Non-matchable distributive lattices

Haiyuan Yaoa,b, Heping Zhanga,*

a School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, PR China
b College of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu 730070, PR China

\textbf{A R T I C L E I N F O}

Article history:
Received 21 August 2012
Received in revised form 19 October 2014
Accepted 23 October 2014

Keywords:
Plane bipartite graph
Perfect matching
Z-transformation graph
Resonance graph
Matchable distributive lattice

\textbf{A B S T R A C T}

Based on an acyclic orientation of the Z-transformation graph, a finite distributive lattice (FDL for short) $\mathbf{M}(G)$ is established on the set of all 1-factors of a plane (weakly) elementary bipartite graph G. For an FDL L, if there exists a plane bipartite graph G such that L is isomorphic to $\mathbf{M}(G)$, then L is called a matchable FDL. A natural question arises: Is every FDL a matchable FDL? In this paper we give a negative answer to this question. Further, we obtain a series of non-matchable FDLs by characterizing sub-structures of matchable FDLs with cut-elements.

\begin{center}
\textcopyright 2014 Elsevier B.V. All rights reserved.
\end{center}

1. Introduction

In this paper we take graph terminologies from [1]. As combinatorial structures, finite distributive lattices (FDLs for short) have been established on many combinatorial objects, such as the stable matchings of a bipartite graph [13], the set of flows of a planar graph [9] and the set of c-orientations with fixed flow difference on a plane graph [17,18] or in the dual setting [3]. A result of Propp [18] establishes some FDLs on the sets of d-factors, spanning trees, and Eulerian orientations in a plane (bipartite) graph.

The Z-transformation graph $Z(G)$ of a plane bipartite graph G having a 1-factor (that is, a perfect matching) is a simple graph on the set of all 1-factors of G: two 1-factors are adjacent if their symmetric difference is a cycle that is the boundary of a bounded face of G. This concept originates from Zhang et al. [25] for benzenoid graphs. In fact, this graph has been introduced independently several times under different names. For example, Gründler [6] introduced it, under the name resonance graph, on the set of Kekulé structures of benzenoid graphs. Randić [19] showed that the leading eigenvalue of the resonance graph correlates with the resonance energy of benzenoid by giving a quite satisfactory regression formula. Fournier [4] re-introduced this concept under the name perfect matching graph in domino tiling space. For more mathematical properties and chemical applications about Z-transformation graphs, the interested reader is referred to [14,33] and a recent survey [23] and references therein.

By distinguishing all alternating cycles with respect to some 1-factor of a plane bipartite graph into two classes, Zhang and Zhang [30] gave an orientation $\tilde{Z}(G)$ on the Z-transformation graph $Z(G)$. The property that $\tilde{Z}(G)$ is acyclic [31] yields a natural poset, denoted by $\mathbf{M}(G)$, on the set of 1-factors of G. In general, $\tilde{Z}(G)$ is the Hasse diagram of $\mathbf{M}(G)$, and $Z(G)$ is the cover graph (also called undirected Hasse diagram) of $\mathbf{M}(G)$. For a plane (weakly) elementary bipartite graph G (its definition

\begin{itemize}
\item [✩] Supported by NSFC (Grant Nos. 11371180, 61073046), and the High-Level Talent Project of Northwest Normal University.
\item [*] Corresponding author.
E-mail addresses: hyyao@nwnu.edu.cn (H. Yao), zhanghp@lzu.edu.cn (H. Zhang).
\end{itemize}

http://dx.doi.org/10.1016/j.disc.2014.10.020
0012-365X/© 2014 Elsevier B.V. All rights reserved.
An FDL is a matchable FDL [28] if there exists a plane bipartite graph \(G \) such that \(L \cong M(G) \). So it is natural to ask whether every FDL is a matchable FDL. In fact, in this paper we will show that non-matchable FDLs exist. Thus, characterizing the matchable FDLs is a further problem. Zhang et al. [28] showed that for a plane elementary bipartite graph \(G \), \(M(G) \) is irreducible. From this, a decomposition theorem is obtained: an FDL \(L \) is matchable if and only if for any direct product decomposition of \(L \), every factor is matchable.

The remainder of this paper consists of three sections. Some basic results about matchable FDLs are given in Section 2. In Section 3, we give some results and structures of Fibonacci cubes and Lucas cubes related to matchable FDLs. We show that some of these cubes can be and some cannot be the 2-transformation graphs of planar bipartite graphs. Thus sequences of matchable and non-matchable FDLs are obtained. In the last section, we construct a sequence of non-matchable FDLs by characterizing sub-structures of matchable FDLs with cut-elements, where a cut-element of an FDL is a cut-vertex of its Hasse diagram, that is a cut-vertex of its cover graph, and a type \((m, n)\) cut-element is a cut-element which is covered exactly by \(m \) elements and covers exactly \(n \) elements. By the planarity of the duals for plane graphs, we show that if a matchable FDL has a type \((m, n)\) cut-element, then \(\min(m, n) \leq 2 \). We also show that a matchable FDL having a type \((2, n)\) cut-element with \(n \geq 2 \) must contain a special sublattice. Applying these results, we construct a sequence of non-matchable FDLs with cut-elements. By the decomposition theorem, some non-matchable FDLs without cut-elements are also obtained.

2. Matchable FDLs

Let \(G \) be a plane bipartite graph with a proper white/black coloring of its vertices, and let \(M \) be a 1-factor of \(G \). A cycle \(C \) of \(G \) is resonant or nice if \(G - V(C) \) has a 1-factor. A cell of \(G \) is a bounded face whose boundary is a cycle. In this paper we do not distinguish a cell from its boundary. We say that a face is resonant if its boundary is a resonant cycle. A bipartite graph is elementary [15] if it is connected and every edge belongs to a 1-factor. The complete graph \(K_2 \) with two vertices is the trivial elementary bipartite graph. Lovász and Plummer [15] showed that nontrivial elementary graphs are 2-connected. Also, a plane bipartite graph is a nontrivial elementary graph if and only if every face (including the outer face) is resonant (Zhang and Zhang [32]). A cycle or path of a graph is M-alternating if its edges are alternately in and out of \(M \). Furthermore, an M-alternating cycle in a plane bipartite graph with 1-factor \(M \) is proper if under the clockwise orientation of the cycle the edges in \(M \) are oriented from white vertices to black vertices; otherwise it is improper.

The symmetric difference \(A \oplus B \) of finite sets \(A \) and \(B \) is defined by \(A \oplus B = (A \setminus B) \cup (B \setminus A) \). If \(A \) and \(B \) are subgraphs of a graph, then \(A \oplus B \) is treated as the symmetric difference of their edge-sets.

