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Abstract— Accurate short-time traffic flow prediction has
gained gradually increasing importance for traffic plan and
management with the deployment of intelligent transportation
systems (ITSs). However, the existing approaches for short-term
traffic flow prediction are unable to efficiently capture the
complex nonlinearity of traffic flow, which provide unsatisfactory
prediction accuracy. In this paper, we propose a deep learning
based model which uses hybrid and multiple-layer architectures
to automatically extract inherent features of traffic flow data.
Firstly, built on the convolutional neural network (CNN) and
the long short-term memory (LSTM) network, we develop
an attention-based Conv-LSTM module to extract the spatial
and short-term temporal features. The attention mechanism is
properly designed to distinguish the importance of flow sequences
at different times by automatically assigning different weights.
Secondly, to further explore long-term temporal features, we pro-
pose a bidirectional LSTM (Bi-LSTM) module to extract daily
and weekly periodic features so as to capture variance tendency
of the traffic flow from both previous and posterior directions.
Finally, extensive experimental results are presented to show that
the proposed model combining the attention Conv-LSTM and
Bi-LSTM achieves better prediction performance compared with
other existing approaches.

Index Terms— Traffic flow prediction, deep learning,
Conv-LSTM module, attention mechanism, Bi-LSTM.

I. INTRODUCTION

ACCURATE and real-time short-term traffic flow predic-
tion is of great importance for the daily life of citizens

and traffic management. It has the potential to not only help
travelers make better route guidance to save money and time
but also help government agencies make better route plan to
reduce traffic congestion and accidents [1]. Therefore, traffic
flow prediction has become one of important function com-
ponents in intelligent transportation systems (ITSs). However,
short-term traffic flow prediction is very challenging due to the
stochastic and dynamic traffic condition. In recent years, how
to efficiently and accurately predict traffic flow has attracted
much attention with the deployment of ITSs.
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Previous short-term traffic flow prediction approaches
can be roughly classified into three categories: parametric
approach, non-parametric approach and hybrid approach [2].
The parametric approach includes time-series methods and
Kalman filtering [3], [4]. The widely used models based on
time-series methods is the autoregressive integrated moving
average (ARIMA) model and its many variants, such as Koho-
nen ARIMA (KARIMA) [5], subset ARIMA [6], seasonal
ARIMA (SARIMA) [7]. However, due to the stochastic and
nonlinear nature of traffic flow, these techniques only consider
the temporal variation of traffic flow and thus provide unsat-
isfying prediction performance. The non-parametric approach
includes k-nearest neighbor (k-NN) methods, support vector
regression (SVR) [9], and artificial neural networks (ANNs).
However, it has been shown that the k-NN methods for traffic
flow prediction do not outperform the time-series methods.
Furthermore, the traditional machine learning based methods
utilize human-crafted features to capture the characteristics of
traffic flow, which are inadequate to obtain accurate prediction
performance. Moreover, the early works based neural networks
usually use shallow networks or with only one hidden layer,
which are also unable to capture the uncertain and complex
nonlinearity of traffic flow.

Recent years have witnessed a great success of deep learning
applied in many fields such as computer vision and speech
recognition. Compared to the traditional ANN models, deep
learning models use multiple-layer architectures to automat-
ically extract inherent features from a large amount of raw
data. Recently, deep learning has inspired a surge of interest
in transportation research. A variety of deep learning methods
have been proposed for traffic flow prediction [11]–[16].
However, the existing works based on deep learning models
for traffic flow prediction suffer from the following drawbacks:
1) Some works employ a simple neural network model such
as stacked autoencoder (SAE), LSTM or CNN, which cannot
fully capture the complex features of traffic flow, thus provid-
ing limited prediction performance improvement. For example,
CNN is usually utilized to extract spatial feature while LSTM
is applied to extract temporal feature. 2) Although some
works propose hybrid deep learning methods by combining
several models to capture multiple features including spatial,
temporal and periodic features for traffic flow prediction, they
are usually processed independently. Furthermore, the intricate
structures existed in traffic flow data are not exploited fully
by these works. For example, the past traffic flow at some
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locations or times may be more important than any others for
forecasting future traffic flow. To solve the problems above,
we propose a novel hybrid deep learning model with an
attention mechanism for short-term traffic flow prediction. The
main contributions of this paper are as follows.

• We develop a hybrid deep learning model with
Conv-LSTM networks to exploit the spatial-temporal
feature of traffic flow. Different from the existing hybrid
model for traffic flow forecasting, Conv-LSTM is able to
capture spatial-temporal feature more efficiently since it
processes spatial and temporal features as a whole, which
improves prediction performance.

• We propose a Bi-LSTM module to extract periodic fea-
tures for traffic flow prediction by taking both daily
periodicity and weekly periodicity into account. The
proposed module has the ability of capturing variation
tendency of the traffic flow from both previous and
posterior directions.

• We design an attention mechanism for the Conv-LSTM
module to adaptively allocate different levels of attention
to a traffic flow sequence at different times. The proposed
mechanism is able to automatically distinguish the impor-
tance that each flow sequence contributes to the final
prediction performance without auxiliary information.

