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Abstract

Graph is a natural data structure for describing complex systems, which contains a set of objects and relationships.
Ubiquitous real-life biomedical problems can be modeled as graph analytics tasks. Machine learning, especially deep
learning, succeeds in vast bioinformatics scenarios with data represented in Euclidean domain. However, rich relational
information between biological elements is retained in the non-Euclidean biomedical graphs, which is not learning friendly
to classic machine learning methods. Graph representation learning aims to embed graph into a low-dimensional space
while preserving graph topology and node properties. It bridges biomedical graphs and modern machine learning methods
and has recently raised widespread interest in both machine learning and bioinformatics communities. In this work, we
summarize the advances of graph representation learning and its representative applications in bioinformatics. To provide a
comprehensive and structured analysis and perspective, we first categorize and analyze both graph embedding methods
(homogeneous graph embedding, heterogeneous graph embedding, attribute graph embedding) and graph neural networks.
Furthermore, we summarize their representative applications from molecular level to genomics, pharmaceutical and
healthcare systems level. Moreover, we provide open resource platforms and libraries for implementing these graph
representation learning methods and discuss the challenges and opportunities of graph representation learning in
bioinformatics. This work provides a comprehensive survey of emerging graph representation learning algorithms and their
applications in bioinformatics. It is anticipated that it could bring valuable insights for researchers to contribute their
knowledge to graph representation learning and future-oriented bioinformatics studies.

Key words: graph representation learning; deep learning; graph neural network; graph embedding; knowledge graph;
healthcare

Introduction

Graph is a natural data structure that contains a set of
objects and a collection of pairwise relationships between
objects. It is a universal language for describing and modeling
ubiquitous real-life complex systems, such as social network [1],
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academic citation network [2] and word co-occurrence networks
[3]. From molecular structure to healthcare systems, biomedical
graphs are pervasive in the field of biomedicine and life sciences,
for instance, gene regulatory networks [4], protein–protein
interaction (PPI) network [5], human brain connectomes [6]
and biomedical knowledge graphs. Graphs are increasingly
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becoming the major paradigm for modeling, learning and
reasoning in biomedical systems.

The rapid development of molecular biology, physiology and
omics has promoted the understanding of how biomolecules,
cells, organs cooperate to carry out the important biochemical
or physiological activities. Representing biological components
as nodes and interactions between nodes as edges, complicated
biological systems can be modeled naturally as graphs. This
austere concept is gradually being accepted and expanded by
researchers. The trend of modeling and analyzing biological
graphs to solve biological problems can be categorized into three
phases: bipartite biological graphs, multirelational biological
graphs and multimodal biomedical knowledge graphs. We
present brief introductions of them as follow: (a) bipartite
biological graph. It contains two kind of biological objects and
the associations between them [7]. It has already applied to
a great deal of important biological tasks [8], such as protein
functions annotations based on PPIs graph [9, 10], inferring new
indications of drug from drug–target interactions graph [11–13],
miRNA–disease associations prediction [14, 15], lncRNA–disease
associations prediction [16] and circRNA–disease associations
detection [17]; (b) multirelational biological graph. This is a more
complicate multilayer heterogeneous network for describing
complex synergy between multiple biological elements. Emerg-
ing studies confirm that there is mutual regulation and com-
petition between molecules, i.e. competing endogenous RNA
hypothesis [18]. And for drug discovery and disease treatment,
it is necessary to comprehensively examine drug–target, drug–
disease, drug–gene, disease–gene and drug–drug interactions.
These complex systems can be great formed as heterogeneous
multirelational biological graphs, e.g. lncRNA–mRNA–miRNA
graph [19], drug–target–disease graph [13, 20–22], miRNA–gene–
disease tripartite graph [23], chemical–gene–disease graph [24]
and miRNA–gene–lncRNA–disease graph for miRNA–disease
associations prediction [25]; (c) biomedical knowledge graph.
A knowledge graph has many names in history, e.g. semantic
networks, knowledge base or ontology. It mines ‘knowledge’
from a large volume of information in a wealth of scattered
documents and databases and links these entity relationships
as graph. Each piece of knowledge is represented as a Subject–
Predicate–Object triplet [26]. Knowledge graph is regarded as an
fundamental infrastructure for the next generation of artificial
intelligence and has many cutting-edge applications in the
field of bioinformatics, including healthcare knowledge graph
for clinical decision support [27], comprehensive molecular
associations graph [28] and biomedical knowledge graphs (e.g.
PharmGKB [29], DrugBank [30], Gene Ontology (GO) [31], Disease
Ontology [32] and KEGG [33]) for disease treatment.