Definition 2.1 ([25,31]). Fix a white/black proper coloring of a plane bipartite graph \(G \) having a 1-factor, and let \(M(G) \) be the set of all 1-factors of \(G \). The Z-transformation digraph (or resonance digraph) of \(G \), denoted by \(\tilde{Z}(G) \), is defined as the digraph on \(M(G) \) such that there exists an arc from \(M \) to \(M' \) if and only if the symmetric difference \(M \oplus M' \) is a proper \(M^{-} \) alternating cell of \(G \). Ignoring all directions of arcs of \(\tilde{Z}(G) \), we get the usual Z-transformation graph or resonance graph \(Z(G) \) (see Fig. 1).

As noted in [31], the property that \(\tilde{Z}(G) \) is acyclic yields a partial ordering: for \(M, M' \in M(G) \), \(M' \leq M \) if and only if \(\tilde{Z}(G) \) has a directed path from \(M \) to \(M' \). As noted in [24], \(M \) covers \(M' \) if and only if \(M' \oplus M \) is a proper \(M^{-} \) (thus improper \(M^{-} \)) alternating cell. A change from \(M \) to \(M' \) on such a cell is a twist or Z-transformation on the cell. We denote this poset by \(M(G) \).
Let G be a plane bipartite graph with a 1-factor. Elementary components of G are components of the subgraph obtained from G by removing all edges not contained in any 1-factors. Each elementary component having only one edge is a trivial elementary component. As introduced in [32], a graph G is weakly elementary if $I(C)$ is elementary for every resonant cycle C of G, where $I(C)$ denotes the subgraph of G consisting of C together with its interior. It is easy to check that every plane elementary bipartite graph is weakly elementary.

Theorem 2.1 ([24]). If G is a plane bipartite graph having a 1-factor, then $M(G)$ is an FDL if and only if G is weakly elementary. Furthermore, if G is weakly elementary, and G_1, \ldots, G_n are the elementary components of G, then

$$M(G) \cong M(G_1) \times \cdots \times M(G_n),$$

where “\times” denotes the direct product of posets.

We now define matchable FDLs as follows.

Definition 2.2 ([28]). An FDL L is matchable if there is a plane weakly elementary bipartite graph G such that $L \cong M(G)$; otherwise it is non-matchable.

For example, the n-element chain n is matchable. So are $m \times n$ and B_n, the Boolean algebra of rank n. Furthermore, it was shown in [28] that $J(m \times n)$ and $J(T)$ are matchable, where $J(P)$ denotes the distributive lattice on all order ideals of poset P ordered by inclusion and T is a poset implied by any orientation of a tree T.

An FDL L is nontrivial if it has at least two elements. The expression $L = \prod_{i=1}^k L_i$ is a direct product decomposition when each L_i is an FDL, and then L_1, \ldots, L_k are the factors of L. We say an FDL is irreducible if it cannot be decomposed into a direct product of two nontrivial FDLs. Zhang et al. [28] obtained some basic results about matchable FDLs.

Theorem 2.2 ([28]). If G is a plane elementary bipartite graph, then $M(G)$ is irreducible.

Theorem 2.3 ([28]). If $L = \prod_{i=1}^k L_i$ is a direct product decomposition of an FDL L, then L is matchable if and only if L_1, \ldots, L_k are matchable.

Remark 2.4. It is immediate from the definitions that $Z(K_2) = K_1$ and that $H \times K_1 \cong H$ and $L \times 1 = L$ for any graph H and any FDL L. By Theorem 2.1, we may assume that G has no trivial elementary components when we look for some plane weakly bipartite graph G such that $M(G) \cong L$ is a matchable FDL.

Let P_0 denote the dual poset of a poset P. Let G^1 be the 2-colored graph obtained from the 2-colored plane bipartite graph G by interchanging the two color classes of G. By the definitions of proper and improper alternating cells, and Z-transformation digraph, the following proposition is obvious.

Proposition 2.5. $M(G^1) \cong (M(G))^*$. □

For an edge e of a graph G, the operation of inserting an even number of new vertices of degree 2 on e is an even subdividing of e. A graph G' is an even subdivision of G if G' can be obtained from G by even subdivisions of edges. When G is a plane bipartite graph, an even subdivision G' of G is also a plane bipartite graph, and the incidence relations between the old vertices and faces are the same in G' and G. For instance, in Fig. 4 the left three graphs are even subdivisions of the grid I_5.

Lemma 2.6 ([15, Chapter 4]). Every even subdivision of a nontrivial elementary bipartite graph is also elementary.

Lemma 2.7. If G' is an even subdivision of a plane elementary bipartite graph G, then $\bar{Z}(G') \cong \bar{Z}(G)$, and $M(G') \cong M(G)$.

Proof. It is sufficient to show that the claim is true when G' is obtained from G by subdividing an edge e by introducing two new vertices. This replaces e with three consecutive new edges, denoted by e'_1, e'_2 and e'_3. For any 1-factor M of G, let $M' = (M \setminus \{e\}) \cup \{e'_1, e'_2\}$ if $e \in M$, and $M' = M \cup \{e'_2\}$ otherwise. Note that M' is a 1-factor of G. This establishes a bijection from $M(G)$ to $M(G')$. Similarly, for any cycle C of G if $e \in C$, let $C' = (C \setminus \{e\}) \cup \{e'_1, e'_2, e'_3\}$ otherwise let $C' = C$. Note that C is a proper (resp. improper) M-alternating cycle of G if and only if C' is a proper (resp. improper) M'-alternating cycle of G'. Hence, the bijection from $M(G)$ and $M(G')$ preserves the proper (resp. improper) alternating cycles (thus cells) in G and those in G'; thus it is an isomorphism from $\bar{Z}(G)$ to $\bar{Z}(G')$. □

Lemma 2.8 ([32]). Let G be a plane elementary bipartite graph with a 1-factor M. If C is an M-alternating cycle, then there is an M-alternating cell in $I(C)$. □

Let G be a plane weakly elementary bipartite graph. The FDL $M(G)$ has a unique minimum element M^0, that is, G has no proper M^0-alternating cycles. Therefore, M^0 is called the root 1-factor of G. Also G has a unique source 1-factor M^1 such that G has no improper M^1-alternating cycles.

Lemma 2.9 ([28]). If G is a nontrivial plane elementary bipartite graph, then the outer boundary of G is a proper M^1 (resp. an improper M^0) alternating cycle. □

A path in a 2-connected graph is a thread if all its internal vertices have degree 2 and its endpoints have degree at least 3. An edge with both of its end-points have degree at least 3 is a thread of length 1. Given a 1-factor M of G, an M-alternating
path P with odd length is proper if both terminal edges of P belong to M and improper otherwise. Here are two simple lemmas on alternating cells and cycles. The first one is known (cf. [29, Lemma 2.6]).