• We conduct experiments to evaluate the effectiveness of
the proposed model by using real-world dataset. The
experimental results demonstrate that the proposed model
achieves better performance than other existing methods
for short-term traffic flow prediction.

The remainder of this paper is organized as follows.
In Section II, we introduce the related work. In Section III,
we present problem formulations. In Section IV, we propose
a novel deep learning approach for traffic flow prediction.
In Section V, we conduct experiments on the real-world dataset
and compare prediction performance with some existing meth-
ods. Finally, we conclude the paper in Section VI.

II. RELATED WORK

In this section, we discuss the most related work regard-
ing to short-term traffic flow prediction. As mentioned
above, there are mainly three categories: parametric approach,
non-parametric approach and hybrid approach.

In the first category, the widely used model belonging to
parametric approach is the autoregressive integrated moving
average (ARIMA) model, which is a time-series method. The
ARIMA model is applied for predicting traffic flow in express-
way and urban arterial roads [22], [23]. Subsequently, many
variants of ARIMA model were proposed to enhance pre-
diction performance. For example, a KARIMA model which
combines the Kohonen network with ARIMA was proposed
for traffic prediction to solve the problem that the ARIMA
model cannot handle non-linear traffic data [5]. An ARI-
MAX model was proposed by combining ARIMA with
explanatory variables to improve forecasting performance [7].
A Bayesian seasonal ARIMA was proposed for short-term
traffic flow forecasting by using the Bayesian method instead
of classic methods such as maximum likelihood estimate and

least-squares estimate to improve prediction accuracy [24].
A unified spatio-temporal model based on STARIMA (Space-
Time Autoregressive Integrated Moving Average) was also
proposed to capture the intricate spatio-temporal correlation
structure between road traffic and achieves more accurate pre-
diction performance [8]. The above variants solve the inherent
problems of the classic ARIMA model, such as the inability
to process non-linear data and poor prediction performance.

In the second category, some approaches belonging to
the non-parametric model include k-nearest neighbor (k-NN)
methods, support vector regression (SVR) [9], [10], arti-
ficial neural networks (ANNs). For example, the k-NN
method is applied for short-term freeway traffic prediction
but achieves worse performance than the linear time-series
approach [25]. A dynamic model based on the k-nearest neigh-
bour non-parametric regression (KNN-NPR) was proposed to
predict multi-interval traffic flow by using a wealth of histori-
cal data to improve prediction accuracy [26]. An online learn-
ing weighted support vector regression (SVR) was proposed
for short-term traffic flow forecasting [27]. A hybrid SVR
model which applies the hybrid genetic algorithm-simulated
annealing algorithm (GA-SA) was presented for traffic flow
prediction [9]. Furthermore, a variety of ANN-based models
were proposed for traffic flow prediction [28]–[33].

In the third category, some hybrid methods by combining
several techniques were proposed for traffic flow prediction
[34]–[36]. For example, an aggregation approach utilizing the
moving average (MA), ARIMA, exponential smoothing (ES),
and neural network (NN) models was proposed for traffic
flow prediction [34]. An approach combining the ARIMA
model with the expectation maximization and cumulative sum
algorithms was proposed for traffic flow forecasting [35].
An adaptive hybrid fuzzy rule-based approach was presented
for urban traffic flow prediction [36].

Recently, a variety of deep learning based methods have
been proposed for traffic flow prediction, which belong to a
type of machine learning methods. The deep learning based
approach can automatically extract the inherent spatial and
temporal features from raw data without any data preprocess-
ing. A deep belief network (DBN) with the multitask learning
method is the first model that applies deep learning technique,
where the deep belief network is employed for feature learning
and the multitask learning method is employed for integrat-
ing several tasks together to jointly train the model [11].
A stacked autoencoder (SAE) model was also proposed for
traffic flow prediction, which consists of deep layer structure
and uses the layerwise greedy algorithm to learn the spatial
and temporal features of traffic flow data [12]. A deep learning
approach using LSTM was presented to extract the temporal
feature of traffic flow [13]. A deep learning architecture
using a convolutional neural network (CNN) was proposed to
extract spatial-temporal traffic feature for speed prediction in a
large-scale transportation network [14]. A deep irregular con-
volutional residual LSTM network model called DST-ICRL
was proposed for urban traffic passenger flow prediction [15].
To extract both temporal and spatial features of traffic flow,
a hybrid deep learning framework using CNN and LSTM was
proposed for traffic flow prediction, where CNN and LSTM
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are used to extract the spatial and temporal features of traffic
flow, respectively [16]. Furthermore, an attention mechanism
was also proposed to learn the importance of the near-term
inputs of traffic flow [16]. However, it requires auxiliary
information such as road speed to learn the attention weight
matrix, which is not preferred when the auxiliary information
is unavailable. In addition, a novel method, Periodic-CRN
(PCRN), was proposed with taking recurring periodic patterns
of spatio-temporal data in account by using convolutional
recurrent network (CRN) for crowd density prediction [17].
Recently, CNN has been extended to graph convolutional
neural networks (GCN) to learn feature of graph-structured
data based on the spectral graph theory [18]. A deep learn-
ing framework, Spatio-Temporal Graph Convolutional Net-
works (STGCN) was proposed to capture comprehensive
spatio-temporal correlations of traffic data for traffic flow
forecasting [19]. To capture the complex spatial and non-linear
temporal dynamics of traffic data, a deep learning framework,
Diffusion Convolutional Recurrent Neural Network (DCRNN),
was proposed for traffic flow forecasting, where the traffic flow
is modeled as a diffusion process on a directed graph [20].

