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Accurate forecasting of call arrivals is critical for staffing and scheduling of a telephone
call center. We develop methods for day-to-day and dynamic within-day forecasting of
incoming call volumes. Our approach is to treat the intra-day call volume profiles as a high-
dimensional vector time series. We propose to first reduce the dimensionality by singular
value decomposition of the matrix of historical intra-day profiles and then apply time series
and regression techniques. Both day-to-day dynamics and within-day patterns of call arrivals
are taken into account by our approach. The proposed methods are applied to a real data
set and show substantial improvements over existing industry standards in an out-of-sample
forecast comparison. Our methods are computationally fast and therefore it is feasible to
use them for real-time dynamic forecasting.

1. Introduction

Call centers have become a primary contact point between service providers and their cus-

tomers in modern business. For example, it is estimated that in 2002 more than 70% of

all customer-business interactions are handled in call centers, and the call center industry

in US employs more than 3.5 million people, or 2.6% of its workforce (Brown et al. 2005).

With their growing presence and importance in various organizations, managing call center

operations more efficiently is of significant economic interest.

For most call centers, 60-70% of operating expenses are capacity costs, and in particular

human resource costs (Gans et al. 2003). Effective management of a call center requires

call center managers to match up call center resources with workload. To forecast workload

accurately, the first and critical step is to provide an accurate forecast of future call volumes.

Usually two kinds of forecasts are needed by a call center manager for staffing and scheduling

purpose: 1. Forecast the call volumes several days or weeks ahead; 2. On a particular day,

dynamically update the forecast using newly available information as additional calls arrive
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throughout the day. The dynamic updating is useful because it adds flexibility to a call

center manager’s allocation of available resources, which then leads to higher efficiency and

productivity. By reevaluating her forecast for the remainder of the day, the manager can

then schedule meetings or training sessions for agents free from work at short-notice, or call

in back-up agents.

Quantitative approaches to call arrival forecasting make use of historical call arrival data,

which record the times at which calls arrive to the center. Typically call arrival data are

aggregated into total numbers of arrivals during short time periods such as 15-minute or

30-minute intervals and subsequently the target of forecasting is future call volumes over

such periods. We refer to the collection of such aggregated call volumes for a given day as

the intra-day call volume profile of that day (Section 3.1). See Jongbloed and Koole (2001)

and Brown et al. (2005) for examples of this data aggregation scheme. There exist some

regularities within call-arrival data, such as inter-day dependence and intra-day dependence.

By inter-day dependence, we mean correlation between daily volumes and possible weekly,

monthly, seasonal and even yearly cycles in call volumes. Intra-day dependence refers to

correlation between arrivals during different time periods (morning/afternoon/night) within

the same day. Such regularities and dependences serve as the basis for developing good

forecasts.

Early work on forecasting call arrivals usually ignores intra-day dependence, partly due to

lack of relevant data. Andrews and Cunningham (1995) forecast daily volumes at a retailer’s

call center using an ARIMA model, which incorporates advertising effects via transform

functions. Bianchi et al. (1993, 1998) forecast daily arrivals at a telemarketing call center

using ARIMA modelling as well, and they use intervention analysis to control for outliers.

Recently, with the availability of call-by-call data and driven by the increasing need for

more effective management of telephone call centers, stochastic models of call arrivals that

take into account the intra-day dependence have been introduced. For example, Avramidis

et al. (2004) consider a doubly stochastic Poisson model and Brown et al. (2005) propose a

multiplicative two-way mixed-effects model. Bayesian methods have also been applied to call

volume forecasting. Soyer and Tarimcilar (2004) analyze a modulated Poisson model using

a Bayesian approach, with a focus on assessing the effectiveness of advertising campaigns.

Weinberg et al. (2005) extend the work of Avramidis et al. (2004) and Brown et al. (2005) to

model both inter-day and intra-day dependences, and propose a Bayesian MCMC estimation

algorithm. They consider day-of-the-week effect as well as intra-day forecast updating.
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Despite recent progress in analyzing call center data, Gans et al. (2003) urge more serious

research effort for developing time series forecasting methods to improve arrival forecasting.

In this paper, we introduce a system of methods that can generate both day-to-day and

especially dynamic within-day forecasts. The current study extends Shen and Huang (2005),

where singular value decomposition (SVD) is proposed as a tool for preliminary data analysis

of call arrival data before serious modelling, to detect anomalous days with unusual arrival

patterns, and to extract significant inter-day features such as day-of-the-week effect and

working hour switching, as well as intra-day features like average daily arrival patterns. Shen

and Huang (2005) point out the potential of using the reduced data from SVD to develop call

volume forecasting models. Such a potential is substantially developed in the current paper

to offer methods for generating one- or multi-day-ahead forecasts and within-day dynamic

updates of call volume profiles.

We consider the intra-day call volume profiles as a vector time series across days. Each

intra-day profile is treated as one observation of the vector time series. Thus, the dimension-

ality of the time series is high. We propose to first reduce the dimensionality by applying

SVD to the matrix of the intra-day profiles. As a result, the high dimensional intra-day

profile series is summarized by a few pairs of inter-day and intra-day features, (see (1) in

Section 3.1). We then keep the intra-day features fixed, and apply univariate time series fore-

casting techniques to forecast the inter-day feature series separately. The resulting forecasts

are subsequently combined with the intra-day features to produce day-to-day forecasts of

future intra-day profiles. Our case study in Section 5 suggests that only two or three pairs of

inter-day and intra-day features are sufficient to achieve very good forecasting performance.

