IntentFuzzer: Detecting Capability Leaks of Android
Applications

Kun Yang'2, Jianwei Zhuge?*?, Yongke Wang*, Lujue Zhou?, and Haixin Duan??
!Department of Computer Science and Technology, Tsinghua University
2Institute for Network Science and Cyberspace, Tsinghua University
3Tsinghua National Laboratory for Information Science and Technology
“Institute of Information Engineering, Chinese Academy of Sciences

ABSTRACT

Capability leak is a vulnerability in Android applications,
which violates the enforcement of permission model and
threatens the secure usage of Android phone users. Mali-
cious applications can launch permission escalation attacks
with this vulnerability. In this paper, we propose a dynamic
Intent fuzzing mechanism to uncover vulnerable applications
in both Android markets and closed source ROMs. We built
a prototype called IntentFuzzer. With it, we analyzed more
than 2000 Android applications in Google Play and hun-
dreds of in-rom applications inside two closed source ROMs.
We found that 161 applications in Google Play have at least
one permission leak, and 26 permissions in Xiaomi Hongmi
phone and 19 permissions in Lenovo K860i stock phone are
leaked. Finally, we give several cases of exploitation to verify
our analysis result.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and De-

bugging

General Terms

Security, Design, Experimentation

Keywords
Smartphone Security, Intent Fuzzing, Capability Leak

INTRODUCTION

Android smartphones market share has exploded in re-
cent years. Compared with traditional PC, smartphones are
much closer to users. Considering the sensors such as cam-
eras and voice recorder integrated into mobile devices, it’s
necessary to protect these usage of the sensors. Moreover,
smartphones have become the main way to store and handle
private data, including SMS messages, call logs, contact in-
formation and photos, which are imperative to be protected.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS’14, June 4-6, 2014, Kyoto, Japan.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2800-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2590296.2590316 .

1.

531

Permission model is essential in the design of Android se-
curity. In this model, sensitive resources are protected by
permissions that other applications don’t have. However,
because of the existence of vulnerable applications, it is pos-
sible for attackers to break through such permission model.
Capability leak is such a vulnerability that an application
exposes some permissions, by which other applications with-
out these permissions can access protected resources.

Several static analysis systems have already been built to
detect capability leaks in applications [7, 6, 10, 5]. Droid-
Checker [5] has found 6 vulnerable apps including Adobe
Photoshop Express 1.3.1. Woodpecker[10] detected 11 per-
missions are leaked in 8 stock phones from world’s leading
manufacturers. These tools are effective, but they may all
have false positive, and should manually verify how to trig-
ger permission leaks.

To precisely uncover capability leaks in millions of appli-
cations automatically, we used an old technique - fuzzing
in this new situation. By sending testing Intents to vari-
ous exposed interfaces, we can detect if any capability leaks
happen. Compared with static methods, our method has
an advantage in precision. While static analysis only sees
the possible calling connections between function calls, dy-
namic fuzzing can detect permission leaks that really hap-
pen, which can be recorded and used to reconstruct all the
scenes.

We developed a prototype called IntentFuzzer, and used it
to analyze over 2,000 popular applications in Google Play.
Our result shows that 161 applications have at least one
permission leak. We also apply IntentFuzzer to closed source
ROMs that customized by various vendors, and found that
26 permissions in Xiaomi Hongmi phone and 19 permissions
in Lenovo K860i are leaked.

The rest of paper is organized as follows: Section 2 briefly
introduces background knowledge of Android permission mo-
del and Inter Component Communication mechanism. Sec-
tion 3 and Section 4 describe our system design and im-
plementation respectively. Section 5 presents the detailed
evaluation results from our study. Section 6 discusses lim-
itations and future work. Section 7 describes related work
and Section 8 summarizes our conclusions.

2. BACKGROUND

2.1 Permission Model

To mitigate security threat related to personal privacy,
Google has designed a permission-based model. Android
application is prohibited from accessing dangerous permis-

adb logcat
_—— socket
reeccecoeen ICC API Calls
Android
IntentFuzzer System GetExtra
Console APIs
Checked Extras
Permission System
Leak < — Permission
Detection Checked Permissions Check
Intent N IntentFuzzer | Intent ‘(_—
. — —-> .= Application
Construction Intent m
(Action,)
Data,
Extras)

Figure 1: Architecture of IntentFuzzer

sions by default. Users should authorize the privileges that
apps request at install-time.