Different from the existing deep learning models for traffic
flow prediction, we propose a novel hybrid model integrating
CNN and Bi-LSTM networks which is able to capture both
spatial-temporal feature and periodic feature of traffic flow
more efficiently. Furthermore, different from our previous
work [21], an attention mechanism is introduced into our
model to automatically distinguish the importance of traffic
flow sequence at different times, which does not utilize the
auxiliary information such as speed data as done in [16]. These
additional modules significantly improve the performance for
short-term traffic flow prediction.

III. PROBLEM FORMULATION

The purpose of traffic flow prediction is to provide accurate
and timely traffic flow information of the near future to
improve transportation efficiency. The problem of traffic flow
prediction can be formulated as follows. Let Xi

τ denote the
traffic flow of the i th observation location during the τ th time
interval. The observation location can be a road, station or
spatial identity. At a current time t , the task is to predict
the traffic flow of a point of interest (POI) at time interval
(t + h�) for some prediction horizon � given the historical
traffic flow sequence of observation locations {Xi

τ } (τ =
t − n�, . . . , t − �, t and i ∈ O, where O is the set of
observation locations in the transportation network). In this
work, we consider � = 5 minutes, n = 15 and h = 1, 3, 6, 12,
which means that 75-minute historical data is used to predict
the traffic flow of the next 5, 15, 30 and 60 minutes. For the
simplicity of description, we denote t−n as t−n� by omitting
the symbol � in the paper.

Since transportation traffic condition is usually random and
nonlinear, a good traffic model should be able to capture
such complicate characteristics. Many statistical or machine
learning based traffic models have been developed to improve
prediction performance. Feature learning is an important pro-
cedure for building an efficient traffic model, which extracts

and selects the most representative features from the historical
traffic flow data. The features of traffic flow usually exhibit
spatial-temporal correlation and periodic characteristic. More
concretely, the traffic flow of a POI is not only impacted by
the traffic conditions of its neighboring observation locations
but also influenced by previous time. Furthermore, the traffic
flow also exhibits periodic pattern in a daily or weekly manner.
For instance, the variation tendency of the traffic flow in the
same day of two consecutive weeks is very similar. All these
characteristics of traffic flow together determine the future
status of the observation location to be predicted. In this
paper, we propose a deep learning based model to exploit
both spatial-temporal correlation and periodic characteristic
for short-term traffic flow prediction.

Before introducing our traffic model, we describe how
to construct historical traffic flow to facilitate extracting
spatial-temporal and periodic features. Let f p

t denote the traf-
fic flow of an observation location p at time t . The historical
traffic flow of the observation location p from time t − n
to t can be represented as X p

t = [ f p
t−n, f p

t−(n−1), . . . , f p
t ]T .

Then we combine the historical traffic flow of its neighboring
locations (total m locations including location p) to form a
spatial-temporal traffic flow matrix as follows:

X s
t =

⎡
⎢⎢⎢⎣

Xs
t−n

Xs
t−(n−1)

...
Xs

t

⎤
⎥⎥⎥⎦

T

=

⎡
⎢⎢⎢⎣

f 1
t−n f 1

t−(n−1) . . . f 1
t

f 2
t−n f 2

t−(n−1) . . . f 2
t

...
...

. . .
...

f m
t−n f m

t−(n−1) . . . f m
t

⎤
⎥⎥⎥⎦ , (1)

where Xs
t = [ f 1

t , f 2
t , . . . , f m

t ] denotes the traffic flow of the
prediction region at time t .

In addition, we consider the periodic characteristic of the
traffic flow. To construct historical traffic flow data with
periodicity, we take both daily and weekly periodicity into
account. The traffic data with daily periodicity can be obtained
by considering previous and subsequent n time intervals of
the same moment as time t in the last day, which can be
represented as

Xd
t =

⎡
⎢⎢⎢⎢⎣

f 1
t d−n

f 1
t d−(n−1)

. . . f 1
t d . . . f 1

t d+n
f 2
t d−n

f 2
t d−(n−1)

. . . f 2
t d . . . f 2

t d+n
...

...
...

...
. . .

...
f m
td−n

f m
td−(n−1)

. . . f m
td . . . f m

td+n

⎤
⎥⎥⎥⎥⎦ , (2)

where td denotes the same moment as time t in the last day.
Similarly, we construct historical traffic flow data with weekly
periodicity by considering previous and subsequent n time
intervals of the same moment as time t in the last week as
follows

Xw
t =

⎡
⎢⎢⎢⎣

f 1
tw−n f 1

tw−(n−1) . . . f 1
tw . . . f 1

tw+n

f 2
tw−n f 2

tw−(n−1) . . . f 2
tw . . . f 2

tw+n
...