As it turns out, the first intra-day feature summarizes the average call arrival pattern during

a regular weekday while the first inter-day feature is highly correlated with total daily call

volume. As a second-order effect, the second intra-day feature captures the following specific

phenomenon: Fridays usually have above average call volumes in early mornings and below

average volumes in late afternoons and evenings, while the opposite is true for Mondays.

Our procedure for within-day dynamic updating is based on a technique known as pe-

nalized least squares. For a particular day, suppose we have obtained some day-to-day time

series forecasts for the inter-day features. As calls arrive when the day progresses, one direct

approach to update the time series forecasts is via a least squares regression using the newly

available call volume profile as the response and the corresponding part of the intra-day

feature vectors as the independent variables, (see (5) in Section 3.3.1). The corresponding
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regression coefficients then give the updated inter-day feature forecasts. However, this ap-

proach relies solely on the new arrival information of the present day, and makes no use of

the time series forecasts. Our penalized least squares method adjusts the direct approach

by pushing the least squares updates towards the time series forecasts and finding a balance

point between them, (see (7) in Section 3.3.2). This method effectively combines the newly

available information with the information up to the end of the previous day. We show in

Section 5 that the proposed updating method can reduce the forecasting error dramatically.

This paper is structured as follows. Section 2 introduces the call center arrival data

that are used to illustrate our methodology. Our forecasting approach is described in detail

in Section 3. Section 3.1 introduces dimensionality reduction through SVD, and followed

by Section 3.2 on the method for one- or multi-day-ahead intra-day profile forecasting, and

Section 3.3 on dynamic within-day updating. Section 4 describes a few performance measures

for comparing forecasts from different forecasting methods. A comparative study of several

competing methods based on their out-of-sample forecasting performance is presented in

Section 5. We conclude in Section 6.

2. The Data

The data that will be used to illustrate our forecasting methods were gathered at an inbound

call center of a major northeastern US financial firm between January 1 and October 26,

2003. The original database has detailed information about every call that got connected

to this call center during this period (except three days when the data collecting equipment

went out of order). The center opens normally between 7:00AM and midnight. For the

current study, we are interested in understanding the arrival pattern of calls to the service

queue and generating out-of-sample forecasts of future call volumes. As a result, the portion

of the data of interest to us involves the information about the time every call arrives to the

service queue. The call arrival pattern is very different between weekdays and weekends. For

this reason, we restrict our attention to weekdays. In particular, we focus on the 42 whole

weeks between January 6 and October 24.

For a particular day, we divide the 17-hour operating period into sixty-eight 15-minute

intervals, and record the number of calls arriving to the service queue during each inter-

val. The aggregated data form a 210 × 68 count matrix, with each row corresponding to a

particular day in the 42 weeks considered, and each column corresponding to one specific
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15-minute interval between 7:00AM and midnight.

We found by plotting the data that call volumes almost always occur in predictable,

repeating patterns. For example, it is typical that there is a peak around 11:00AM followed

by a second, lower peak around 2:00PM. As an illustration, Figure 1 plots the intra-day

arrival patterns for the five days in the final week of the data set. Such regularity of arrival

patterns has important implications for our forecasting task.
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Figure 1: Intra-day arrival patterns during the final week of our data. Both predictive
regularity and abnormality are present in call center arrival data.

Figure 1 also exhibits some abnormal arrival pattern for the Tuesday, during which there

are too many calls arriving after 3:30PM. There are some other abnormal days in the data

such as holidays (for example, May 26, 2003, Memorial Day), a missing day (April 4, 2003, no

data), and days with other unusual arrival patterns (like the Tuesday shown in Figure 1). The

call arrival patterns for these days are so different from the rest of the days that forecasting

methods are generally unable to produce reasonable forecasts. Inclusion of these days in

our study is likely to be unhelpful in the assessment of different methods. Prior to applying

the forecasting methods, we cleaned the data as follows. We applied the technique in Shen

and Huang (2005) to identify the anomalous days. The call arrival profiles of these days
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were then replaced by the average of the corresponding periods (i.e. same weekday and

time-of-day) in the two adjacent weeks.

Our data appear to possess heteroscedasticity (i.e. nonconstant variance), with the vari-

ance being approximately proportional to the call volume. In fact, for our data set, it is

a good approximation to assume that the call volume over a short time interval follows a

Poisson distribution. To stablize the variance, we employed the root-unroot method (Brown

et al., 2005) as follows. Let N denote the call volume for a certain time interval. Set

X =
√

N + 1/4. Denote the forecast of X by X̂. Then the forecast of N is given by

N̂ = X̂2 − 1/4. The rational of this method is that, if N ∼ Poisson(λ), then X has approx-

imately a mean of
√

λ and a variance of 1/4.