2.2 Inter Component Communication

ICC(Inter Component Communication) is a mechanism
to help apps interact with each other. Each app is made
up of several components, or logical building blocks. There
are 3 types of components that use ICC: Activity, Service,
and Broadcast Receiver. They can communicate with each
other using Intent objects[3]. Intent is a data structure for
carrying messages from one component to another.

Developers could set the “exported” attribute of the ap-
plication components as “true” to accept Intent from other
components, or “false” to deny. If the attribute is not set, it’s
also possible that system marks it as “exported” by default.
We focus on the exported components to detect capability
leaks.

2.3 Capability Leaks

Capability Leak, also known as Permission Re-Delegation
[7], occurs when a vulnerable application performs a priv-
ileged action on behalf of a malicious application without
that permission. For example, a benign application has been
authorized with permission P. If one of its exposed compo-
nent C fails to check the caller’s permission, a malicious ap-
plication may perform unprivileged actions by constructing
and sending Intent to component C.

To avoid capability leaks, a component can specify that
an Intent sender must have a certain permission by either
adding a permission requirement to component’s manifest
file, or by calling checkPermission API.

However, many developers don’t fully understand the po-
tential risks in Android application components. They ei-
ther expose the components unintentionally, or expose them
intentionally but failed to check the component caller’s per-
missions.

3. SYSTEM DESIGN

We aim at detecting capability leaks in Android appli-
cations using fuzzing technique. We dynamically generate
appropriate Intents and send them to the components to see
if any capability leak indeed happens.

Figure 1 depicts IntentFuzzer’s architecture. IntentFuzzer
Console is a fuzzing control center and responsible for con-
structing Intents and processing feedbacks from IntentFuzzer
Agent. IntentFuzzer Agent is an Android application run-

532

ning in Android system, taking charge of sending real In-
tents to the application components to be diagnosed. Sev-
eral modules in Android system are modified in order to
generate feedbacks for the Console. With these feedbacks,
Console will amend the Intent for deeper execution path of
the receiving components, and decide if any potential per-
mission leak has actually happened.
We will discuss the details in the rest of this section.

3.1 Fuzzing Strategy

There are three types of components that can receive In-
tents: Activities, Services, and Broadcast Receivers. Activi-
ties will always provide a screen for users to interact with. So
we need to automatically generate correct interaction with
the user interface when fuzzing Activities, which is not a
well-studied topic[9]. Although malicious applications have
some possibilities to perform an escalation attack stealthily,
expecting users to make right interaction to trigger harmful
action, users may notice such kinds of attacks and close the
activity interface to avoid attacks. So, this kind of threat is
not very serious.

In terms of Services and Broadcast Receivers, they both
run in the background. Permission escalation attack can be
performed without any awareness of users. Capability leaks
of Services and Broadcast Receivers are principal threats.
So we focus on fuzzing Services and Broadcast Receivers.

There are two forms of services: Started service and Bound
Service. Started services receive Intents, while Bound Ser-
vices don’t. The exposed interface of Bound Service is de-
fined by a Messenger, or AIDL(Android Interface Definition
Language), which is not as simple as Intent delivery. Ar-
guments transferred between callers and callees are not like
Intents that have some construction rules to follow, they
can be various types and numbers[4]. Our motivation is to
heuristically generate Intents to audit Android components
for capability leaks. So we further narrow down the fuzzing
targets to Started Service and Broadcast Receivers.

Intents can be divided into two groups: explicit Intent
and implicit Intent[3]. Explicit Intents designate the target
component by its name while implicit Intents do not name a
target. Implicit Intents will be resolved to proper component
by system according to the Intent filters defined by each
component.

There are two possible situations for permission leaks.
Components intend to receive all the Intents including im-
plicit Intents, but failed to check caller’s permission; Compo-
nents intend only to receive intra-application Intents which
mean explicit Intents, but are exported to the public. So in
both situations, vulnerable components will receive explicit
Intents. We use explicit intents to do fuzzing.

3.2 Permission Leak Detection

IntentFuzzer Agent is the application that sends Intents.
We request no permissions for IntentFuzzer Agent. If a priv-
ileged action is triggered by the Agent, a permission leak
happens.

Although the permissions of Android applications are au-
thorized during the installation time. Permission checking
is enforced during runtime. To detect if any permissions re-
lated actions are performed after sending intents, we mod-
ified the permission checking module in Android System.
The inserted code will inform Console of what permissions

are passed in the checking process at runtime. Details of

system modification will be clarified in Section 4.