...
...

...
. . .

...
f m
tw−n f m

tw−(n−1) . . . f m
tw . . . f m

tw+n

⎤
⎥⎥⎥⎦ , (3)

where tw denotes the same moment as time t in the last week.
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Fig. 1. The proposed deep learning based model for short-term traffic flow
prediction.

IV. THE PROPOSED HYBRID DEEP LEARNING MODEL

FOR TRAFFIC FLOW PREDICTION

A. Overview of the Proposed Model

In this paper, we propose a novel hybrid deep architecture
for traffic flow prediction. The proposed model consists of
a Conv-LSTM module and two Bi-LSTM modules. Fig. 1
illustrates the overall architecture of the proposed model.
The Conv-LSTM module is constructed from the convolution
neural network and the LSTM network, where the convolution
neural network is utilized to extract the spatial feature of
the traffic flow and then is connected to the LSTM network
to obtain the short-term temporal feature of the traffic flow.
Recently, some similar approaches that combine CNN and
LSTM have been proposed for a variety of applications such
as traffic information detection [38], network fault prediction
[39], gesture recognition [46] and speech emotion recognition
[47]. Meanwhile, the Bi-LSTM module is used to extract the
daily and weekly periodic features of traffic flow. Afterward,
the spatial-temporal feature and the periodicity feature are
fused to a feature vector by a feature fusion layer (FF
layer). Finally, the feature fusion layer is followed by the
two fully-connected layers (FC layer) which are regression
layers to perform forecasting. In addition, we design an atten-
tion mechanism for the Conv-LSTM module to automatically
explore different levels of the importance of flow sequences
at different times. We will describe each module in detail in
the following subsections.

B. Conv-LSTM

The Conv-LSTM module is the main component of the
proposed model that aims to extract the spatial-temporal
feature of traffic flow. The Conv-LSTM module incorporates
the convolutional neural network and the LSTM network as
shown in Fig. 2. The convolutional neural network consists of
two convolutional layers and the LSTM network contains two
LSTM layers, respectively.

The input of Conv-LSTM is a spatial-temporal traffic flow
matrix X s

t as indicated in Eq. (1), which represents the
historical traffic flow of the POI to be predicted and its
neighbours. To extract the spatial feature, one dimensional
convolution operation is performed over the flow data Xs

t at
each time step t . A one-dimensional convolution kernel filter is
used to acquire the local perceptual domain by a sliding filter.

Fig. 2. The Conv-LSTM module with an attention mechanism.

Fig. 3. The LSTM neuron structure.

The process of convolution kernel filter can be expressed as
follows:

Y s
t = σ(Ws ∗ Xs

t + bs), (4)

where Ws is the weights of the filter, bs is bias, Xs
t is the input

traffic flow at time t , symbol ∗ represents the convolution
operation, σ is the activation function and Y s

t is the output
of the convolutional layer. Such a process is conducive to
extracting the spatial feature from the neighbouring observa-
tion locations.

The pooling layer is not applied after the convolutional
layer in our model since the dimension of the spatial feature
is not large. Denote Gs

t as the output of the convolutional
layer 2. After the spatial information is processed by the two
convolutional layers, then the output is connected to an LSTM
network.

As is known, traffic flow also exhibits temporal correlations
in adjacent times. Recurrent neural network (RNN) is usu-
ally introduced for analyzing the hidden temporal feature in
sequential data [41]. However, RNN performs poor in case of
long term sequences due to the vanishing gradient problem
since it forgets the earlier status of the sequence. LSTM
provides a practical method to learn long time dependencies
for long term sequential data. A structure of LSTM contains
a cell to store block cell state and three gates: input gate,
out gate and forget gate. The current state is influenced by
the forget gate and input gate. LSTM uses the forget gate to
determine how much information at the previous cell state is
retained in the current cell state, and uses the input gate to
decide how much information of the input needs to be saved
in the current cell state. The structure of each LSTM neuron
is shown in Fig. 3. In this paper, we propose to utilize LSTM
to extract temporal feature of traffic flow.
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To improve the performance of the deep neural network,
the traditional method is to increase the number of layers in
the model. In this paper, we stack multiple LSTM layers to
the model to capture higher level of the features of the traffic
flow. By stacking LSTM layers, each LSTM layer receives the
hidden state of the previous layer as its input. For example,
as shown in Fig. 2, LSTM layer 1 processes the sequence
output from the CNN module Gs

t = [Gs
t−n, . . . , Gs

t−1, Gs
t ]

from begin to end and calculates the hidden state for each
time step Hs

1,t = [H s
1,t−n, . . . , H s

1,t−1, H s
1,t ]. Then the hidden

state sequence Hs
1,t is input into LSTM layer 2 to calculate

the hidden state H s
2,t for time step t as the output of the entire

LSTM network H s
t . The computation of each LSTM layer can

be explained through Eq. (5) to Eq. (9) as follows:
it = σ(Wgi I s

t + Whi H s
t−1 + Wci ◦ Ct−1 + bi ), (5)

ft = σ(Wg f I s
t + Wh f H s

t−1 + Wc f ◦ Ct−1 + b f ), (6)