3. Forecasting Methods

3.1 Dimension Reduction via Singular Value Decomposition

Let X = (xij) be an n × m matrix that records the call volumes (or a transformation of

the volumes as described in Section 2) for n days with each day having m time periods.

The rows and columns of X correspond respectively to days and time periods within a day.

The ith row of X, denoted as xT
i = (xi1, . . . , xim), is referred to as the intra-day call volume

profile of the ith day. The intra-day profiles, x1,x2, . . . , form a vector-valued time series

taking values in Rm. We want to build a time series model for this series and use it for

forecasting. However, commonly used multivariate time series models such as VAR (Vector

AutoRegressive models) and more general VARMA (Vector AutoRegressive and Moving

Average models) (Reinsel 2003) are not directly applicable due to the large dimensionality

of the time series we consider. For example, the dimensionality m is 68 for our data.

Our approach starts from dimension reduction. We first seek a few basis vectors, denoted

as fk, k = 1, . . . , K, such that all elements in the time series {xi} can be represented (or

approximated well) by these basis vectors. The number of the basis vectors K should be

much smaller than the dimensionality m of the time series. Specifically, we consider the

following decomposition,

xi = βi1f1 + · · ·+ βiKfK + εi, i = 1, . . . , n, (1)

where f1, . . . , fK ∈ Rm are the basis vectors and ε1, . . . , εn ∈ Rm are the error terms. We

expect that the main features of xi can be summarized by a linear combination of the basis
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vectors so that the error terms in (1) would be small in magnitude. This can be achieved by

solving the following minimization problem,

min
βi1,...,βiK
f1,...,fK

n∑
i=1

‖εi‖2 = min
βi1,...,βiK
f1,...,fK

n∑
i=1

∥∥∥∥xi − (βi1f1 + · · ·+ βiKfK)

∥∥∥∥
2

. (2)

For identifiability, we require in (2) that fT
i fj = δij, where δij is the Kronecker delta which

equals 1 for i = j and 0 otherwise. The solution to this problem is actually given by the

singular value decomposition (SVD) of the matrix X as shown below.

The SVD of the matrix X can be expressed as

X = USVT , (3)

where U is an n × m matrix with orthonormal columns, S is an m × m diagonal matrix,

and V is an m×m orthogonal matrix. The columns of U, {uk = (u1k, . . . , unk)
T}, namely

the left singular vectors, satisfy uT
i uj = δij. The columns of V, {vk = (v1k, . . . , vmk)

T}, or

the right singular vectors, satisfy vT
i vj = δij. The diagonal elements of S are the singular

values, which are usually ordered decreasingly. Let S = diag(s1, . . . , sm) and r = rank(X).

Then s1 ≥ s2 ≥ · · · ≥ sr > 0, and sk = 0 for r + 1 ≤ k ≤ m. It follows from (3) that

xi = s1ui1v1 + · · ·+ sruirvr.

Keeping only the terms associated with the largest K singular values, we have the following

approximation,

xi ' (s1ui1)v1 + · · ·+ (sKuiK)vK .

This K-term approximation has the following optimal property that it is exactly the solution

for the minimization problem (2). More precisely, βik = skuik and fk = vk, i = 1, . . . , n,

k = 1, . . . , K, solve (2), and the solution is unique up to a sign change to fk (Harville 1997).

Thus, we have formally obtained the decomposion (1) using the SVD of X.

We call f1, . . . , fK the intra-day feature vectors and {βi1}, . . . , {βiK} the inter-day feature

series. From the decomposition (1), the high-dimensional intra-day profiles xi are concisely

summarized by a small number of inter-day feature series, using the same number of intra-

day feature vectors as the bases. By using a small K, we achieve a big dimension reduction

— from m to K. In our real data example, K = 2 or 3 already gives good forecasting results

while m is 68. One attractive feature of the decomposition (1) is that, it effectively separates

out the intra-day and inter-day variations, both of which are present in the intra-day profile

time series.
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3.2 Day-to-day Forecasting

Consider forecasting the intra-day call volume profile xn+h (h > 0) using the historical data

x1, . . . ,xn. By making use of the model (1), forecasting a m-dimensional time series {xi}
reduces to forecasting K one-dimensional inter-day feature series {βi1}, . . . , {βiK}. As the

basis of our forecasting method, we assume that the decomposition (1) is valid for future

intra-day profiles, that is, it holds for i = n + 1, . . . , n + h. If we can obtain a forecast of the

coefficients βn+h,1, . . . , βn+h,K , then a forecast of xn+h is given by

x̂n+h = β̂n+h,1f1 + · · ·+ β̂n+h,KfK ,

where β̂n+h,k is a forecast of βn+h,k, k = 1, . . . , K. Denote fk = (f1k, . . . , fmk)
T . The forecast

of the call volume of the j-th time period of day n + h is given by

x̂n+h,j = β̂n+h,1fj1 + · · ·+ β̂n+h,KfjK , j = 1, . . . , m.

Because of the way how the SVD is constructed, (β1k, . . . , βnk) is orthogonal to (β1l, . . . , βnl)

for k 6= l. This lack of contemporaneous correlation suggests that the cross-correlations at

non-zero lags are likely to be small. Therefore it is reasonable to believe that it is adequate to

forecast each series {βik} separately using univariate time series methods, for k = 1, . . . , K.