3.3 Intent Construction

On receiving explicit Intents, components will execute from
their entries. For Started Services, entry method is onStart-
Command(); for Broadcast Receivers, entry method is on-
Receive(). We don’t consider Bound Services as mentioned
above.

To detect more permission leaks, we should expand the
execution path coverage as much as possible. So it’s impor-
tant to deliver appropriate Intent to the components.

An Intent object contains a bundle of information:

e Action is a string naming the action to be performed.
There are predefined constants of generic actions. De-
velopers can also define their own action strings for ac-
tivating their components. Self-defined Action string
should include the application package as a prefix to
avoid naming conflict.

e Data is represented by the URI, which also implies the
MIME type.

e (Category is a string containing additional information
about the kind of component that should handle the
intent. So Category is just for implicit Intent resolu-
tion which we don’t construct Intent with.

e FEaxtras are key-value pairs for additional information
that should be delivered to the component handling
the Intent.

e Flags are predefined values for instructing the Android
System how to launch an Activity. It’s not related to
Broadcast Receivers and Services. We don’t construct
Intents with Flags.

How to construct an Intent with Action, Data, and Ex-
tras? Details are explained in the subsections as below.

3.3.1 Action Construction

To generate Action of Intents for fuzzing, we consider two
aforementioned situations of vulnerable applications sepa-
rately.

For the components that intend to be exported to re-
ceive implicit Intent, they will define Intent Filters in their
manifest file. Intent Filters are used to inform the system
which implicit Intents they can handle. So proper intents
attributes can be inferred using Intent Filters. By send-
ing appropriate Intents that meet the Intent resolution rule,
components can handle it well and execute into deep path.
Each Intent Filter may consists of three types of rules: Ac-
tion, Category, and Data. An Intent Filter may specify more
than one Action, but an Intent object names just a single
Action. So we construct Intents with each Action in each
Intent Filter. We call the Action inferred from Intent Filter
as explicit Action.

For the exported components that do not intend to be
exported, they will not contain Intent Filters, because these
components are developed only for intra-application usage
and accept explicit Intents. They may compare the Action
in the Intent with some predefined Actions to perform dif-
ferent tasks, which may lead to potential capability leaks if
the attacker can specify a correct Action. Below is a code
example of a Broadcast Receiver entry method.

533

public void onReceive(Context context, Intent intent) {
SmsManager smsManager = SmsManager.getDefault();
String action = "com.example.test.action.SEND_SMS";
if (action.equals(intent.getAction())) {
smsManager . sendTextMessage("10086", null, "test",
null, null); }

The mistakenly exported Broadcast Receiver above will
not specify any Intent Filter in the manifest file, because
it’s only for self-use. To get our fuzzer deep into the code
line of the API sendTextMessage, we must construct the
correct Action. We assume that all the Action strings will
be defined by const string rather than be generated by run-
time code, which is just how the most programers do. Then
we use a conservative static method. We first get all the
strings from the string pool of dex or odex file of the app[1].
Among such strings, we choose the ones including a prefix
of the application package as potential Actions since Google
recommends developers to use the package name as a prefix
to ensure uniqueness, and we also include the strings that
are standard Actions defined by Android(e.g. android.inte-
nt.action. DELETE). Thus we get a list of potential appro-
priate Actions. We call the Action extracted from bytecode
as implicit Action.

Thus we can generate Intents with both explicit Actions
and implicit Actions.

3.3.2 Data Construction

For the occasion of explicit Action, each component will
have Intent Filter defined in the manifest file. As Intent
Filters may contain rules for Data, we can infer correspond-
ing data type that the component is able to handle. Data
rule can be specified by scheme, host, port, and path for
each part of the URI scheme://host:port/path. So we pre-
pare common data types as common form of URI before
fuzzing. For example, we store pictures of common type
in both websites and system content providers, providing
possible URIs such as http://example.com/a.jpg and con-
tent://media/external /images/media/1. If any URI we pre-
pared fits the rule of Data in the Intent Filter, we construct
an Intent with it. If no rule of Data is specified in Intent
Filters, we don’t construct any Data URI in Intents.

For the occasion of implicit Action, there is no correspond-
ing Intent Filter, so we also don’t construct Data URI in
Intents.