Ct = ft ◦ Ct−1 + it ◦ tanh(Wgc I s
t +Whc H s

t−1 + bc), (7)

ot = sigma(Wgo I s
t + Who H s

t−1 + Wco ◦ Ct + bo), (8)

H s
t = ot ◦ tanh(Ct ), (9)

where I s
t is the input of the LSTM layer at time step t , σ is the

activation function, it , ft , ot are respectively the input gate,
the forget Gate and output gate at time t , Ct is the cell state,
◦ represents the matrix element-wise product, W ’s and b’s are
weights and bias, respectively. The final output of the LSTM
layer H s

t is determined by the output gate and the update cell
as described in Eq. (9). The inputs I s

t of layer 1 and layer 2 are
Gs

t and H s
1,t , respectively. The outputs H s

t of layer 1 and layer
2 correspond to H s

1,t and H s
2,t , respectively. Finally, we obtain

the spatial-temporal feature H s
t for time step t .

C. Attention Mechanism

Attention model has been proposed to explore the inherent
features of data and improve the efficiency of information
processing. For example, an attention mechanism was intro-
duced in neural machine translation by assigning different
weights to text fragments and make information more effi-
ciently encoded [40]. It lays the groundwork for variants of
subsequent attention mechanisms. As is known, the informa-
tion provided by the traffic flow at different times may be not
equally important for prediction performance. In other words,
the traffic condition of some observation locations at different
times may have a different influence on the traffic flow of
the POI to be predicted. However, the standard LSTM cannot
detect which is the important part for a traffic flow sequence.
To solve this problem, we design an attention mechanism
for the Conv-LSTM module to automatically exploit different
levels of importance of a traffic flow sequence at different
times.

Fig.4 shows an illustration on how the attention mechanism
is incorporated in the Conv-LSTM module. As illustrated
in Fig. 4, the output of Conv-LSTM at each time step t is
computed as a weighted summation of the output of the LSTM
network H s

t as follows:

H a
t =

n+1�
k=1

βk H s
t−(k−1), (10)

Fig. 4. The attention mechanism with Conv-LSTM networks.

where n + 1 is the length of flow sequence and βk is the
temporal attention value at time step t − (k −1). The attention
value βk can be computed as

βk = exp(sk)	n+1
k=1 exp(sk)

. (11)

The scores s = (s1, s2, · · · , sn+1)
T indicate the importance of

each part in the traffic flow sequence, which can be obtained
as

st = V T
s tanh(Whs Gs

t + Wls H s
t ), (12)

where Vs , Wxs and Whs are the learnable parameters and H s
t

is the hidden output from the Conv-LSTM network.
From Eqs. (11) and (12), we can see that the attention value

β at time step t depends on the input Gs
t and the hidden

variables H s
t at the current time step t and its previous n

time steps. The attention value β can be also viewed as the
activation of the flow selection gate. The set of gates control
the amount of information from each flow to enter the LSTM
network. The larger the activation value, the more important
the flow contributes to the final prediction result. Note that the
proposed attention mechanism does not require other auxiliary
information such as road speed [16] to learn the attention
weights.

D. Bi-Directional LSTM

As discussed in the previous section, the behaviors of
citizens usually show a certain regularity in their daily life,
which results in the similar or repeated pattern of the traffic
flow in a daily or weekly manner. In addition, the traffic flow at
a given time not only depends on the flow of its previous time,
but also in turn affects the flow of its upcoming time. In order
to explore these characteristics, we propose a module based
on bi-directional LSTM networks to extract periodic features
and capture such a temporal dependency from the historical
traffic flow.

The structure of bi-directional LSTM contains two uni-
directional LSTMs stacked up and down, where one is for
forward pass and another is for backward pass. We also
use multiple LSTM layers as discussed above to deal with
the historical periodic traffic flow, where each bi-directional
LSTM network consists of two LSTM layers for both forward
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Fig. 5. The structure of Bi-LSTM networks.

pass and backward pass. The input data at a predicted time
are the flow of its previous time and upcoming time of the
last day and the last week, which are respectively denoted by
Eqs. (2) and (3). Here only the historical periodic traffic flow
of the prediction location is considered. Then they are fed to
the forward and backward passes of the bi-directional LSTM,
respectively. The hidden states of forward pass and backward
pass are finally combined together as the output. In this way,
more features from both directions can be captured, which
improves the prediction performance. Fig. 5 illustrates the
overall structure of the proposed bi-directional LSTM module
used in our model, where Xd

t and Xw
t denote the input of

LSTM, Hd, f
t and Hw, f

t denote the output of forward LSTM,
and Hd,b

t and Hw,b
t denote the output of backward LSTM

when the input of LSTM are Xd
t and Xw

t , respectively.