To forecast each series, we propose to use univariate time series models such as exponential

smoothing, ARIMA models (Box et al. 1994), state space models (Harvey 1990) and other

suitable models. Which model to use would depend on the actual situation, and can be

decided on by analyzing historical data.

In our case study of the call center data described in Section 2, we apply a varying

coefficient AR(1) model that takes into account the day-of-the-week effect. Specifically, we

model the series {βik} by

βik = ak(di−1) + bkβi−1,k + εi,

where di−1 denotes the day-of-the-week of day i− 1. The same model has been obtained in

Shen and Huang (2005) when analyzing the arrival data from the same call center for a dif-

ferent year. This varying intercept AR(1) model works well in our out-of-sample forecasting

exercise in Section 5.

3.3 Dynamic Within-day Updating

Using the method in the previous section, a call center manager is able to forecast the

call volume profile for day n + h at the end of day n. In particular, h = 1 corresponds
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to the next day. As calls arrive during day n + 1, the manager may want to dynamically

update her forecast for the remainder of the day using the information from the early part

of that day. There are empirical justifications for such updating, as both Avramidis et al.

(2004) and Steckley et al. (2004) report evidence of positive correlation among time periods

within a given day. This updating is operationally beneficial and feasible as well. If done

appropriately, one can reduce the forecast error for the rest of the day. In turn, operational

benefits would follow from the ability to change agent schedules according to the updated

forecast. For example, to adjust for a revised forecast, call center managers may send people

home early or have them take training sessions or perform alternative work, or they may

arrange agents to work overtime or call in part-time or work-from-home agents.

Suppose we have available the call volumes for the early part, say, m0 time periods of

day n + 1. Denote them collectively as xe
n+1 = (xn+1,1, . . . , xn+1,m0)

T , a vector contains the

first m0 elements of xn+1. Denote xl
n+1 = (xn+1,m0+1, . . . , xn+1,m)T to be the call volumes for

the later part of day n + 1. Here, for notational simplicity, we suppress the dependence of

xe
n+1 and xl

n+1 on m0. Let β̂TS
n+1,k be a time series forecast based on {βi,k}, for k = 1, . . . , K,

using information up to the end of day n. The time series forecast of xl
n+1 is then given by

x̂TS
n+1,j = β̂TS

n+1,1fj1 + · · ·+ β̂TS
n+1,KfjK , j = m0 + 1, . . . , m. (4)

These forecasts do not utilize any new information of day n+1. Below, we discuss two ways

to incorporate the new information in xe
n+1 to get an updated forecast of xl

n+1.

3.3.1 Direct Least Squares Updating

When being applied to the intra-day profile of day n + 1, the decomposition (1) can be

written as

xn+1,j = βn+1,1fj1 + · · ·+ βn+1,KfjK + εn+1,j, j = 1, . . . , m. (5)

Let Fe be a m0 ×K matrix whose (j, k)-th entry is fjk, 1 ≤ j ≤ m0, 1 ≤ k ≤ K, βn+1 =

(βn+1,1, . . . , βn+1,K)T , and εe
n+1 = (εn+1,1, . . . , εn+1,m0)

T . Then, with the availability of xe
n+1 =

(xn+1,1, . . . , xn+1,m0)
T , we have the following linear regression model,

xe
n+1 = Feβn+1 + εe

n+1.

This suggests that we can forecast βn+1 by the method of least squares. Solving

min
βn+1

‖xe
n+1 − Feβn+1‖2,
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we obtain that

β̂
LS

n+1 = (FeTFe)−1FeTxe
n+1.

To make the LS forecast of βn+1 uniquely defined, we require that m0 ≥ K. This makes

sense intuitively in that one needs more observations than parameters, in order to estimate

the parameters well. The forecast of xl
n+1 is then given by

x̂LS
n+1,j = β̂LS

n+1,1fj1 + · · ·+ β̂LS
n+1,KfjK , j = m0 + 1, . . . , m. (6)

As an example, if K = 1, the LS forecast of βn+1 is simply

β̂LS
n+1,1 =

∑m0

j=1 fj1xn+1,1∑m0

j=1 f 2
j1

,

and the corresponding forecast of xl
n+1 is

x̂LS
n+1,j =

∑m0

j=1 fj1xn+1,1∑m0

j=1 f 2
j1

fj1, j = m0 + 1, . . . , m.

3.3.2 Penalized Least Squares Updating

The direct least squares updating makes use of the additional information available at the

early part of day n + 1, but it needs a sufficient amount of data (i.e. a large enough m0) in

order for β̂
LS

n+1 to be reliable. This might create a problem if the manager wants to update

her forecast early in the morning, for example, at 8:00AM with m0 = 4 or 10:00AM with

m0 = 12 for the data in Section 2. Another disadvantage of the direct least squares updating

is that it does not make full use of the historical information other than the estimated intra-

day feature vectors. In particular, it totally disregards the day-to-day dependence among

the inter-day profiles.