Lemma 2.10 ([29]). If M is a 1-factor of a plane bipartite graph G, then the boundaries of all proper (resp. improper) M-alternating cells of G are pairwise disjoint.

Lemma 2.11. Let C_1 and C_2 be distinct and intersecting M-alternating cycles, where M is a 1-factor in a plane bipartite graph G. The maximum degree of $C_1 \cup C_2$ is 3, and each component of $C_1 \cap C_2$ is a proper M-alternating thread in $C_1 \cup C_2$. Thus each component of $C_1 - C_2$ and $C_2 - C_1$ is an improper M-alternating thread in $C_1 \cup C_2$, where $C_1 - C_2$ denotes the subgraph obtained from C_1 by deleting all edges together with interior vertices of each component of $C_1 \cap C_2$.

Proof. Since C_1 and C_2 are M-alternating, for any vertex v of $C_1 \cup C_2$ there is exactly one edge in M, denoted by e, incident with v. If v is a common vertex of C_1 and C_2, then $e \in E(C_1) \cap E(C_2)$. Hence $C_1 \cup C_2$ has the maximum degree at most 3, and a vertex with degree 3 must exist, since C_1 and C_2 are distinct. If $d(v) = 3$, then v must be incident with exactly one edge not in M in each C_i. If $d(v) = 2$, then v must be incident with one edge in M and one edge not in M of either C_1 or C_2, or maybe both. This shows that each component of $C_1 \cap C_2$ is a proper M-alternating thread of $C_1 \cup C_2$. □

3. **Fibonacci cubes, Lucas cubes, and matchable FDLs**

The n-cube Q_n is the graph whose vertex set is the set of binary n-tuple in which vertices are adjacent if they differ in one bit. A binary n-tuple is a Fibonacci string if it has no consecutive 1s; it is a Lucas string if also it does not begin and end with 1. For $n \geq 1$, the Fibonacci (resp. Lucas) cube Γ_n (resp. Λ_n) [7, 10, 16], is the subgraph of Q_n induced by the Fibonacci (resp. Lucas) strings with length n. Clearly $V(\Gamma_n) = \{0v : v \in V(\Gamma_{n-1})\} \cup \{10v : v \in V(\Gamma_{n-2})\}$ and $V(\Lambda_n) = \{0v : v \in V(\Gamma_{n-1})\} \cup \{10v0 : v \in V(\Gamma_{n-3})\}$. It is well known that $|V(\Gamma_n)| = f_{n+2}$ and $|V(\Lambda_n)| = f_{n+1} + f_{n+1} = l_n$. Here $\{f_n\}$ and $\{l_n\}$ are the Fibonacci sequence and Lucas sequence, respectively. They are defined by the same recurrence relation $a_n = a_{n-1} + a_{n-2}$ for $n \geq 2$, with different initial conditions $f_0 = 0$, $f_1 = 1$ and $l_0 = 2$, $l_1 = 1$. Note that $\Gamma_1 = K_2$, $\Lambda_1 = K_1$, $\Gamma_2 = \Lambda_2 = P_3$, and $\Lambda_3 = K_{1,3}$. Some other Fibonacci and Lucas cubes are shown in Fig. 2.

Let Z_n denote the “zigzag poset” or “fence” (cf. [8, 20] or [22, Chapter 3, ex23]): an n-element poset on $\{x_1, \ldots, x_n\}$ with cover relations $x_{2i} \prec x_{2i-1}$ and $x_{2i} \prec x_{2i+1}$; See Fig. 3(a) and (b). By adding one more cover relation $x_{2n} \prec x_1$ in poset Z_{2n}, we obtain a poset called a “crown” [8, 20], denoted by \succeq_{2n} (see Fig. 3(c)). Further, by adjoining the minimum element 0 and the maximum element 1 to \succeq_{2n}, we obtain a poset \Rightarrow_{2n}; See Fig. 3(d).

Let H and G be two graphs. An edge-preserving map ϕ of H to G is a map of $V(H)$ to $V(G)$ such that $\phi(u)\phi(v) \in E(G)$ if $uv \in E(H)$. We say that H is a retract of G if there are two edge-preserving maps ϕ of H to G and ψ of G to H such that $\psi \phi(v) = v$ for each $v \in V(H)$. Note that if H is a retract of G it is convenient to take H as a subgraph of G and ϕ to be an inclusion map.

Lemma 3.1. Letting $\Gamma_n = J(Z_n)$ and $\Lambda_{2n} = J(\Rightarrow_{2n})$ for positive integer n,

1. Λ_{2n} is the cover graph of the FDL Λ_{2n}.
2. [5, 21] Γ_n is the cover graph of the FDL Γ_n, and
3. Λ_{2n-1} is not a cover graph of any FDL unless $n = 1$.

![Fig. 2. The Fibonacci and Lucas cubes Γ_3, Γ_4, Γ_5, Λ_4, and Λ_5.](image)

![Fig. 3. Some posets: (a) fence Z_{2n-1}, (b) fence Z_{2n}, and (c) crown \Rightarrow_{2n}, (d) \Rightarrow_{2n}](image)
Proof. (1) If \(n = 1 \), then \(\triangleright\triangleright\triangleright\triangleright\triangleright \) degenerates into the 2-element chain. Both \(\Lambda_2 \) and \(\mathbf{J}(2) \) are isomorphic to the 3-element chain. Thus the claim holds for \(n = 1 \). For \(n \geq 2 \), we establish a map \(f \) from the Lucas sequences of length \(2n \) to the order ideals of \(\triangleright\triangleright\triangleright\triangleright\triangleright \). For any binary string \(b = b_1 b_2 \cdots b_{2n} \in \Lambda_{2n} \), complement each even bit of \(b \) and denote the resulting binary string by \(b' = b_1' b_2' \cdots b_{2n}' \). Let \(f(b) \) be the subset of \(\triangleright\triangleright\triangleright\triangleright\triangleright \) whose elements are indexed by the positions that equal 1 in \(b' \). That is, \(x_i \in f(b) \) if and only if \(b_i' = 1 \). Now, if \(b_{2i-1}' = b_{2i-1} = 1 \), then \(x_{2i-1} \in f(b) \), \(b_{2i-2} = b_{2i} = 0 \) (taking the subscripts modulo \(2n \)), and thus \(b_{2i-2}' = b_{2i}' = 1 \). This implies \(x_{2i-2}, x_{2i} \in f(b) \). Hence \(f(b) \) is an order ideal of \(\triangleright\triangleright\triangleright\triangleright\triangleright \).

