen synthesis and the pentose
phosphate (PPP) or hexosamine pathway. Excess glucose
is later converted into triglycerides or saturated fat via
lipogenesis.69,173 In contrast, ingested fructose is rapidly
absorbed by the liver and converted into glucose, glyco-
gen, lactate, and fat. Furthermore, fructose is a potent
lipogenic and adipogenic nutrient.72 Diets rich in fructose
(e.g., table sugar and HFCS) induce de novo lipogenesis
and increase body lipid content, abdominal obesity, and
IR174 while it decreases fat oxidation175 and energy
expenditure. In this way, exacerbate the comorbidities of
MetS.71 Complex CHO metabolism causes a compara-
tively less steep rise in blood glucose level (Table S1).176

Several intrinsic and extrinsic factors can contribute to
the rise in blood glucose from a given food.177,178 The
intrinsic factors include the physical form of the food
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(unpolished brown rice vs. ground brown rice), nature of
starch (e.g., amylose vs. amylopectin), the content of RS,,
the structure of the granule, size of granule, method of
preparation (agitation, heat or moisture used), degree of
processing (multi-ingredient containing salt, sugar, fat, or
additives), texture, ripeness, and types of CHO
(e.g., brown vs. white rice).22,179 For example, resistant
starch is one type of complex CHO, which delay the
release of glucose due to its distinct granular structure
rather than its amylose or amylopectin content.27 Extrin-
sic variables such as ingestion of CHO along with protein
and fat, prior diet history, fasting state, and degree of
IR180,181 determine differential absorption of nutrients
and total energy intake eventually shifting energy bal-
ance from adequate energy to excess energy, gaining to
weight, and thus the onset of obesity and MetS
(Figure 4).

GI and glycemic load (GL) indicate how drastically a
specific food raises blood glucose level and is now becom-
ing more popular on Food Labels (Table S1).179 The GI is
a numerical value (from 0 to 100) assigned to CHO (g),
indicating how quickly they induce the rise in blood glu-
cose levels for 2 h after their consumption.182 Higher GI
and/or GL can cause rapid spikes in blood glucose levels
and are a greater risk to human health, including the
developing MetS, T2DM, and CVD (Figure 4).183,184

4 | THERAPEUTIC STRATEGIES
OF METS

Though there are no definite treatment regimens avail-
able for MetS, a number of therapeutic approaches are

currently being adopted to control MetS-related compli-
cations.80,185–187 Diet and lifestyle interventions, alterna-
tive medicine, pharmaceutical agents, and surgical
therapy, along with numerous future drug targets are
being developed for clinical management of the underly-
ing metabolic risk factors: obesity, IR, hyperglycemia,
dyslipidemia, and hypertension (Table 1, 2, and 3).

4.1 | Diet and lifestyle intervention

The most dominant intervention strategy for treating or
preventing MetS is diet and lifestyle modifica-
tion.118,188,189 In fact, changing dietary patterns through
healthy eating of food, that is, consuming food containing
less refined CHO, less calories, and more dietary fiber as
well as food containing more RS; ketogenic and Mediter-
ranean diets, etc. may improve the components of MetS
(Table 1).189–192 For example, a short-term, 5-week low-
GI/low-CHO diet intervention showed a significant
reduction in fasting blood glucose, glycated proteins
(e.g., HbA1c), and TG25 (Figure 4). A systemic review
and meta-analysis suggests that exercise training alone
can improve cardio-metabolic risk and other comorbid-
ities in overweight or obese adults.193 Intensive caloric
restriction with lifestyle interventions (functional foods
and physical activity) may decrease body weight and opti-
mize glycaemic, lipidemic, and blood pressure control.188

Recent studies have emphasized the selective modifica-
tion of gut microbe via a diet rich in RS, which produces
intestinal metabolites, particularly SCFAs.118,191,194 These
SCFAs mediate crosstalk between the gut and peripheral
tissues such as adipose tissue, skeletal muscle, liver, etc.

FIGURE 4 Low and high GI diets and the development of metabolic syndrome.
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prompting substrate metabolism and function, thereby
controlling appetite regulation, inflammation, and
improving insulin sensitivity33,34 (Figure 4).

4.2 | Conventional and alternative
treatment approaches

Once diet and lifestyle modifications are established as
not sufficient, pharmacological management of MetS is
preferred.195,196 Widely used anti-obesity and antidiabetic
agents include metformin, sodium-glucose cotransporter
2 (GLT2) inhibitors, and glucagon-like peptide 1 (GLP-1)
receptor agonists liraglutide. Agents commonly pre-
scribed for dyslipidemia are statins, resins, fibrate, and
ezetimibe. Agents commonly prescribed for hypertension
are angiotensin-converting enzyme inhibitors or renin-
angiotensin-aldosterone system inhibitors (ACEI/RAASI)
(Table 2).197–199 These agents can be prescribed alone or
in combination with lifestyle modifications.200