3.3.3 Extras Construction

Extras are key-value pair information in Intents. Extra
keys are strings while values can be any Java primitive type
or Class. They are not specified in Intent Filters. Intent
recipient may check the Extra data for later use in perform-
ing privileged actions. There is a code example of a Service
entry point method.

public int onStartCommand(Intent intent, int flags, int
startId) {
SmsManager smsManager = SmsManager.getDefault();
String smsContent = intent.getStringExtra("sms");
if (smsContent != null && smsContent != "") {
smsManager .sendTextMessage("10086", null, smsContent,
null, null); }

The Android API getStringExtra() will extract the string
value mapped by key “sms” from the Intent. If Extra is not

included in the Intent, the Service above will not trigger
send TextMessage method, and the permission leak of an-
droid.permission.SEND_SMS could not be detected. In this
situation, false negative will be produced.

To decrease this kind of false negative, we built a runtime
feedback system to construct Extra data with appropriate
key and type that components can handle. Console will keep
a set of the requested Extra keys and value types. Compo-
nents that receive Intents must call APIs(e.g. getStringEx-
tra) to get Extra data. We instrumented these APIs and
the inserted code will inform Console of what key and value
type is requested. Console will add this Extra key and type
of value to the list. So in the next round of fuzzing, the
detected new Extra data with detected key and type will be
randomly generated and feed to the component. By using
such a feedback based iteration method of Extras construc-
tion, execution can go deeper.

We only construct Extra data of Java primitive types and
don’t consider types of Java Class, because it’s non-trivial
to deal with various Classes defined in various libraries or
by app developers.

3.4 General Fuzzing Steps

We define the component to be fuzzed as C. IntentFuzzer
first checks if there exists any Intent Filter in C. If so, C is
exported on purpose and we do fuzzing in steps as follows:

1. For each explicit Action defined in each Intent Filter,
do the step 2 to 5;

2. Construct Data only when the Intent Filter contains
Data tag;

3. Initialize an empty Extras data set E;

4. Send an Intent with constructed Action, Data, and all
the Extras in E;

5. Wait for several seconds. Scan for permission leak logs
and getExtra API logs. If new Extra data requests are
found, add them to E, and goto step 4; If not, then
exit the iteration.

If no Intent Filter is specified for C, IntentFuzzer takes it
as a mistaken exported component and do fuzzing in the
following steps:

1. Construct implicit Actions, and for each implicit Ac-
tion, do the steps 2 to 4;

2. Initialize an empty Extras data set E;

3. Send an Intent with constructed Action, and all the
Extras in E;

4. Wait for several seconds. Scan for permission leak logs
and getExtra API logs. If new Extra data requests are
found, add them to E, and goto step 3; If not, then
exit the iteration.

We record all the permission leak results and their corre-

sponding Intents that trigger the them for post-analysis.

4. IMPLEMENTATION

To accelerate prototype development, we reused existing
excellent open source tools.

4.1 Architecture

We built our prototype IntentFuzzer on top of Drozer[2]
- an open source security assessment framework for the An-
droid platform. Drozer prompts users a console to dynam-
ically interact with the ICC endpoints exported on a de-
vice. Drozer employs the similar architecture as Intent-

534

Fuzzer, which consists of an agent installed in Android sys-
tem and an server-side console on PC. All modules in the
server-side console are written in Python.

IntentFuzzer benefits a lot from Drozer’s modular design.
We implemented our IntentFuzzer Console by inserting a
single module in it.

4.2 System Modification

Android’s permission system is enforced by both Android
system services and Linux kernel[11]. Most permissions are
checked by Android system services and finally handled by
checkPermission(String permission, int pid, int uid) in Ac-
tivityManagerService. File system and network related per-
missions are enforced by the GID isolation mechanism in
Linux kernel, such as android.permission.INTERNET and
android.permission. WRITE_EXTERNAL_STORAGE. Com-
bining manual analysis of Android sources and some tests,
such kernel enforced permissions are also passed to Activi-
tyManagerService in Android 4.2, which is not the case in
old version of Android[8]. So we only need to instrument the
method checkPermission to record what UID of Android ap-
plication is checked, and what permission is checked. Con-
sole can use the UID in the log to look up leaked permissions.

We also modify Extras getting APIs to catch components’
requests for extra data. There are a bunch of Extras getting
APIs for different data types, such as getStringExtra(String
name), getIntExtra(String name, int defaultValue). We out-
putted type and key of each Extra request. Leveraging log-
cat logs, IntentFuzzer Console will generate corresponding
new Extras in the next round of Intent fuzzing until the
iteration ends.