We propose to combine the least squares forecast with the time series forecast of βn+1 by

using the idea of penalization. Specifically, we minimize with respect to βn+1,1, . . . , βn+1,K

the following penalized least squares criterion,

m0∑
j=1

∣∣∣∣xn+1,j − (βn+1,1fj1 + · · ·+ βn+1,KfjK)

∣∣∣∣
2

+ λ

K∑

k=1

|βn+1,k − β̂TS
n+1,k|2, (7)

where β̂TS
n+1,k is a time series forecast based on the information up to the end of day n, and

λ > 0 is a penalty parameter. The penalized least squares criterion involves two terms:

the first term measures how well the model prediction matches the observed call volumes in
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the early part of the day, while the second term penalizes a large departure from the time

series forecast. The βn+1 obtained as the solution to the minimization problem (7) will be

a compromise between the two terms based on the size of λ, the penalty parameter. In

practice, λ can be selected using a rolling hold-out sample; see Section 5.3 for a detailed

description of one selection procedure through an example.

For each given λ, the penalized least squares problem (7) can be rewritten in a constrained

optimization form:

minimize
K∑

k=1

|βn+1,k − β̂TS
n+1,k|2 subject to

m0∑
j=1

∣∣∣∣xn+1,j − (βn+1,1fj1 + · · ·+ βn+1,KfjK)

∣∣∣∣
2

≤ ξ,

where ξ = ξ(λ) is chosen appropriately so that the solution to this problem and the previous

one are the same, at the given value of λ. The problem can be interpreted as follows, among

all the βn+1’s that yield forecasts which adequately match the observed call volumes at the

early part of the day, find the one that is closest to the time series forecast.

The penalized least squares criterion (7) can be expressed in the following matrix form,

(xe
n+1 − Feβn+1)

T (xe
n+1 − Feβn+1) + λ(βn+1 − β̂

TS

n+1)(βn+1 − β̂
TS

n+1).

Minimizing this criterion gives us the penalized least squares forecast of βn+1,

β̂
PLS

n+1 = (FeTFe + λI)−1(FeTxe
n+1 + λβ̂

TS

n+1). (8)

It is a weighted average of the least squares forecast and the time series forecast with weighs

being controlled by the penalty parameter λ. This can be easily seen as follows,

β̂
PLS

n+1 =(FeTFe + λI)−1FeTFe(FeTFe)−1FeTxe
n+1 + λ(FeTFe + λI)−1β̂

TS

n+1

=(FeTFe + λI)−1FeTFeβ̂
LS

n+1 + λ(FeTFe + λI)−1β̂
TS

n+1.

Note that, if λ = 0, β̂
PLS

n+1 is simply β̂
LS

n+1; if λ →∞, β̂
PLS

n+1 then reduces to β̂
TS

n+1. The forecast

of xl
n+1 = (xn+1,m0+1, . . . , xn+1,m)T based on β̂

PLS

n+1 is given by,

x̂PLS
n+1,j = β̂PLS

n+1,1fj1 + · · ·+ β̂PLS
n+1,KfjK , j = m0 + 1, . . . ,m. (9)

We end this section by pointing out a connection between our penalized least squares

approach and the widely used ridge regression (Draper and Smith 1998) in regression analysis.
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Define x̃e
n+1 = xe

n+1 − Feβ̂
TS

n+1 and β̃n+1 = βn+1 − β̂
TS

n+1. Then the penalized least squares

criterion becomes

(x̃e
n+1 − Feβ̃n+1)

T (x̃e
n+1 − Feβ̃n+1) + λβ̃

T

n+1β̃n+1,

which is the same minimizing criterion for a ridge regression with x̃e
n+1 as the response, Fe

as the design matrix, and β̃n+1 as the regression coefficient vector. The ridge estimator is

given by

β̃n+1 = (FeTFe + λI)−1FeT x̃e
n+1,

which is a rewriting of the expression (8), since

(FeTFe + λI)−1FeTFeβ̂
TS

n+1 = β̂
TS

n+1 − λ(FeTFe + λI)−1β̂
TS

n+1.

4. Performance Measures

We shall conduct an out-of-sample rolling forecast exercise to evaluate the proposed fore-

casting methods, using the data described in Section 2. In this study, we only evaluate

one-day-ahead forecasting and dynamic within-day updating. There are in total 210 intra-

day call volume profiles in the data set. We use the final 60 days of the data, from August

4 to October 24, as the forecasting set. For each day in the forecasting set, we use its 150

preceding days as the historical data to generate a forecast for that day.

Two measures are used for assessing and comparing forecast performances. Let Nij

denote the call volume on day i during period j. Suppose N̂ij is a forecast of Nij, then the

absolute error (AE) and relative error (RE) are defined respectively as follows,

AEij = |N̂ij −Nij| and REij = 100|N̂ij −Nij|/Nij.

These two measures are defined for each day and each time period. For each given time period

within a day, summary statistics (over days in the forecasting set) such as mean, median,

quartiles of AE and RE can be reported to show the performance of different forecasting

methods.

We now define several summary measures to gauge the overall performance over many

time periods. Suppose we are interested in forecasting the whole intra-day profile for day

i, as for example, in one-day-ahead forecasting. We define the mean absolute error (MAE)
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and mean relative error (MRE) by averaging AE and RE over all time periods in day i as,

MAEi =
1

m

m∑
j=1

AEij,

and

MREi =
1

m

m∑
j=1

REij.