Conversely, let \(I \) be an order ideal of \(\triangleright\triangleright\triangleright\triangleright\triangleright \). Let \(b_{2i-2}' = b_{2i}' = 1 \) or \(0 \) according to whether \(x_{2i-1} \in I \) or not. Let \(b_{2i} = 0 \) or 1 according to whether \(x_{2i} \in I \) or not. Similarly we can see that \(b_1 b_2 \cdots b_{2n} \) is a Lucas string. Hence \(f \) is a bijection. Further we can see that \(f \) is an isomorphism from \(\Lambda_{2n} \) to the cover graph of the lattice \(\mathbf{J}(\triangleright\triangleright\triangleright\triangleright\triangleright) \).

Theorem 3.2. (1) [11] If \(F_n \) is a fibonacci with \(n \) hexagons, then \(Z(F_n) \cong \Gamma_n \).
(2) [27] If \(G \) is a plane bipartite graph with no trivial elementary component, then \(Z(G) \cong \Gamma_n \) if and only if \(G \) is an even subdivision of \(\Lambda_{2n} \).

Let \(O_{2n} \) be a plane embedding of graph \(C_{2n} \times K_2 \) with \(n \geq 2 \) such that the outer face of \(O_{2n} \) is bounded by \(C_{2n} \) (see Fig. 5). It is clear that \(O_{2n} \) is elementary. Note that \(O_4 \) is just the cube \(Q_3 \). Let \(\Lambda_{2n} \) be the graph obtained from \(\Lambda_{2n} \) by adding two new vertices with one adjacent to \(1010 \cdots 10 \) and another adjacent to \(0101 \cdots 01 \).

Lemma 3.3 ([27]). For positive integer \(n \).

(1) If \(n \geq 3 \), then \(\Lambda_n \) is not a \(Z \)-transformation graph of any plane bipartite graph, and

(2) If \(G \) is a plane bipartite graph with no trivial elementary component, then \(Z(G) \cong \Lambda_n \) if and only if \(G \) is an even subdivision of \(O_{2n} \).

Hence, by Theorem 2.1 and Lemma 3.3(2), we obtain two matchable FDLs \(M(L_n) \) and \(M(O_{2n}) \) determined by the orientations \(\hat{Z}(L_n) \) and \(\hat{Z}(O_{2n}) \) of \(\Gamma_n \) and \(\Lambda_{2n} \), respectively. The partial order determined by such an orientation of \(\Gamma_n \) is different from the natural order in the integer lattice \(\mathbf{Z} \). For examples, see Fig. 2(a), (b), and (c).

By Lemmas 3.1–3.3, we can show that these FDLs are matchable. The ordinal sum of two disjoint posets \(P \) and \(Q \) having unique maximal and minimal elements is the poset \(P \sqcup Q \) such that \(x \leq y \) in \(P \sqcup Q \) if \((a) x, y \in P \) and \(x \leq y \in P \), or \((b) x, y \in Q \) and \(x \leq y \) in \(Q \), or \((c) x \in P \) and \(y \in Q \). Similarly, the vertical sum of \(P \) and \(Q \) is the poset \(P \sqcup Q \), where the only difference from the ordinal sum is that now the maximum element 1 of the lower summand \(P \) and the minimum element 0 of the upper summand \(Q \) are identified instead of becoming neighbors. Let \(\hat{P} \) denote the poset obtained from a poset \(P \) by adjoining a new 0 and 1 (in spite of an (old) 0) and 1 which \(P \) may already possess), i.e. \(\hat{P} = 1 \sqcup P \sqcup 1 \). See Fig. 3(c) and (d).

Theorem 3.4. For a positive integer \(n \), let \(\Lambda_{2n} = \mathbf{J}(\triangleright\triangleright\triangleright\triangleright\triangleright) \).

(1) \(\Gamma_n \cong M(L_n) \) is a matchable FDL;
(2) \(\Lambda_{2n} \cong M(O_{2n}) \) is a matchable FDL;
(3) If \(n \geq 2 \), then \(\Lambda_{2n} \) is a non-matchable FDL; and
(4) For any FDL \(L \), if \(n \geq 2 \), then the FDLs \(\Lambda_{2n} \sqcup L \), \(L \sqcup \Lambda_{2n} \), \(\Lambda_{2n} \sqcup \Lambda_{2n} \), \(\Lambda_{2n} \sqcup L \), \(L \sqcup \Lambda_{2n} \), and \(\Lambda_{2n} \sqcup \Lambda_{2n} \) are non-matchable.

Proof. (1) Let \(f_1, f_2, \ldots, f_n \) denote the squares of \(L_n \) from left to right (as drawn in Fig. 4). Recall that the outer face \(f_0 \) never twists in \(\hat{Z}(L_n) \). Since all cells of \(L_n \) are adjacent to \(f_0 \), each cell \(f_i \) twists at most once in \(\hat{Z}(L_n) \). On the other hand, each cell \(f_i \) of \(L_n \) is resonant, so there exists some 1-factor \(M \) of \(L_n \) such that \(f_i \) is (proper) \(M \)-alternating. Thus each cell \(f_i \) twists exactly once during the generation of \(\hat{Z}(L_n) \) from \(M \). Therefore, any 1-factor \(M \) is determined by the cells twisted from \(M \), which are the cells contained in some cycle of \(M \sqcup M \). By Lemma 2.9, \(f_1, f_2, \ldots, f_n \) are proper \(M \)-alternating (see Fig. 5(a)). So all
cells having odd subscripts, \(f_1, f_3, \ldots\), can twist in \(M^1\). However, each cell \(f_2\) with even subscript can twist in some 1-factor \(M\) of \(L_n\) after both \(f_{2i-1}\) and \(f_{2i+1}\) (if they exist) twist during the generation of \(M\) from \(M^1\). So any 1-factor \(M\) is determined by the cells twisted, and thus determined by the cells untwisted, from \(M^1\). On the other hand, for any given order ideal \(I\) of \(Z_n\), \(I \cup \{x_{2i}\}\) is also an order ideal, \(1 \leq i \leq n - 1\), and \(x_{2i-1} \in I\) or \(x_{2i+1} \in I\) imply \(x_{2i} \notin I\), but \(x_{2i} \in I\) does not imply \(x_{2i-1} \in I\) or \(x_{2i+1} \in I\) (see Fig. 3(a) and (b)). Thus, by mapping cell \(f_i\) of \(L_n\) to the element \(x_i\) of \(Z_n\), we can establish a bijection from the perfect matchings \(M = L_n\) to the order ideals \(I\) of \(Z_n\) (the set of untwisted cells from \(M^1\) to \(M\) corresponds to \(I\)), which is an isomorphism from \(\mathbf{M}(L_n)\) to \(\mathbf{J}(Z_n)\).