Although conventional medicine has several clinical
health benefits, the potential side effects and cost issues
make some alternative approaches appealing to therapeu-
tic options for metabolic complications.187,201 Among,
various alternative approaches, diet- and natural prod-
ucts based biological treatment methods are the most
popular therapeutic strategies.97 The pharmacologically
active phytochemicals present in alternative medicine
possess numerous health benefits including antioxidant,
anti-obesity, anti-diabetic, anti-inflammatory, anti-ath-
erosclerotic, and anticancer effects.97,202 For example,
herbals containing olive leaf and fruit extracts, and green
tea were found to reduce blood glucose, lipid profile, obe-
sity, and hypertension resulting in MetS
improvement.203–205 In diets, pre- and probiotic foods
such as soluble fiber or starch are currently being used as
a therapeutic option for the treatment and management
of MetS.80,123,206 The prebiotic foods and bacterial supple-
ments, for example, strains of Lactobacillus, and Bifido-
bacterium, not only alleviate body weight and adiposity
but also exerts many beneficial effects on metabolic
parameters (Table 2).80,185,207 Consuming more func-
tional foods and improving the quality of foods have ben-
eficial effects on oxidative stress, inflammation,
immunity, and heart health.187,208,209

4.3 | Advanced and future therapeutics

For obese people who fail to lose significant amounts of
weight via diet and exercise or pharmacological treat-
ment programs, metabolic-bariatric surgery may be taken
into consideration as an advanced therapeutic option forT
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MetS. Metabolic surgery including Roux-en-Y gastric
bypass (RYGB), sleeve gastrectomy, and/or biliopancrea-
tic diversion are current treatments for T2DM patients
with morbid obesity. The underlying mechanism of sub-
stantial body weight and blood glucose reduction from
these treatments is the optimization of hunger and satiety
by altering gut hormones GLP-1, PYY, and oxyntomodu-
lin which decreases GIP and ghrelin, resulting in
improved hepatic and peripheral insulin sensitivity and
the long-term maintenance of weight and hyperglyce-
mia.214,215 However, metabolic-bariatric surgery is not
completely safe, and some have adverse side effects
e.g., laparoscopic RYGB (LRYGB) significantly increased
rates of leakage events, and therefore, longitudinal cohort
studies are warranted to confirm their survival benefit.216

4.3.1 | Future therapeutics

To treat MetS, no specific therapies have been approved
yet and patients are often treated individually to mini-
mize their risk factors.188,217,218 Currently, several novel
drugs are under investigation in preclinical and clinical
studies (Table 3). Some promising therapeutic targets are
briefly discussed below.

• The FGF21 and FXR agonist, and CCR2/5 antagonist
are emerging liver targeting drugs.
Pre-clinical studies have revealed that altered FGF21 is
directly associated with intrahepatic triglyceride con-
tent219 and treatment with FGF21 agonist significantly
reduced hepatic fat content, fasting glucose, body
weight, and increased brown adipose tissue and beta-
cell function in subjects with NASH.220 However, the
clinical application of the natural FGF21 molecule is
limited due to its inconsistency in vitro as well as short
half-life in vivo. Strikingly, in vitro studies show GLP1/
FGF21 dual agonist reduces serum as well as hepatic
lipid content, NASH, and its efficacy is superior to both
FGF21 and GLP-1.151 Obeticholic acid has already been
permitted for the therapeutic management of primary
biliary cirrhosis or cholangitis, and nidufexor (LMB763)
or tropifexor (LJN452) is under clinical investigation for
the treatment of NAFLD and NASH.221,222 Besides the
liver, the FXR agonists have a pivotal role in the intes-
tine and kidney. Importantly, FXR regulates bile acid
homeostasis, is activated in the fed-state while PPARα,
responsible for fatty acid oxidation, is activated in the
fasting state. Therefore, dual PPARα/FXR ligands
would be highly beneficial and promising new agents
for the treatment of glucose and lipid-associated meta-
bolic abnormalities.186,223 The CCR2/5 antagonist, an
immune target, showed potent anti-inflammatory and

antifibrotic activity and is being investigated in phase
3 clinical trials (NCT03028740).68,224

• The master transcriptional regulator PPARγ of
adipocytes differentiation plays a pivotal role in
lipid metabolism, adipogenesis, glucose homeostasis,
and inflammation.186 The PPARγ agonists
(e.g., thiazolidinediones) have highly effective anti-
diabetic activity by adipocyte browning and insulin
sensitization, however, the clinical application of the
drug is restricted due to adverse cardiovascular events
(edema) and patient compliance.225 To overcome these
limitations, the racemic dual sEH/PPARγ modulator
RB394 has been shown to promote adipocyte browning
and insulin sensitivity and simultaneously shows anti-
diabetic and anti-obesity activity underlining its excit-
ing potential application in the treatment of MetS.226

• β-Arrestin (barr1) and pancreatic duodenal homeobox
1 (PDX-1) are the novel epigenetic regulators that con-
trol key metabolic processes through GPCRs signaling
and are vital for pancreatic β-cell proliferation, func-
tion, and survival.227 Luiz F Barella and his colleagues
have shown, in an insulin-resistant in vivo mice model
that PDX1 expression is reduced in absence of barr1
resulting in decreased beta-cell mass, hyperglycemia,
and dysregulation of energy homeostasis.228 In addi-
tion to barr 1, hyperglycemia alone can downregulate
the PDX-1 gene through hypermethylation of DNA, as
demonstrated in preclinical studies.229 Therefore, the
discovery of novel drugs, such as β-arrestin- or GPCR
and PDX-1 ligands/agonists may offer future epige-
netic targets to alleviate MetS-associated complica-
tions, particularly in obesity and T2DM.