We also define the root mean squared error as

RMSEi =

√√√√ 1

m

m∑
j=1

AE2
ij.

Suppose, as in dynamic updating, in addition to the historical data, we have information

available up to time period j for the current day i, we are interested in forecasting the

remaining periods of day i. We define the mean absolute error (MAE) and mean relative

error (MRE) by averaging AE and RE over time periods after period j in day i as,

MAEij =
1

m− j

m∑

j′=j+1

AEij′ ,

and

MREij =
1

m− j

m∑

j′=j+1

REij′ .

The root mean squared error is correspondingly defined as

RMSEij =

√√√√ 1

m− j

m∑

j′=j+1

AE2
ij′ .

5. Forecasting Performance Comparison

In this section, out-of-sample performances of different forecasting methods are compared

using the evaluation methodology discussed in the previous section. The root-unroot method

described in Section 2 is applied to all competing methods to deal with heteroscedasticity.

We observe that the forecasting methods without the square root transformation do not

perform as well (results not shown). This is not surprising, since SVD and least squares

regression are both based on squared errors and therefore won’t work well for data from a

highly skewed distribution. A varying-coefficient AR(1) model as described in Section 3.2 is

used to model the inter-day feature series when applying our methods.
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5.1 The Benchmark

We consider a simple approach that is currently used in the call center industry as the

benchmark. This approach, referred as the historical average (HA) approach, uses historical

averages of the same day-of-the-week as a forecast for the current day’s call volumes. Specif-

ically, let di denote the day-of-the-week of day i. Denote Diq = {i′ : i′ ≤ i and di′ = dq}
and let |Diq| denote the cardinality of Diq. Then the HA forecast of Nn+h,j based on the

information up to day n can be expressed as

N̂n+h,j =

∑
i∈Dn,n+h

Nij

|Dn,n+h| .

Below we describe a variant of the HA approach based on the root-unroot method afore-

mentioned in Section 2. It will be used as our benchmark in the forecast comparison in

Section 5. Let Xij =
√

Nij + 1/4. The HA forecast of Xn+h,j is

X̂n+h,j =

∑
i∈Dn,n+h

Xij

|Dn,n+h| .

The forecast of Nn+h,j is therefore

N̂n+h,j = X̂2
n+h,j − 1/4 =

(∑
i∈Dn,n+h

Xij

|Dn,n+h|
)2

− 1

4
.

It is worthwhile to point out that, comparing with the HA approach applied to the raw

data, applying the square-root transformation prior to the HA approach does not make

much difference in terms of forecasting error in our real data example.

5.2 Day-to-day Forecasting

Our approach for one-day-ahead forecasting as described in Section 3.2 relies on a dimension

reduction by SVD. The original large dimensional vector time series is represented using a

small number K of basis vectors. In this study, we consider K = 1, 2, 3 and denote the

methods as TS1, TS2, TS3 respectively. These methods are compared with the benchmark

HA method.

Table 1 gives summary statistics of the MRE and RMSE of the forecasts from the HA

method, along with the ratios of the corresponding statistics between HA and the other three

methods. The best forecasting method is highlighted in bold for each summary statistic

separately. Both TS2 and TS3 show substantial improvement over the benchmark HA,
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Table 1: Summary statistics (mean, median, lower quartile Q1, upper quartile Q3) of MRE
and RMSE in a rolling forecast exercise. The forecasting set contains 60 days. TS3 performs
the best.

MRE (%) RMSE
Q1 Median Mean Q3 Q1 Median Mean Q3

HA 4.79 6.35 6.48 7.93 40.76 61.60 66.23 85.13
TS1/HA 1.01 0.96 1.08 1.07 1.07 0.81 0.90 0.80
TS2/HA 1.00 0.86 0.94 0.87 0.99 0.77 0.86 0.76
TS3/HA 0.95 0.81 0.89 0.79 1.02 0.76 0.85 0.71

while TS3 gives the best overall performance. We omit the results using MAE since they

are similar to those using RMSE.

Figure 2 plots the averages of RE and AE as functions of time-of-day for the four compet-

ing methods, where the averages are taken over the 60 days in the forecasting set. Using both

measures, the three methods TS1, TS2 and TS3 all outperform significantly over HA during

9:00AM-5:00PM; typical improvement in AE is around 10-20 calls every quarter hour. The

inferior performance of HA is caused by the fact that it ignores the inter-day dependence

of the call volume profiles. TS1 does not perform well in the beginning (before 8:00AM)

and at the end (after 7:00PM) of the day, indicating that one intra-day feature vector is not

enough in representing the intra-day profiles. TS3 gives the best overall performance while

its improvement over TS2 is marginal. These results can be explained by the extracted intra-

day features from the SVD. The first intra-day feature vector captures the average shape

of the intra-day profiles, while the second and third intra-day feature vectors describe the

differences among the intra-day profiles of different weekdays, especially in early mornings

and evenings.

5.3 Dynamic Within-day Updating

For each day in the forecasting set, we consider dynamically updating the forecast for the

rest of the current day at every quarter hour, using available information up to that quarter.