(2) Let \(f_0\) and \(f_1\) denote the outer face and the central cell of \(O_{2n}\), respectively. The other cells are denoted by \(g_1, h_1, g_2, \ldots, g_n, h_n\) in counterclockwise order. The 1-factor \(M^1\) consists of common edges of \(f_0\) and common edges of \(g_i\) and \(f_1\) and \(h_1\) (see Fig. 5(b)). As in (1), each \(g_i\) and \(h_i\) twists exactly once while generating \(Z(O_{2n})\) from \(M^1\). However, \(f_1\) twists twice since \(\text{Lemma 2.9}\), \(f_1\) is proper \(M^0 \oplus f_1\)-alternating and proper \(M^1\)-alternating. Also, each \(g_i\) is proper \(M^1 \oplus f_1\)-alternating. Moreover, for some 1-factor \(M^1\), \(h_i\) is proper \(M^\prime\)-alternating if and only if both \(g_i\) and \(g_{i+1}\) are improper \(M^\prime\)-alternating, where subscripts modulo 2n. After each \(h_i\) is twisted, \(f_1\) can be twisted again to reach the root \(M^0\) of \(\mathbf{M}(O_{2n})\). Hence, the poset, ordered by the order in which the cells are twisted, is just \(\approx_{2n}\), where \(\hat{1}\) and \(\hat{0}\) correspond to the first and final twists of \(f_1\), respectively. Hence the claim holds.

(3) This is implied by \(\text{Lemma 3.3}\).

(4) Suppose to the contrary that there exists some plane weakly elementary bipartite graph \(G\) such that \(A_{2n} \cup L = \mathbf{M}(G)\), where \(n \geq 2\). The graph \(G\) has a unique 1-factor \(M^1\) corresponding to the maximum element \(\approx_{2n}\) of \(A_{2n}\). Let \(\{x_1, x_2, \ldots, x_{2n}\}\) be the elements of \(\approx_{2n}\). Since \(\approx_{2n}\) covers exactly \(n\) order ideals \(\approx_{2n} \setminus \{x_{2i}\}\) of \(\approx_{2n}\), \(G\) has \(n\) proper \(M^\prime\)-alternating cells, say \(f_1, \ldots, f_n\), such that 1-factor \(M^1 \oplus f_i\) of \(G\) corresponds to the order ideal \(\approx_{2n} \setminus \{x_{2i}\}\), for \(1 \leq i \leq n\). By \(\text{Lemma 2.10}\), \(f_1, \ldots, f_n\) are pairwise disjoint. Letting \(M = M^1 \oplus (\oplus_{i=1}^n f_i)\), the 1-factor \(M\) corresponds to the order ideal \(\{x_2, x_4, \ldots, x_{2n}\}\). Note that \(G\) has exactly \(n\) 1-factors \(M \oplus g_i\) covered by \(M\) in \(\mathbf{M}(G)\), since \(\approx_{2n}\) has \(n\) order ideals \(\{x_2, x_4, \ldots, x_{2n}\} \setminus \{x_{2i}\}\) covered by \(\{x_2, x_4, \ldots, x_{2n}\}\) in \(\approx_{2n}\) for \(1 \leq i \leq n\), where \(g_1, \ldots, g_n\) are proper \(M^\prime\)-alternating cells of \(G\). Again by \(\text{Lemma 2.10}\), all \(g_1, \ldots, g_n\) are pairwise disjoint and different from any \(f_i\).

We claim that each \(g_i\) intersects only \(f_i\) and \(f_{i+1}\) (taking subscripts modulo \(n\)). Since \(M^1 \oplus f_i \oplus f_{i+1}\) corresponds to \(\approx_{2n} \setminus \{x_{2i-1}, x_{2i+1}\}\), in \(G\) there is a 1-factor \(M^1 \oplus f_i \oplus f_{i+1} \oplus g_i\) corresponding to \(\approx_{2n} \setminus \{x_{2i-1}, x_{2i+1}\}\), where \(g_i\) is a proper \((M^1 \oplus f_i \oplus f_{i+1})\)-alternating cell of \(G\). It is obvious that \(g_i\) is disjoint from all \(f_j\) except \(f_i\) and \(f_{i+1}\). Any two saturated chains of \(\mathbf{M}(G)\) from \(M^1\) to \(g_i\) passing through \(M^1 \oplus f_i \oplus f_{i+1} \oplus g_i\) respectively twist the same set of cells (cf. \(\text{Lemma 3.5}\) in [24]). So \(g_i = g_i\). If \(g_i\) is disjoint from \(f_i\), then \(M^1 \oplus f_i \oplus g_i\) is a 1-factor of \(G\), which does not correspond to an order ideal covered by \(\approx_{2n} \setminus \{x_{2i-1}\}\). Hence the claim holds.

Let \(M^\prime = M \cup \oplus_{i=1}^n g_i\). The 1-factor \(M^\prime\) corresponds to the order ideal \(\emptyset\) as the minimum element of \(I(\approx_{2n})\). That is, \(M^\prime\) is also the minimum element of \(\mathbf{M}(G)\). Let \(G^\prime = \cup_{i=1}^n f_i \cup (\oplus_{i=1}^n g_i)\) and \(G^\prime = \oplus_{i=1}^n (f_i \oplus g_i)\). By \(\text{Lemma 2.11}\), it follows that \(G^\prime\) consists of disjoint \(M^\prime\)-alternating cycles, and one must be a proper \(M^\prime\)-alternating cycle \(C\) whose interior does not contain any \(f_i\) or \(g_i\). By \(\text{Lemma 2.8}\), \(I(C)\) must contain a proper \(M^0\)-alternating cell \(f\) of \(G\) that does not equal any \(f_i\) or \(g_i\). Thus \(G\) must have another 1-factor \(M^\prime \oplus f\) covered by \(M^\prime\). This contradicts that \(M^\prime\) is the minimum element of \(\mathbf{M}(G)\).

In an analogous way, \(A_{2n} \oplus L\) is a non-matchable FDL. By the dual poset, the remaining results are true too.

Example 3.5. The FDLs in Fig. 6 (and their duals) are non-matchable FDLs. Moreover, for positive integers \(m, n \geq 2\), \(A_{2n} \oplus \cdots \oplus A_{2n}\), the vertical sums of \(m\) copies of \(A_{2n}\) are non-matchable.

