About
24
Publications
2,173
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
237
Citations
Introduction
Multi-modal LLMs; AI4Science
Current institution
Publications
Publications (24)
Protein-specific large language models (Protein LLMs) are revolutionizing protein science by enabling more efficient protein structure prediction, function annotation, and design. While existing surveys focus on specific aspects or applications, this work provides the first comprehensive overview of Protein LLMs, covering their architectures, train...
Graph neural networks (GNNs) have gained considerable attention in recent years for traffic flow prediction due to their ability to learn spatio-temporal pattern representations through a graph-based message-passing framework. Although GNNs have shown great promise in handling traffic datasets, their deployment in real-life applications has been hi...
The widespread adoption of smartphones and Location-Based Social Networks has led to a massive influx of spatio-temporal data, creating unparalleled opportunities for enhancing Point-of-Interest (POI) recommendation systems. These advanced POI systems are crucial for enriching user experiences, enabling personalized interactions, and optimizing dec...
Hashing aims to compress raw data into compact binary descriptors, which has drawn increasing interest for efficient large-scale image retrieval. Current deep hashing often employs evaluation protocols where usually query data and training data are from similar distributions. However, more realistic evaluations should take into account a broad spec...
Molecular dynamics simulations are crucial for understanding complex physical, chemical, and biological processes at the atomic level. However, accurately capturing interactions across multiple spatial and temporal scales remains a significant challenge. We present a novel framework that jointly models spatial and temporal multiscale interactions i...
Effective spatio-temporal prediction frameworks play a crucial role in urban sensing applications, including traffic analysis, human mobility behavior modeling, and citywide crime prediction. However, the presence of data noise and label sparsity in spatio-temporal data presents significant challenges for existing neural network models in learning...
The widespread adoption of smartphones and Location-Based Social Networks has led to a massive influx of spatio-temporal data, creating unparalleled opportunities for enhancing Point-of-Interest (POI) recommendation systems. These advanced POI systems are crucial for enriching user experiences, enabling personalized interactions, and optimizing dec...
This paper explores the recent advancements in enhancing Computational Fluid Dynamics (CFD) tasks through Machine Learning (ML) techniques. We begin by introducing fundamental concepts, traditional methods, and benchmark datasets, then examine the various roles ML plays in improving CFD. The literature systematically reviews papers in recent five y...
This paper focuses on the integration of generative techniques into spatial-temporal data mining, considering the significant growth and diverse nature of spatial-temporal data. With the advancements in RNNs, CNNs, and other non-generative techniques, researchers have explored their application in capturing temporal and spatial dependencies within...
Fine-tuning visual models has been widely shown promising performance on many downstream visual tasks. With the surprising development of pre-trained visual foundation models, visual tuning jumped out of the standard modus operandi that fine-tunes the whole pre-trained model or just the fully connected layer. Instead, recent advances can achieve su...
Despite recent promising performances across a range of vision tasks, vision Transformers still have an issue of high computational costs. Recently, vision prompt learning has provided an economical solution to this problem without fine-tuning the whole large-scale model. However, the efficiency and effectiveness of existing models are still far fr...
As an important problem in searching system development, domain adaptive retrieval seeks to train a retrieval model with both labeled source samples and unlabeled target samples. Although several domain adaptive hashing algorithms have been proposed to handle the problem with high efficiency, they often presume that source and target domains share...
Driven by the progress of large-scale pre-training, parameter-efficient transfer learning has gained immense popularity across different subfields of Artificial Intelligence. The core is to adapt the model to downstream tasks with only a small set of parameters. Recently, researchers have leveraged such proven techniques in multimodal tasks and ach...
Hao Wu Wei Xion Fan Xu- [...]
Haixin Wang
In this paper, we investigate the challenge of spatio-temporal video prediction, which involves generating future videos based on historical data streams. Existing approaches typically utilize external information such as semantic maps to enhance video prediction, which often neglect the inherent physical knowledge embedded within videos. Furthermo...
With the advance of large-scale model technologies, parameter-efficient transfer learning (PETL) has swept across various fields of Artificial Intelligence. Its core idea is to adapt the model to downstream tasks using only a small number of parameters. Recently, some studies have applied these techniques proven effective to multimodal tasks. Howev...
Fine-tuning visual models has been widely shown promising performance on many downstream visual tasks. With the surprising development of pre-trained visual foundation models, visual tuning jumped out of the standard modus operandi that fine-tunes the whole pre-trained model or just the fully connected layer. Instead, recent advances can achieve su...
Despite recent competitive performance across a range of vision tasks, vision Transformers still have an issue of heavy computational costs. Recently, vision prompt learning has provided an economic solution to this problem without fine-tuning the whole large-scale models. However, the efficiency of existing models are still far from satisfactory d...
This paper studies the problem of unsupervised domain adaptive hashing, which is less-explored but emerging for efficient image retrieval, particularly for cross-domain retrieval. This problem is typically tackled by learning hashing networks with pseudo-labeling and domain alignment techniques. Nevertheless, these approaches usually suffer from ov...
Due to the excellent computing efficiency, learning to hash has acquired broad popularity for Big Data retrieval. Although supervised hashing methods have achieved promising performance recently, they presume that all training samples are appropriately annotated. Unfortunately, label noise is ubiquitous owing to erroneous annotations in real-world...
Nearest neighbor search aims to obtain the samples in the database with the smallest distances from them to the queries, which is a basic task in a range of fields, including computer vision and data mining. Hashing is one of the most widely used methods for its computational and storage efficiency. With the development of deep learning, deep hashi...
Recently, stacked networks show powerful performance in Image Restoration, such as challenging motion deblurring problems. However, the number of stacking levels is a hyper-parameter fine-tuned manually, making the stacking levels static during training without theoretical explanations for optimal settings. To address this challenge, we leverage th...