The intra-day updating starts at 8:00AM, corresponding to m0 = 4, in order to have enough

data to estimate the parameters. The benchmark HA method does not utilize the new

information from the current day and is implemented the same way as in the day-to-day

forecasting.
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Figure 2: Comparison of Average RE and Average AE for the four one-day-ahead forecasting
methods. TS3 performs the best.
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We will consider the three updating methods described in Section 3.3, namely TS, LS,

and PLS; see (4), (6) and (9). We expect that the PLS method should give the best forecast

performance. This is confirmed empirically below. To implement these three methods, we

need to choose the number of intra-day feature vectors for dimension reduction. In light of

the one-day-ahead forecasting performance presented above in Section 5.2, we decide to use

K = 3 and the three methods are therefore denoted as TS3, LS3, and PLS3. For each day in

the forecasting set, we use its 150 preceding days to derive the time series forecast TS3. We

employ the current day’s incoming call volume information in addition to the 150 preceding

days to produce the LS3 and PLS3 forecasts.

To use the PLS updating approach, we need to decide on the value of the penalty pa-

rameter λ at each updating point. To this end, we use the beginning 150 days in our data

set as the training set. Note that this training set does not overlap with the forecasting

set we initially hold out for out-of-sample forecast evaluation. We use the last one third

(i.e., 50 days) of the 150 days in the training set as a rolling hold-out sample. For a given

day in this hold-out sample, we use its preceding 100 days to extract the intra-day feature

vectors and generate the time series forecast TS3. The extracted intra-day feature vectors

and the obtained TS3 forecast are used for all updating points. Now fix an updating point.

For each given λ, we construct the PLS updating for the given day. Pick a performance

measure such as RMSE, MAE, or MRE. Compute the performance measure for all days

in the hold-out sample and calculate the average value. Select λ by minimizing this aver-

age performance measure over a grid of candidate values. In this study, we choose λ from

{0, 10, . . . , 109}. When λ = 0, the PLS approach is the same as the LS approach. As λ

goes to infinity, the PLS approach should converge to the TS approach, which is essentially

achieved when λ = 109 in our study. The selected λ is used to generate the PLS forecast at

the corresponding updating point for all days in the forecasting set.

Figure 3 plots the selected λ as functions of the updating points. We see that, for every

selection criterion, the selected λ has a decreasing trend as the updating time progresses into

the later part of the day. Note that a small λ value would let the PLS forecast put more

weight on the LS forecast. Thus the observed decreasing trend for the selected λ makes

intuitive sense. Because, as time progresses, more information is available about the current

day’s call arrival pattern, and the forecaster needs less influence from the TS forecast.

Figure 4 plots the averages of MRE and RMSE as functions of the updating points for

the four approaches, where the averages are taken over the 60 days in the forecasting set.
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Figure 3: Penalty parameter selection for PLS3 using MRE and RMSE. The selected λ
decreases as the time progresses, which means the TS forecast has less influence on the PLS
forecast. This makes intuitive sense.

18



10 15 20

5
6

7
8

9

Updating Time

A
ve

ra
ge

 M
R

E

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

HA
TS3
LS3
PLS3

10 15 20

10
20

30
40

50
60

70

Updating Time

A
ve

ra
ge

 R
M

S
E

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

HA
TS3
LS3
PLS3

Figure 4: Comparison of Average MRE and Average RMSE as functions of the updating
points. The averages are calculated over the 60 days in the forecasting set. PLS3 performs
the best, and improves greatly over HA.
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Note that MRE and RMSE are calculated at each updating point since we are interested in

the performance of the updated forecasts at all time periods after the updating point. For

PLS3, both MRE and RMSE are used to select λ, and give almost identical results. The

reported results in Figure 4 are based on the λ selected using MRE if MRE is the out-of-

sample forecasting performance measure, and similarly for RMSE. From these plots, PLS3 is

clearly the winner, which has the smallest error measure at all updating points. One can also

see that LS3 performs rather badly at the beginning of the day, especially for RMSE, which

is due to the high collinearity between the initial parts of the second and third intra-day

feature vectors. This also justifies the necessity for penalization. Note that TS3 does not

perform dynamic updating. It just uses the information up to the end of the previous day

and does not employ the current day’s information. Thus, the significant improvement of

PLS3 over TS3 shows the benefit of dynamic updating using the current day’s information.

Table 2: Summary statistics (mean, median, lower quartile Q1 and upper quartile Q3) of
MRE and RMSE of the four approaches for the 10:00AM and 12:00PM updatings. PLS3
improves greatly over the other methods.

MRE (%) RMSE
Q1 Median Mean Q3 Q1 Median Mean Q3

10:00AM
HA 4.69 5.91 6.21 7.61 41.25 57.55 65.16 85.98

TS3/HA 0.94 0.86 0.90 0.76 0.97 0.83 0.87 0.74
LS3/HA 1.77 1.96 2.09 2.06 1.35 1.33 1.26 1.13

PLS3/HA 0.93 0.83 0.86 0.75 0.91 0.77 0.75 0.60
12:00PM

HA 4.93 6.00 6.40 7.89 39.23 51.61 58.97 75.60
TS3/HA 0.95 0.89 0.92 0.79 0.93 0.88 0.89 0.78
LS3/HA 1.33 1.82 1.77 1.74 1.19 1.07 1.05 0.94

PLS3/HA 0.89 0.81 0.82 0.71 0.91 0.77 0.75 0.58

Below, we look at the 10:00AM updating and the 12:00PM updating individually, in

order to get some idea about how different approaches perform for individual updating.