4. Non-matchable FDLs with cut-elements

Recall the definitions of cut-elements from the introduction. Here is a fact about cut-vertices of \(Z(G)\).

Lemma 4.1 ([31]). Let \(G\) be a plane elementary bipartite graph. If \(Z(G)\) has a cut-vertex \(M\), then \(G\) has both proper and improper \(M\)-alternating cells, and every proper \(M\)-alternating cell intersects every improper \(M\)-alternating cell.

Let \(G\) be a weakly elementary plane bipartite graph such that \(\mathbf{M}(G)\) contains a cut-element. By \(\text{Remark 2.4}\) and the fact that the Cartesian product of two connected graphs other than \(K_1\) is 2-connected, we may assume that \(G\) is elementary. In
the sequel, G always means a plane elementary bipartite graph other than K_2 with a given white–black coloring on its vertex set, unless otherwise specified. For a plane elementary bipartite graph G with a perfect matching M_v, from the definition of cut-element and Lemma 4.1 it follows that the following three statements are equivalent:

1. M_v is a type (m, n) cut-element of the matchable FDL $M(G)$,
2. G has exactly n improper and n proper M_v-alternating cells such that each proper cell intersects each improper cell, and
3. M_v is a cut-vertex of $\tilde{Z}(G)$ with in-degree m and out-degree n.

We now give the first main result of this section.

Lemma 4.2. If $M(G)$ has a type (m, n) cut-element M_v, then $m \leq 2$ or $n \leq 2$.

Proof. Suppose to the contrary that $m \geq 3$ and $n \geq 3$. Let f_1, f_2, f_3 and g_1, g_2, g_3 be three improper and three proper M_v-alternating cells of G respectively. By Lemmas 4.1 and 2.11, $f_i \cap g_j \neq \emptyset$ is a proper M_v-alternating thread, for $i, j \in \{1, 2, 3\}$. Thus these six cells form a complete bipartite graph $K_{3, 3}$ in the dual graph G^* of G. This contradicts the planarity of G^*. □

Theorem 4.3. Let L be an FDL with a type (m, n) cut-element. If $m \geq 3$ or $n \geq 3$, then L is a non-matchable FDL. □

Example 4.4. The FDLs (and their duals) in Fig. 7 are non-matchable FDLs. Moreover, for positive integers $m, n \geq 3$, the FDL $B_m \oplus B_n$ is non-matchable.

Thus, if $M(G)$ has a type (m, n) cut-element M_v, then we only need to consider the cases that $m = 2$ and $n = 1$. We consider mainly the former. For a 1-factor M and a subgraph H of G, the notation $M|_H$ means the restriction of M to H.

Now let us consider matchable FDLs with a type $(2, n)$ cut-element. First, consider two matchable FDLs related to Γ_n and A_{2n}. Given a grid L_{2n-1}, we label the white (resp. black) vertices by w_i (resp. b_i), for $0 \leq i \leq n$, from left to right (note that the top-left vertex is white). Similarly, we label the cells by g_1, g_2, \ldots, g_n from left to right.

For $n \geq 2$, let H_n denote the plane graph obtained from grid L_{2n-1} by joining w_0 and b_{2n-1} with a line (i.e. an edge) lying above L_{2n-1} and joining b_0 and w_{2n-1} with a line lying under L_{2n-1} (see Fig. 8(a)). Note that H_n has two more cells than L_{2n-1}; call them f_1, f_2. Each of f_1 and f_2 shares an edge with each square of L_{2n-1}.

For $n \geq 2$, let H'_n denote the plane graph obtained from grid H_{n+1} by joining w_1 and b_{2n} with a line inside the original f_2 and then removing the edges b_0w_1 and $b_{2n}w_{2n-1}$ (see Fig. 8(b)). We denote the new cells lying above and under the line w_1b_{2n} by f_2 and g_1, respectively. Each of f_1 and f_2 shares an edge with all squares and g_1, the latter being bounded by an 8-cycle sharing two edges with f_1 and one edge with f_2.

For the graphs H_n and H'_n, let M_n denote the unique 1-factor of the graph such that both f_1 and f_2 are improper M_n-alternating. Thus each g_i is proper M_n-alternating. Let $M_n = M_v \oplus f_1 \oplus f_2$. We can see that M_v and M_n are cut-elements of $M(H_n)$ and $M(H'_n)$. Note that $M(H_2) \cong M(Q_3) \cong A_4$. For any $x, y \in M(G)$, let $I[x, y] = \{z \in M(G) | x \leq z \leq y\}$.
When a poset \mathbf{L}' is isomorphic to a sublattice of a lattice \mathbf{L}, we say that \mathbf{L}' is a sublattice of \mathbf{L}. Similar to Theorem 3.4(2), we have

Lemma 4.5. (1) In $\mathbf{M}(H_n)$, $\mathbf{I}[M_u, M^i_1] \cong \Gamma_{2n-3}$ and $\mathbf{I}[M^0, M_c] \cong \Gamma_{2n-1}$. Thus $\mathbf{M}(H_n) \cong \Gamma_{2n-1} \oplus B_2 \oplus \Gamma_{2n-3}$.
(2) In $\mathbf{M}(H_n')$, $\mathbf{I}[M_u, M^1_1] \cong \Gamma_{2n-1}$ and $\mathbf{I}[M^0, M_c] \cong \Lambda_{2n}$. Thus $\mathbf{M}(H_n') \cong 1 \oplus \Lambda_{2n} \oplus B_2 \oplus \Gamma_{2n-1}$, and
(3) $\mathbf{M}(H_n)$ is a sublattice of $\mathbf{M}(H_n')$.

Proof. (1) By Lemma 2.9, the boundary cycle C of H_n is proper M^i-alternating. Let \mathbf{M}_c denote the subposet induced by the set of 1-factors of H_n for which C is proper alternating. We have $\mathbf{M}_c \cong \mathbf{M}(G')$, where $G' = H_n - V(C)$. It is clear that $G' \cong L_{2n-3}^i$.

So, by Theorem 3.4(1), $\mathbf{M}_c \cong \mathbf{M}(G') \cong \Gamma_{2n-3}^i$. The maximum element of \mathbf{M}_c is M^i_1, and the minimum element of \mathbf{M}_c is M_u.

Hence, $\mathbf{I}[M_u, M^1_1] \cong \mathbf{M}_c \cong \Gamma_{2n-3}^i$, and $\mathbf{I}[M_u, M_c] = B_2$.