E. Feature Fusion

As shown in Fig.1, after the processing by the atten-
tion Conv-LSTM and Bi-LSTM modules, we obtain the
spatial-temporal features H a

t , the daily periodicity features
Hd, f

t , Hd,b
t and the weekly periodicity features Hw, f

t and
Hw,b

t . Then all these features are concatenated into a feature
vector and then is input by two regression layers to perform
forecasting. The objective function of regression is a loss
function to calculate the mean squared error of the predicted
traffic flow and the true traffic flow, which will be discussed
later.

V. PERFORMANCE EVALUATION

A. Datasets

In this section, we evaluate the performance of the proposed
model by using real-world dataset for short-term traffic flow
prediction. The dataset is obtained from the Performance
Measurement System (PeMS) sponsored by the California
Department of Transportation (Caltrans), which is widely used
for traffic prediction [42]. The dataset used for the experiments
is collected from September 11th, 2017 to March 4th, 2018 for
about 6 months, which includes the data of both weekdays and
weekends. The traffic data are aggregated every 5 minutes.
The proposed model is trained and evaluated by the dataset
collected from sensors that are respectively located in the
freeway and urban area, representing two different scenarios.
One area is located at Freeway SR99-S District 10 and the
other one is located at Street I980 District 4 in Oakland city.

Fig. 6. Sensor distribution on Freeway SR99-S (left) and Street I980 (right).

Fig. 7. Comparison of the freeway and urban traffic flow.

Fig. 6 shows the distribution of the sensors used for prediction
at Freeway SR99-S District 10 and Street I980 District 4 in
Oakland city, respectively. Fig. 7 shows the corresponding
traffic flow of two separated sensors for 24 hours in one
day, which are deployed in the freeway (Location 2) and
urban (Location 1) area, respectively. The data is obtained by
averaging the traffic volume of ten days at each point. From
Fig. 7, we observe that the traffic flow of freeway and urban
area exhibits similar tendency. For instance, the traffic flow in
the early morning and evening is the lowest, and then increases
slowly with time and reaches its peak around the afternoon.
Fig. 8 plots the traffic flow of Location 1 at Street I980 District
4 from September 18th, 2017 to September 22nd, 2017. From
Fig. 8, we can see that traffic flow at the same location also
shows strong periodic characteristic.

B. Index of Performance

In order to evaluate the performance of the proposed model,
we use three performance indexes that are commonly used to
evaluate the traffic forecasting performance: Mean Absolute
Error (MAE), Mean Absolute Percentage Error (MAPE), Root
Mean Square Error (RMSE), which can be defined as follows:

M AE = 1

n

n�
t=1

|Fp − Ft |, (13)

M AP E = 1

n

n�
t=1

| Ft − Fp

Ft
| × 100%, (14)
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Fig. 8. The traffic flow of Location 1 on Street I980 District 4 in
2017/9/18-2017/9/22.

RM SE =

���1

n

n�
t=1

(Fp − Ft )2, (15)

where Fp represents the predicted traffic flow and Ft repre-
sents the true traffic flow.

C. Training Configuration

In the following section, we introduce some details on the
training of the proposed model. During the training phase,
we set a loss function to update the parameters in our model,
which contains a Mean Squared Error (MSE), �1 weight
regularization and �2 weight regularization. The loss function
is defined as follows:

Loss = M SE + λ1

n
�w�

1
+ λ2

n
�w�

2
, (16)

where λ1, λ2 are regularization parameters and w is the weight.
In the loss function, MSE is defined as the mean squared error
of the predicted traffic flow and the true traffic flow:

M SE = 1

n

n�
t=1

(Fp − Ft )
2, (17)

where Fp is the predicted traffic flow, Ft is the true traffic
flow, and n is the size of dataset.

The goal of �1 regularization included in the loss function
is to obtain a sparse model, which can prevent overfitting by
the deep model. Furthermore, �2 regularization in the loss
function can prevent the occurrence of numerical oversize
parameters in the model and avoid a particular feature to
dominate the prediction performance of the model. �1 regu-
larization and �2 regularization can be respectively defined as
follows:

�w�1 =
n�

i=1

|Wi | and �w�2 =
n�

i=1


W 2

i . (18)

Then, the loss function can be rewritten as follows

Loss = 1

n

�
n�

t=1

(Fp −Ft )
2+λ1

n�
i=1

|Wi |+λ2

n�
i=1


W 2

i

�
(19)

TABLE I

PREDICTION PERFORMANCE WITH VARIOUS PROPOSED MODULES FOR
URBAN TRAFFIC FLOW PREDICTION

In the proposed model, we use the Adam optimization algo-
rithm to optimize the model parameters, which can adaptively
adjust the learning rate.