• Thioredoxin-interacting protein (TXNIP) is a key bind-
ing protein in the TXN antioxidant system that has a
pivotal role in the pathophysiology of several diseases.
TXNIP interacts with a reduced TXN catalytic site
(Cys), thereby negatively modulating the activity of
TXN, and leading to ROS production, inflammation,
and oxidative stress. One mechanism of TXNIP-
mediated inflammatory pathway activation is the upre-
gulation of NLRP3 inflammasome and the release of
IL-1β and IL-18, shown in Figure 2. Although TXNIP
induces tumor suppression by increasing ROS produc-
tion, oxidative stress, and apoptosis, it negatively regu-
lates insulin sensitivity and glucose metabolism via
transcription control of ChREBP and inhibiting AKT–
PI3 kinase pathway by upregulating phosphatase and
tensin homolog (PTEN) protein.95 Thus, TXNIP plays
a critical role in diverse diseases and inhibitors may
hold promise for controlling the growing incidence of
MetS, especially to prevent its complications.

• Hyocholic acid (HCA) derived mainly from bile acid
(BA) that upregulates GLP-1 production from
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enteroendocrine cells through a unique mechanism by
a concomitant activation of G-protein-coupled BA
receptor and TGR5, with inhibition of FXR.230 A clini-
cal study revealed lower levels of fecal HCA were found
in pre-diabetes, whereas a higher serum HCA profile
was demonstrated in diabetic patients who underwent
gastric bypass surgery and showed a strong prognostic
value for the remission of diabetes after 2 years of sur-
gery.231 Therefore, the assessment of HCA profiles may
be a novel biomarker for the prediction of future risk,
or developing HCA agonists may remediate the future
development of metabolic disorders.

• Aberrant expression of miRs alters normal physiology
and mediates various diseases. A novel form of adipo-
kines, microRNA (miRs), is found in various develop-
ing peripheral tissues including adipose tissues, T-cells,
and macrophages, and appears to regulate host
immune response. Further, multiple metabolic path-
ways are regulated by miRs including food intake, lipid
metabolism, adipogenesis, obesity-associated inflam-
mation, insulin signaling, AT browning, etc.232 Some
circulating miRNAs (miRs 34a, 93, 122, 125b-2, and
192) were significantly associated with prediabetes
(IGT) and NAFLD. For example, higher miRNA 192 in
obese individuals is directly related to dyslipidemia
and liver impairment,233 while the knockout of miR-
125b-2 enhanced fat accumulation, IR, and liver
weight.234 Thus, miRNAs may at least be considered as
potential metabolic disease biomarkers and miRs
based therapeutic approach would be an attractive
treatment regimen for reversing MetS and its related
complications

5 | CONCLUSIONS

Data from diverse areas of research including epidemiol-
ogy, clinical medicine, genetics, epigenetics, and inter-
vention studies provides strong evidence for the
connection between sugar and obesity epidemic as well
as MetS. The nature of CHO differentially influences
blood glucose levels and cellular TG accumulation, the
key driver of MetS. An intake of dietary CHO ranging
from 45% to <60% of one's diet seems to be a safe prac-
tice. The GI of CHO is an easy tool for selecting healthy
foods. To avoid malnutrition or excess nutritional stress,
long-term adherence to any particular dietary habit
(e.g., keto diet or low CHO Mediterranean diet) is not
encouraged. Maternal weight gain is the strongest deter-
minant of childhood obesity resulting in adult metabolic
disorder. Modification of diet by combining different die-
tary fibers, particularly RS and DS containing CHO may
prevent or reverse the component of MetS by producing

SCFAs, strengthening the gut barrier via ligand activa-
tion; also, the releasing of gut hormones may further
reduce inflammation and improve glucose as well as
LCFA metabolism, at least in part, by modulating the gut
microbiota. The divergent effects of those CHO e.g., from
their interaction with probiotics, as well as synbiotics, may
have great potential for MetS therapeutics by functioning
as multi-target ligands. Most current therapies are, how-
ever, used to reduce individual risk factors of MetS. Differ-
ent cereals possess distinct dietary fiber profiles with
varying degrees of RS and DS content. Further population-
based studies are warranted to find optimal diets for vari-
ous populations. Appropriate CHO consumption with
physical activity is highly encouraged in order to promote
healthier generations and foster global health.
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