Now let us prove the rest of the assertion. After both f_1 and f_2 being twisted, each g_i is proper M_c-alternating, and the edges w_0b_{2n-1} and b_0w_{2n-1} never belong to any 1-factor again. Hence, $\mathbf{I}[M^0, M_c] \cong \mathbf{M}(L_{2n-1}) \cong \Gamma_{2n-1}$.

(2) Let \mathbf{M}_c' denote the subposet of $\mathbf{M}(H_n')$ induced by the set of 1-factors M of H_n' such that $w_1b_{2n} \notin M$ and the boundary cycle C of H'_n is proper M-alternating. Let $G' = H_n' - V(C) - w_1b_{2n}$. The remaining arguments are similar to (1).

(3) By (1) and (2) and the fact that Γ_{2n-3} is a sublattice of Γ_{2n-1}, it is sufficient to prove that Γ_{2n-1} is a sublattice of Λ_{2n}.

This follows from this fact: A subset I of $\{x_1, \ldots, x_{2n-1}\}$ is an order ideal of Z_{2n-1} if and only if $I \cup \{x_{2n}\}$ is an order ideal of Λ_{2n}.

Let $\Pi_n = \Gamma_{2n-1} \oplus B_2 \oplus \Gamma_{2n-3}^i$ and $\Pi_n^+ = \Gamma_{2n-1} \oplus B_2 \oplus \Gamma_{2n-3}^i$. So Lemma 4.5(1) implies that $\Pi_n \cong \mathbf{M}(H_n)$.

Lemma 4.6. Let G be a plane elementary bipartite graph. If $\mathbf{M}(G)$ has a type $(2, n)$ cut-element for $n \geq 2$, then Π_n or Π_n^+ is a sublattice of $\mathbf{M}(G)$.

Proof. By Lemma 4.1, G has exactly two improper and n proper M-alternating cells, say f_1, f_2 and g_1, \ldots, g_n, respectively. Let $G_1 = f_1 \cup f_2 \cup g_1 \cup \cdots \cup g_n$. Note that G_1 is elementary and that $M|G_1$ is also a 1-factor of G_1. By Lemma 2.11, the maximum degree of G_1 is 3, and each component of $f_1 \cap g_i$ is a proper M-alternating edge. Also, by Lemma 2.10, f_1 and f_2 are disjoint, and g_1, \ldots, g_n are pairwise disjoint. Any face h of G_1 other than f_1, f_2 or g_1, \ldots, g_n is adjacent with at most two cells among f_1, \ldots, g_n. Otherwise, K_3 would occur as a subgraph of the dual G_1^*, that is impossible.

On the other hand, each of $h \cap f_1$ and $h \cap g_i$ is a thread of G_1 whenever it is not empty. Otherwise, suppose there exists some f_i, say f_1, sharing at least two threads of G_1 with h. Since the threads that encircle h belong alternately to f_i's and g_i's, there must exist a pair of parallel edges (or 2-cycle) between f_1 and h^* in G_1^*, which separates f_2 from some g_i^*. This is a contradiction. The case that some g_i shares at least two threads of G_1 with h is similar. Thus all such faces h of G_1 are encircled by two or four improper M-alternating threads. Let r and s denote the numbers of such faces of G_1 encircled by two and four threads, respectively. Let h_1, \ldots, h_r, denote such faces of G_1 encircled by four threads and c_1, \ldots, c_r denote such faces of G_1 encircled by two threads. We have $(\bigcup_{i=1}^r h_i) \cup (\bigcup_{j=1}^r c_j) = f_1 \oplus f_2 \oplus g_1 \oplus \cdots \oplus g_n$.

We claim that $s = n$. Let G_2 be the subgraph obtained from G_1 by removing one thread in some f_i from each c_i. In G_2, the three faces incident with any vertex of degree 3 are one of cells corresponding to f_1 and f_2, some cell g_i, and some face h_i.

Fig. 8. (a) H_n with 1-factor M_u, (b) H_n' with 1-factor M_u, (c) $\mathbf{M}(H_n)$ and (d) $\mathbf{M}(H_n')$.

Each of g_i and h_i has four vertices of degree 3 in G_2. So the number of vertices of degree 3 in G_2 is $4s$ and $4n$, respectively, according to counting from h-faces and g-cells. Hence $4s = 4n$ and the claim holds.

Also, G_2 is an even subdivision of O_{2s}. Hence we can relabel g_1, \ldots, g_n and h_1, \ldots, h_n as $g_1, h_1, g_2, \ldots, g_n, h_n$ along f_1 so that each h_i is adjacent to g_i and g_{i+1}, where $g_{n+1} = g_1$. Since O_{2s} is 3-connected, it has a unique embedding in the sphere or plane. Hence the outer face f_0 of the plane embedding of G_1 is one of h_1, \ldots, h_n and c_1, \ldots, c_s. Without loss of generality, let $f_0 = h_n$ or c_s. Thus G_1 has two plane embeddings as shown in Fig. 9.

Let $L = M \oplus f_1 \oplus f_2$. Each cell $h \in \{h_1, \ldots, h_n\} \cup \{c_1, \ldots, c_s\} \setminus \{f_0\}$ is an improper L-alternating cycle, since the threads that encircle cell h are improper M-alternating and belong alternately to f_1 and g_i. Note that f_0 is a proper L-alternating cycle.

Let C_0 be the outer boundary of the subgraph G_0 of G defined by $G_0 = (\bigcup_{i=1}^{n-1} I[h_i]) \cup \bigcup_{i=1}^{n} g_i$. Let $L' = M \oplus g_1 \oplus g_n \oplus f_0$ and $L'' = L' \cup C_0$. Note that f_0 is an improper $(M \oplus g_1 \oplus g_n)$-alternating cycle and C_0 is a proper L'-alternating cycle. So both L' and L'' are 1-factors of G. Also each g_i is a proper L'-alternating cell for $2 \leq i \leq n - 1$, and C_0 is improper L''-alternating. Let \mathcal{M}_0' be the set of 1-factors F of G_0 such that for each cycle $h(ih_1, \ldots, h_{n-1}, f_{(h)} = L_{(h)}' = L_{(h)}''$, where $l(h) = l[h] - V(h)$ is the subgraph of G contained in the interior of but not on the cycle h. Note that if each h_i for $1 \leq i \leq n - 1$ is a cell of G, then \mathcal{M}_0' is just the set of all 1-factors of G_0. Thus any two 1-factors in \mathcal{M}_0' differ on $G_0 = (\bigcup_{i=1}^{n-1} h_i) \cup (\bigcup_{i=1}^{n} g_i)$, and G_0' is an even subdivision of L_n^{2n-3}. Clearly, both L'_u and L''_u are 1-factors of G_u, where $L'_u = L|_{G_u}$ and $L''_u = L'|_{G_u}$. By Proposition 2.5, Lemma 2.7, and Theorem 3.4(c), $M_u' \cong \mathcal{G}_{2n-3}$ and L'_u and L''_u are the maximum element and the minimum element of M_u' respectively, where M_u' is the subposet of $M(G_u)$ induced by the 1-factors in \mathcal{M}_u'. For any 1-factor M_u of G_u in \mathcal{M}_u', $M_u \cup (L''_u \setminus L'_u)$ is a 1-factor of G_u. Let $\mathcal{M}_u = \{L'_u \setminus L''_u \cup M_u | M_u \in \mathcal{M}_u'\}$. Hence, the 1-factors of G_u in \mathcal{M}_u form a subposet of $M(G_u)$, say \mathcal{M}_u, with maximum element L'_u and minimum element L''_u, and $M_u \cong M_u \cong \mathcal{M}_u \cong \mathcal{G}_{2n-3}$.