S. EVALUATION
5.1 Experiment Design

To evaluate IntentFuzzer, we use it to detect capability
leaks of applications in both Google Play and closed source
ROMs. We downloaded 2183 free applications from Google
Play, all of which are among top 200 most popular apps
in each category in www.appbrain.com. We install them
and do fuzzing one by one in our modified Android 4.2.2
Samsung Galaxy Nexus phone. Galaxy Nexus phone is a
device supported by Android Open Source Project, which
we can build ROM from source and directly flash the device.

In terms of closed source ROMs, it’s not easy to migrate all
in-rom applications to other environment due to dependency
problems. So we choose to directly modify closed source
ROMs by rewriting framework bytecode and do fuzzing in-
side themselves. We selected Xiaomi Hongmi phone and
Lenovo K860i phone for our evaluation. Xiaomi Hongmi
phone runs Android 4.2.2, and Lenovo K860i runs Android
4.2.1. Both phones use updated system version from their
vendors.

After analyzing an application package, a report will be
produced recording leaked permissions and Intent attributes
that trigger the corresponding permission leak.

5.2 Results

It took 2240 minutes to fuzz all 2183 apps from Google
Play, 90 minutes for 104 packages in Xiaomi Hongmi phone,
and 95 minutes for 105 packages in Lenovo K860i phone.

From analysis reports, we detected 161 application pack-
ages that have at least one permission leak, and found 26

Table 1: Leaked Permissions in Google Play Appli-

cations
Permissions Packages Components
ACCESS_NETWORK_STATE 91 86
READ_PHONE_STATE 42 39
WAKE_LOCK 22 30
INTERNET 11 14
ACCESS_FINE_LOCATION 9 8
ACCESS_WIFLSTATE 8 8
GET_ACCOUNTS 6 9
VIBRATE 4 4
SYSTEM_ALERT_WINDOW 3 5
CHANGE_WIFLSTATE 3 3
ACCESS_-COARSE_LOCATION 2 2
GET_PACKAGE_SIZE 2 2
READ_CONTACTS 2 2
READ_SMS 2 2
READ_EXTERNAL_STORAGE 1 1
WRITE_SMS 1 1
WRITE_CALL_LOG 1 1
GET_TASKS 1 4
RESTART_PACKAGES 1 1
CLEAR_APP_CACHE 1 1
BLUETOOTH_-ADMIN 1 1

permissions in Xiaomi Hongmi phone and 19 permissions in
Lenovo K860i phone are leaked. We organized reports into
three tables. In each table, leaked permissions are listed.
For each permission, we counted the total numbers of pack-
ages and components that have the corresponding permis-
sion leakage. We can see results of 2183 Google Play appli-
cations in Table 1, results of Xiaomi Hongmi phone in Table
2, and results of Lenovo K860i in Table 3. Permissions’
standard package prefix is omitted in the tables.

Except for capability leaks, we also detect the runtime
exceptions occurred during fuzzing via default logcat infor-
mation. There are 11 components from 9 packages in Xiaomi
Hongmi phone, 13 components from 12 packages in Lenovo
K860i, and 141 components from 123 apps in Google Play
crashed during fuzzing. This information may also help de-
velopers to diagnose the robustness of their apps.

5.3 Exploitation Analysis and Case Study

Capability leaks don’t mean that attackers can do every
action authorized by the leaked permission. Exploitation de-
pends on how vulnerable components deal with the Intents.

Both ICC of Broadcast Receivers and Started Services do
not return results. So the leaks of permissions that are re-
lated to accessing some data are not easy to exploit. Attack-
ers cannot find a channel to receive sensitive data protected
by the leaked permission. Maybe attacks should combine
other permission leaks, or other vulnerabilities.

For the leaks of permissions that are related to chang-
ing some status, they are easy to exploit and often result
in great harm, e.g. sending messages, changing system set-
tings. Some detailed exploitation cases are given below.