D. Prediction Performance of the Proposed Model

In this section, we employ the proposed model with various
modules including Conv-LSTM, Bi-LSTM, attention mecha-
nism to predict the traffic flow of one POI (Location 3) at
Street I980 District 4 in Oakland city. The proposed model
is implemented by using Tensorflow framework [45]. The
experiments are conducted on a workstation with an Intel Core
i7-8700 CPU and one Nvidia GeForce RTX 2080Ti Graphics
Card. In the experiment, the convolutional layer has 10 filters
with the size of each filter being 3. The stride of the sliding
window for the input flow data is set to 1. The batch size
for training data is set to 128. The Rectified linear activation
unit (ReLU) is adopted as the activation function. In all the
experiments, the size of the time window is set to 15, which
means that 75-minute historical data is used as a training unit.

We first evaluate the ability of extracting spatio-temporal
feature with the proposed Conv-LSTM module for traffic flow
prediction. As discussed above, the spatial traffic data and the
temporal traffic data are input together into the Conv-LSTM
module to extract spatial-temporal feature. To verify the effec-
tiveness of the proposed approach, we compare the prediction
performance of Conv-LSTM module with a CNN-LSTM mod-
ule (without including other modules). With the CNN-LSTM
module, the spatial traffic data is individually input into a
convolutional neural network to extract spatial feature while
the temporal traffic data is individually input into an LSTM
network to extract temporal feature. As a result, the spatial
feature and the temporal feature are separated and fused in
a fully connected layer. Fig. 9(a) visualizes an illustration of
performance comparison in terms of predicted traffic volume
from 0:00 to 12:00 AM for 5-minute prediction horizon. It can
be seen that the traffic volume predicted by the Conv-LSTM
module is more approximate to the ground truth than the
CNN-LSTM module especially in those periods when there
is a large fluctuation in traffic volume. Tab. I also shows the
prediction performance in terms of MAE, MAPE and RMSE.
All the results are obtained by averaging on each day for
a week. We observe that the proposed module can achieve
smaller prediction error than the CNN-LSTM module with
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Fig. 9. Performance comparison with various proposed modules for urban traffic flow prediction.

all three metrics for all prediction horizons. This is because
the spatial and temporal features of traffic flow are usually
interweaved with each other, which can be captured more
efficiently by the Conv-LSTM module. However, the spatial
feature and the temporal feature are separately processed by
two independent neural networks in the CNN-LSTM module.

Next, we evaluate prediction performance of the proposed
Bi-LSTM module. As aforementioned, the traffic flow always
shows strong periodic tendency. The advantage of the proposed
Bi-LSTM module is that it is able to capture not only the
temporal dependency but also the daily and weekly periodici-
ties of the historical traffic flow. Furthermore, we incorporate
the traffic flow of the subsequent times of the prediction
time (to mimic future flow data) to capture the future vari-
ance tendency. As a result, more periodic features can be
exploited by forward and backward passes of the Bi-LSTM
module to improve prediction performance. Fig. 9(b) shows
the prediction performance with and without the Bi-LSTM
module. It can be obviously observed that the Bi-LSTM mod-
ule provides a significant performance improvement, which
obtains more accurate prediction flow at most of predicted
times than that without Bi-LSTM. This also illustrates that
periodic features are very conducive to improving prediction
performance for traffic flow forecasting.

Furthermore, we evaluate prediction performance of the
attention mechanism for the proposed model. As discussed in
the previous section, the Conv-LSTM module with attention
mechanism is able to automatically identify which are the
important parts for traffic flow forecasting. Fig. 9(c) illus-
trates performance comparison of the proposed model with
and without attention mechanism. It is evident that when
the traffic flow has relatively large fluctuation the attention
mechanism can provide better prediction performance than that
without attention mechanism. Taking Fig. 9(c) as an example,
the predicted traffic volume is obviously approximate to the
ground truth from 8:00 to 12:00 AM. Tab. I also shows the
prediction performance in terms of MAE, MAPE and RMSE.
It shows that prediction error can be further reduced when the
attention mechanism is incorporated in our model.

E. Performance Comparison With Different Prediction
Algorithms in Urban Scenario

In this section, we carry out experiments to investigate
the prediction performance by the proposed model compared

to the existing methods for short-term traffic flow prediction
including Support Vector Regression (SVR) [37], [43], Stack
Auto Encoders (SAE) [12], LSTM networks [13], [44], DNN
based traffic flow prediction model (DNN-BTF) [16], and
Diffusion Convolutional Recurrent Neural Network (DCRNN)
[20]. For SVR, we adopt the radial basis function (RBF)
as the kernel function, and the penalty parameter is set to
empirical value 1. For SAE, we use greedy layerwise unsu-
pervised learning algorithm to train the deep SAE network.
For the LSTM network, it contains two LSTM layers. For
the DNN-BTF model, a convolution neural network is built
to capture spatial feature of the near term, last day and last
week of traffic flow, and two LSTM networks to process the
same data to capture temporal and periodic features. The speed
data of the corresponding traffic flow is utilized to learn the
weights required by the attention mechanism. For the DCRNN
model, the default settings of hyperparameters as in [20] are
adopted for training. We use the traffic flow data of 7 sensors
on Street I980 District 4 in Oakland city and then calculate
the pairwise distances between sensors on the target road to
build the adjacency matrix and construct the graph network.
All the results are averaged on each location and each day for
a week.