In order to show that \mathcal{M}_u is a sublattice of $M(G)$, it suffices to show that the operations \wedge and \vee of $M(G)$ are closed in \mathcal{M}_u. For any two 1-factors M_1 and M_2 in \mathcal{M}_u, \mathcal{M}_u consists of disjoint M_1 and M_2-alternating cycles and $\mathcal{C} \subset G_u$, where $\mathcal{C} = M_1 \cup M_2$. Also each cycle in \mathcal{C} does not contain any other cycles of \mathcal{C} in its interior. By Corollary 4.3 of [14], $M^* = M_1 \vee M_2 = M_1 \oplus M_2 \cap (\mathcal{C} - (\mathcal{C} - \mathcal{C}))$. Thus $M_u = M_1 \cap \mathcal{C} = M_1 \cap \mathcal{C}' = M_1 \cap \mathcal{C} - (\mathcal{C} - \mathcal{C})$, where $\mathcal{C}' = \mathcal{C} - (\mathcal{C} - \mathcal{C})$ consists of the improper and proper M_1-alternating cycles in \mathcal{C}, respectively. By the definition of \mathcal{M}_u, we have that both M^* and M_u belong to \mathcal{M}_u, which completes this case.

In an analogous way, let $G_u = (\bigcup_{i=1}^{n-1} I[h_i]) \cup (\bigcup_{i=1}^{n} g_i)$, and let C_0 be the outer boundary of G_u, so C_0 is a proper M-alternating cycle. Letting $M^* = M \oplus C_0$, we conclude that M^* is also a 1-factor of G and that h_1 is an improper M^*-alternating cell, for $1 \leq i \leq n - 1$. Let $\mathcal{M}_u' = \{L_u' \setminus L_u'' \cup M_u | M_u \in \mathcal{M}_u'\}$. Each element of \mathcal{M}_u' is a 1-factor of G. Similarly, if we denote the subposet of $M(G)$ by \mathcal{M}_u, then \mathcal{M}_u is a sublattice of $M(G)$, with maximum element M and minimum element M^*, and $\mathcal{M}_u \cong M(G_u) \cong \mathcal{G}_{2n-1}$, where $G_u = (\bigcup_{i=1}^{n-1} h_i) \cup (\bigcup_{i=1}^{n} g_i)$.

Now we show that $M \leq L''_u$. It follows that $L \cap L''_u = (M \oplus f_1 \oplus f_2) \cup (M \oplus g_1 \oplus g_n \oplus f_0 \oplus g_0) = f_1 \oplus f_2 \oplus g_1 \oplus g_n \oplus f_0 \oplus g_0 = \bigcup_{i=1}^{n-1} = \neq C_i$. Since each $C_i = \neq C_i$ is improper L'-alternating (thus proper L''-alternating), $L \leq L''_u$ in $M(G)$.

Remark 4.7. (1) By the proof of Lemma 4.6, if the outer face of G_1 is c_s, then Π^*_n or Π^+_n is a sublattice of $M(G)$, where $\Pi^*_n = 1 \oplus A_{2n} \oplus B_2 \oplus \Gamma_{2n-1} \cong \mathcal{M}(H_n)$ and $\Pi^+_n = 1 \oplus A_{2n} \oplus B_2 \oplus \Gamma_{2n-1}'$. (2) Sublattice Π^*_n or Π^+_n in $M(G)$ may not be convex (cf. [22, p. 98]).
Fig. 10. Non-matchable FDLs with cut-element v.

Fig. 11. Some non-matchable FDLs without cut-elements: (a) $A_4 \times 2$, (b) $(A_4 \uplus 1) \times 2$, (c) $P \times 2$, and (d) $A_4 \times 2 \times 2$.

In Π_n or Π_n^+, the maximum element of Γ_{2n-1} is its cut-element. We call it the critical cut-element of Π_n or Π_n^+ (for example, see M_v in Fig. 8(c) and (d)). We now state the contrapositive of Lemma 4.6 as another main result of this section.

Theorem 4.8. For $n \geq 2$, if an FDL L with a type $(2, n)$ cut-element v contains neither Π_n nor Π_n^+ as sublattice with the critical cut-element v, then L is a non-matchable FDL.

Example 4.9. By applying Theorem 4.8, we can show that FDLs in Fig. 10 are non-matchable FDLs. Moreover, for positive integers n with $n \geq 3$, the FDL $B_n \oplus B_2$ is non-matchable.

Remark 4.10. If an FDL L has a type $(m, 1)$ cut-element v, then the element v' covered by v must be a type $(1, n)$ cut-element unless $v' = 0$. It is easy to check that such a local structure is allowed in matchable FDLs. The simplest example is the following: First, take an even cycle C with length $2l$, where $l \geq \max\{m, n\}$, and let M be its 1-factor such that C is proper M-alternating. Next, choose m edges in M and n edges not in M from C and join the end-vertices of each of the edges by a path with odd length at least 3. For such a plane bipartite graph G, $M(G)$ has exactly a type $(m, 1)$ cut-element v and a type $(1, n)$ cut-element v' covered by v. In fact, $M(G) \cong B_m \uplus B_n$.

By Theorems 2.3, 3.4, 4.3, and 4.8, we can obtain a sequence of non-matchable FDLs without cut-elements.

Example 4.11. For any non-matchable FDL N and any nontrivial FDL L, the direct product $N \times L$ is a non-matchable FDL without cut-elements (see Theorem 2.3). Only four such examples are presented in Fig. 11 (P denotes the first FDL in Fig. 7).

Acknowledgments

The authors are grateful to the referees for their careful reading and many valuable suggestions.
References