Clean Master is an app that pre-installed in the Xiaomi
Hongmi phone. It can help user to kill all background pro-
cesses and get memory freed. However, the permission an-
droid.permission. RESTART_PACKAGES is leaked and all
other apps could invoke the exposed component to kill back-
ground processes. The vulnerable component is com.clea-
nmaster.appwidget. WidgetService. Exploiting method is just
starting the service using an Intent with Action com.cleanm-
aster.appwidget. ACTION_FASTCLEAN. This case is simi-
lar to another app called Smart RAM Booster. Sending

Table 2: Leaked Permissions in Xiaomi Hongmi
Phone
Permissions Packages Components
CHANGE_COMPONENT_ENAB- 9 11

LED_STATE
ACCESS_NETWORK_STATE
READ_PHONE_STATE
WAKE_LOCK

INTERNET
GET_ACCOUNTS
DEVICE_POWER
STATUS_BAR
ACCESS_ALL_DOWNLOADS
READ_CONTACTS
READ_DREAM_STATE
READ_CALENDAR
UPDATE_DEVICE_STATS
WRITE_CALENDAR
RESTART_PACKAGES
DELETE_PACKAGES
READ_CALL_LOG
READ_SMS
GET_PACKAGE_SIZE
MODIFY_PHONE_STATE
INSTALL_PACKAGES
com.android.email.permission. A-
CCESS_PROVIDER
WRITE_SECURE_SETTINGS
VIBRATE
ACCESS_WIFIL_STATE
DELETE_CACHE_FILES

e e e e e e e e e e e e e e e B Y S P Y S R K e e
L e e L i e e e e e B e Bt e S N S N R RN | N | K¢e] Ko}

an intent with Action com.anttek.rambooster.action.BOO-
ST to the Service com.anttek.rambooster.service.BoostSer-
vice will also get background processes killed.

Package com.popularapp.fakecall is an application called
Fake Call & SMS, which can help user to fake coming calls
and messages. WRITE_SMS and WRITE_CALL_LOG per-
missions are leaked in receivers com.popularapp.fakecall.in-
call.MessageAlarm and com.popularapp.fakecall.incall.Cal-
IAlarm respectively. Attacker with no permission can repro-
duce any messages and calls which is preset in this applica-
tion at any time, by sending Intents with an “id” Extra.

We detected 4 apps that leak android.permission. VIBRA-
TE Permission. Package cn.etouch.ecalendar2 is a calendar
application. Sending an Intent with Action ACTION_SUI-
SENT_ECALENDAR_ShowNotice to the receiver cn.etouc-
h.ecalendar.service.NoticesReceiver will vibrate the phone.
Package com.azumio.android.sleeptime is an alarm app. If
one of its component com.azumio.android.sleeptime.alarm-
.AlarmReceiver receives an Intent with Action value of co-
m.azumio.android.sleeptime. WAKEUP will make the phone
vibrate and beep. Package br.com.gerenciadorfinanceiro.c-
ontroller is a personal finance manager app. Any empty
Intent sending to the component br.com.third.utils.Gerar-
Notificacao will also make the phone vibrate. The last one
is the app in Xiaomi Hongmi phone that is similar with
Apple Siri, which targets at assisting users via voice recog-
nition. The exposed component is com.miui.voiceassist.Sir-
iReceiver. Broadcasting an Intent to with Action com.mi-
ui.voiceassist.alarm and an string Extra, will read out the
string and vibrate the phone.

Stk(Sim Toolkit Application) app in both Xiaomi and
Lenovo phone leaks MODIFY_PHONE_STATE permission.
Attackers without this permission can send an Intent with
Action android.intent.action.stk.command to the com.andr-
oid.stk.StkCmdReceiver component in the package com.andro-

Table 3: Leaked Permissions in Lenovo K860i Phone
Permissions Packages Components
ACCESS_NETWORK_STATE 11 11
CHANGE_COMPON- N 11
ENT_ENABLED_STATE
WAKE_LOCK 6 7
READ_PHONE_STATE 5 5
GET_ACCOUNTS 3 4
READ_EXTERNAL_STORAGE 2 2
INTERNET 2 2
READ_CALL_LOG 2 2
READ_DREAM_STATE 1 2
READ_CALENDAR 1 3
DEVICE_POWER 1 1
ACCESS_WIFLSTATE 1 1
ACCESS_ALL_DOWNLOADS 1 1
STATUS_BAR 1 1
BLUETOOTH 1 1
DELETE_PACKAGES 1 1
MODIFY_PHONE_STATE 1 1
BLUETOOTH_ADMIN 1 6
READ_CONTACTS 1 1

id.stk. This intent will kill the current application running
on the phone interface. An exploitation case is that attack-
ers can hang up the phone when any call is coming.