Table 2 presents summary statistics of the MRE and RMSE of the forecasts from the HA

method, along with the ratios of the corresponding statistics between HA and the other three

methods, for the two updatings respectively. For the four competing approaches, Figures 5

and 6 plot the averages of RE and AE for each time period during the remaining part of the

day after the corresponding updating. The averages are calculated over the 60 days in the
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forecasting set. The superior performance of PLS3 over the other methods is again quite

clear. The improvement of PLS3 over the benchmark HA is substantial.

To illustrate the effects of the LS and PLS updating methods, Figure 7 plots the actual

call volume profile for September 3 (a Wednesday), along with the updated forecasts from the

four updating methods after the 12:00PM updating. We observe a dramatic shift from the

HA/TS3 updates to the LS3/PLS3 updates. After incorporating the same-day volumes prior

to 12:00PM, the LS3/PLS3 forecasts are much closer to the actual volumes. The reason is

the following: September 3 is the second day after the Labor Day, which has a strong lagging

holiday effect and leads to unusually high call volumes in September 3. Consequently, the

TS3 forecasts of the inter-day features for September 3 fall below the actual values, as well as

the volume forecasts. The same problem occurs for the HA approach. By balancing between

the TS3 and LS3 forecasts, the PLS3 forecasts automatically adjust for the unusual arrival

pattern, and are closer to the actual call volumes in the late afternoon and evening.

6. Conclusion

Our approach to forecasting call arrivals is based on the viewpoint that the intra-day call

volume profiles form a vector time series. This point of view represents clearly that the

data have a two-way temporal structure, that is, the inter-day and intra-day variations. The

SVD, used as a dimensionality reduction tool, effectively separates out these two types of

variations. The intra-day variation is summarized by a few intra-day feature vectors that

can be extracted from historical data, while the inter-day variation is modelled by a few

inter-day feature time series (see Section 3.1). The SVD is also efficient in our data example:

three pairs of inter-day and intra-day features are sufficient to generate good forecasts for a

68-dimensional time series.

Assuming that the intra-day features won’t change in the future, the problem of fore-

casting intra-day profile reduces to the problem of forecasting the inter-day features. We

propose to use univariate time series techniques to forecast the inter-day feature series in

order to generate one- or multi-day-ahead forecasts. For dynamic within-day updating, we

have considered three ways to update the inter-day feature forecasts: 1. Apply the day-to-

day forecast, using information available up to the end of the previous day (i.e. no updating);

2. Fit a least squares regression using the observed portion of the current day’s volume pro-

file on the corresponding components of the intra-day feature vectors (i.e. LS updating);

21



10 12 14 16 18 20 22 24

4
6

8
10

12

Time

A
ve

ra
ge

 R
E

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

HA
TS3
LS3
PLS3

10 12 14 16 18 20 22 24

20
40

60
80

Time

A
ve

ra
ge

 A
E

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

HA
TS3
LS3
PLS3

Figure 5: Comparison of Average RE and Average AE of the four approaches for the 10:00AM
updating. The averages are calculated over the 60 days in the forecasting set. PLS3 performs
the best.
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This shows pictorially how LS3 and PLS3 work.
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3. Combine the current day’s available information with the previous day’s information us-

ing penalized least squares (i.e. PLS updating). Not surprisingly, the third method (PLS)

performs the best and should be the recommended method.

Our methods show significant improvements over the existing industry standard in an

out-of-sample forecasting comparison. Despite the good performance, our methods are not

much more complicated than the industry standard. They are easy to implement. SVD

can be obtained using any software that does matrix computation such as MATLAB and

SPLUS/R; and solving penalized least squares is as straightforward as performing a ridge

regression. The R codes for performing our forecasting and updating methods are available

from the authors upon request.

We have employed a square-root transformation to overcome the non-constant variance

problem. Other variance stabilization transformation can also be used with our forecasting

methods and might be more appropriate for other data sets. However, the root-unroot

method of Brown et al. (2005) can be justified by assuming a Poisson distribution for the

call volume within a short time interval. This assumption works well in our data set as an

approximation, and is reasonable in many practical situations. In fact, when applying the

standard queuing methodology, call center practitioners commonly assume that call arrivals

follow a Poisson process with constant rates for short time intervals, which in turn implies

Poisson distributions for the corresponding call volumes.

A natural direction for future research is to combine our dimensionality reduction idea

with stochastic modelling, such as modelling the arrival process as an inhomogeneous Poisson

process (Brown et al., 2005). In stochastic modelling, data transformation is not necessary

and a distribution based approach for estimation is more appealing. Such an approach will

be inevitably more complex than the approach proposed in the current paper. It would be

interesting to investigate whether the distributional approach will yield better forecasts.
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