The prediction error in terms of performance indexes of
different algorithms is shown in Tab. II. The experimental
results demonstrate that SVR has largest prediction error
among the above prediction algorithms with all three metrics
for all the prediction horizons. This is because SVR utilizes the
kernel function to map a large amount of uncertain traffic flow
data into a high dimensional space, which cannot fully exploit
spatial and periodic features for traffic forecasting, thus leading
to poor prediction performance. Compared to SVR, LSTM
achieves a better prediction performance, where MAPE, MAE
and RMSE have a roughly average 20.4%, 5.3%, 1.6% reduc-
tion, respectively. LSTM improves its prediction performance
due to its unique neuron unit and neural network structure for
extracting temporal feature of traffic flow. However, LSTM is
still unable to capture the other inherent features such as spatial
and periodic features. Compared to the above two algorithms,
SAE further reduces the prediction error in terms of MAPE,
MAE and RMSE. This performance improvement may be due
to the reason that SAE is able to extract more nonlinear fea-
tures from the flow data. DNN-BTF has the ability to extract
not only spatial-temporal feature but also periodic feature
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TABLE II

PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS FOR URBAN TRAFFIC FLOW PREDICTION

TABLE III

PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS FOR FREEWAY TRAFFIC FLOW PREDICTION

since it is built on a hybrid deep neural network including
a convolutional neural network and two LSTM networks. The
model uses the road speed to learn the weights that represent
the correlation between the past spatial-temporal flow and the
future one. Consequently, DNN-BTF outperforms the above
three algorithms. As discussed before, DCRNN models the
dynamics of the traffic flow as a diffusion process and uses the
diffusion graph convolution to capture spatial dependency and
recurrent neural network to capture the temporal dynamics.
Consequently, DCRNN achieves the best performance among
the above four algorithms.

Different from all the above algorithms, the proposed model,
called as attention Conv-LSTM (AT-Conv-LSTM), can extract
spatial-temporal feature and periodic feature more efficiently
than DNN-BTF and DCRNN. More specially, spatial and
temporal flow data are processed together by the Conv-LSTM
model to extract spatial-temporal feature and Bi-LSTM can
capture periodic features in both previous and posterior direc-
tions. Furthermore, the proposed attention mechanism can
also automatically assign different degrees of importance to
each flow sequence at different times to improve prediction
performance. From Tab. II, it can be seen that AT-Conv-
LSTM outperforms all the above algorithms with all three
metrics for all prediction horizons. In particular, performance
improvement becomes more evident with the increase of
prediction horizon.

F. Performance Comparison Under Different Scenarios

To illustrate the generalization of the proposed model,
we investigate the prediction performance under differ-
ent scenarios. We select the traffic flow data at Freeway

Fig. 10. Prediction comparison of different algorithms for freeway traffic
flow.

SR99-S District 10 for comparison. The sensor distribution of
the freeway area to be predicted is illustrated in Fig. 6 (left).
Tab. III shows the average prediction error on each location
with different algorithms. We notice that the average prediction
error of the freeway scenario is much smaller than that of
the urban scenario. This may be due to the reason that the
traffic conditions in the urban scenario are more complicated
than that in the freeway scenario and the proposed model
performs better in the freeway scenario. It can also be observed
that the proposed model still outperforms the other algorithms
with all three metrics for all prediction horizons especially
for longer prediction horizons (e.g., 60 minutes). Fig. 10
visualizes an example of performance comparison for 5-minute
ahead prediction with the three hybrid models. We observe
that although these three models all perform well at most
of time in this scenario, AT-Conv-LSTM approximates much
more closely to the ground truth at most of moments of acute
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traffic fluctuation and DNN-BTF performs worst especially at
around 11:00 AM. In general, the proposed model provides
good universality for traffic flow prediction under different
scenarios.

VI. CONCLUSION AND FUTURE WORK

In this paper, we studied the short-term traffic flow forecast-
ing for ITSs. To deal with the complex nonlinear characteristic
of traffic flow, we proposed a hybrid deep learning model
constructed from the convolutional neural network and the
LSTM network. We find that spatial-temporal features can be
extracted more efficiently when they are processed together
in the proposed Conv-LSTM module. Furthermore, it has
been shown that the proposed attention mechanism is also
benefit for the Conv-LSTM module which is able to enhance
prediction performance. Meanwhile, the proposed Bi-LSTM
module can also efficiently capture the daily and weekly
periodic features to improve prediction accuracy. The extensive
experimental results demonstrate that the proposed model
achieves superior forecasting performance compared with the
existing approaches.

In this work, the road network we consider is relatively
simple and small, where the sensors are usually deployed along
a straight line. However, the road networks in practice are
more complex and large-scale than the one given in this work.
As such, the conventional CNN and (Bi-)LSTM networks
may not be able to fully exploit the complex and dynamic
features of traffic flow. A class of attention-based graph neural
networks such as GMAN [48] provides a potential alternative
to the conventional CNN-LSTM hybrid networks for traffic
prediction in complex and large-scale road networks. Thus,
it will be left as our future work.
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