6. DISCUSSION

There are some limitations in our work. IntentFuzzer can-
not search for capability leaks in Bound Services. Intent-
Fuzzer also cannot handle Broadcast Receivers which are
registered at runtime. IntentFuzzer only detects permission
leaks when a component performs a privileged operation im-
mediately after receiving a Intent. If a component that re-
ceives an Intent internally changes the state of the target
app and lead to a capability leak in the future, IntentFuzzer
will produce false negative.

We used a heuristic method to construct Intents. To
achieve smarter fuzzing and higher path coverage, symbolic
execution techniques should be applied to generate correct
Intents for each execution path in the future.

7. RELATED WORK

In recent years, much work has been devoted to detect-
ing capability leaks. ComDroid [6] is a tool for developers
to analyze their own applications before release. Warnings
of security risks in inter-application communication will be
raised. Felt et al. [7] created a static path-finding tool
to find potential attack path in application components.
Woodpecker [10] can detect capability leaks in stock An-
droid smartphones. With consideration of object inheritance
and callbacks, Woodpecker has a better accuracy. Droid-
Checker[5] applies inter-procedural control flow graph anal-
ysis and static taint checking to search for capability leaks.
All tools above use static method and may contain false pos-
itives, and their detection results must be verified manually.
To the best of our knowledge, we are the first to apply dy-
namic fuzzing technique in detecting capability leaks. All
the leaks we detected are all real occurrences of permission
leaks, without false positives.

8. CONCLUSIONS

We propose a novel fuzzing approach to detect capabil-
ity leak vulnerabilities of Android applications. We invent a

536

Intent construction strategy to achieve higher execution cov-
erage. With our prototype IntentFuzzer, we analyze more
than 2,000 applications in Google Play and find 161 appli-
cations with at least one permission leak. We also tested
IntentFuzzer in Xiaomi Hongmi phone and Lenovo K860i
phone, and find 26 and 19 permission leaks respectively.

Acknowledgements

This work is partially supported by China Core Electronic

Devices, High-end Generic Chips and Basic Software Award

20127X01039-004, NSFC No.61161140454, The National Key
Technology R&D Program under Grant No.2012BAH38B03,

and China InformationTechnology Security Evaluation Cen-

ter under Grant No.CSTC2011AC2143.

9. REFERENCES

[1] Dalvik Executable Format. http://source.android.
com/devices/tech/dalvik/dex-format.html.

drozer.
https://labs.mwrinfosecurity.com/tools/drozer/.
Intents and Intent Filters.
http://developer.android.com/guide/components/
intents-filters.html.

Services. http://developer.android.com/guide/
components/services.html.

P. P. Chan, L. C. Hui, and S. Yiu. Droidchecker:
analyzing android applications for capability leak. In
Proceedings of the fifth ACM conference on Security
and Privacy in Wireless and Mobile Networks, pages
125-136. ACM, 2012.

E. Chin, A. P. Felt, K. Greenwood, and D. Wagner.
Analyzing inter-application communication in android.
In Proceedings of the 9th international conference on
Mobile systems, applications, and services, pages
239-252. ACM, 2011.

A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and
E. Chin. Permission re-delegation: Attacks and
defenses. In Proceedings of the 20th USENIX Security
Symposium, volume 18, pages 19-31, 2011.

C. Gibler, J. Crussell, J. Erickson, and H. Chen.
Androidleaks: Automatically detecting potential
privacy leaks in android applications on a large scale.
In Trust and Trustworthy Computing, pages 291-307.
Springer, 2012.

P. Gilbert, B.-G. Chun, L. P. Cox, and J. Jung.
Vision: automated security validation of mobile apps
at app markets. In Proceedings of the second
international workshop on Mobile cloud computing and
services, pages 21-26. ACM, 2011.

M. Grace, Y. Zhou, Z. Wang, and X. Jiang.
Systematic detection of capability leaks in stock
android smartphones. In Proceedings of the 19th
Annual Symposium on Network and Distributed
System Security, 2012.

Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning,
X. S. Wang, and B. Zang. Vetting undesirable
behaviors in android apps with permission use
analysis. In Proceedings of the 2018 ACM SIGSAC
conference on Computer & communications security,
pages 611-622. ACM, 2013.

2]

3]

[4]

[5]

[6]

7]

8]

[9]

(10]

(11]