To transform rapidly accumulated biomedical big data into
valuable knowledge, machine learning, especially deep learning,
succeeds in broad scenario of bioinformatics, such as sequence
analysis, structure prediction, and biomedical image processing
and diagnosis. The data in these tasks are directly represented
in Euclidean domain, e.g. sequences (1-D), biomedical images
(2-D) and structure (3-D). Deep learning models are designed
to handle these regular Euclidean data, which has been well
reviewed by previous works [34–36]. However, there are clear
challenges between non-Euclidean biological graphs and typical
deep learning models. For instance, the nodes in graphs have
diverse connections, arbitrary neighbor size, complex topologi-
cal structure and no fixed node ordering. To address these need,
graph representation learning bridges rich valuable biological
graphs and advanced machine learning techniques, including
shallow graph embedding methods and emerging graph neural

networks (GNNs). The main paradigms of graph representation
learning are shown in Figure 1. Among them, graph embedding
aims to learn low-dimensional representations of nodes, links
or subgraphs while maximally preserving graph topology and
inherent attributes that are fit for off-the-shelf machine learning
methods for downstream graph analytics tasks, such as node
classification, link prediction, community detection and visu-
alization. However, GNNs can not only learn embeddings that
retain graph topology and node attribute through a series of
message aggregation and propagation, but also directly complete
the tasks on graphs end-to-end (as shown in Figure 2). As sug-
gested by previous research of graph embedding techniques [37–
41], graph embedding approaches can be classified into homoge-
neous graph embedding, heterogeneous graph embedding and
attributed graph embedding methods. Although the GNNs can
be summarized into graph recurrent networks (GRNs), graph
convolutional networks (GCNs), graph autoencoders (GAEs) and
graph generative adversarial networks (GGANs) based on their
model architectures and training strategies [42–45].

Although there have been some beneficial attempts to apply
graph representation learning to improve biological graph anal-
ysis tasks, some valuable previous works have reviewed the
individual types of graph representation learning methods and
the traditional applications in several scenarios. For example,
Barabasi et al. first reviewed many network-based methods that
can accurately discover biomarkers and effectively identify tar-
gets for drug development and outlined the network medicine
of disease modules, pathways and molecular relations with
distinct phenotypes [46, 47]. The contribution of Barabasi’s series
of work is not only in methodology (the method is outdated
from the current perspective), but in attracting and disseminat-
ing network-based systematic views. Furthermore, Pavlopoulos
et al. [48] provided a comprehensive survey of bipartite graph
and related applications in network biology and medicine. Su
et al. [49] introduced the works of applying graph embedding
to accelerate the downstream biomedical tasks. Ding et al. [50]
presented an overview of heterogeneous network and its appli-
cation in drug development and human interactome. Yue et al.
[51] conducted a comparison of typical graph embedding meth-
ods for link prediction (drug–drug, protein–protein, drug–disease
interactions prediction) and node classification (medical term
classification and protein function annotation) tasks on bipartite
biological graphs. Muzio et al.’s work [52] briefly summarized
deep learning on biological networks, specifically, the appli-
cation of GNNs in proteomics, drug development, metabolic
and gene regulatory networks. And Nelson et al.’s [53] work
mainly focuses on the traditional network embedding methods
and their applications in network biology. However, due to the
complexity and diversity of biomedical graphs and the rapid
development of graph representation learning, these works are
not comprehensive and systematic. There is an urgent need to
summarize the types of biological graphs and emerging graph
representation learning algorithms systematically and clearly.

In this work, we provide a comprehensive review of graph
representation learning and its brilliant applications in bioin-
formatics. We first conducted a detailed summary and discus-
sion of the shallow graph embedding algorithms and emerging
GNNs in graph representation learning. Then, the representative
applications of graph representation learning in board bioin-
formatics problems are introduced. Moreover, we discuss the
challenges and opportunities of graph representation learning
methods in bioinformatics. In addition, we summarize the open
resources platforms and libraries for graph computing and graph
representation learning and provide the implementation of the
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Figure 1. Graph representation learning paradigms. Graph representation learning bridges non-Euclidean graph data and modern machine learning techniques. Here,

we summarize both graph embedding methods and graph neural networks. (A) An illustration of gird-like Euclidean data versus non-Euclidean graphs (not learning

friendly). (B) Graph embedding methods generate node representations through directly projecting nodes in original graph to low-dimensional representation spaces.

(C) Graph neural networks learn graph representations through diverse message aggregation and propagation. (D) Graph generative models learn the distribution of

input samples to generate molecular graph with desired properties.

Figure 2. Comparison of graph embedding methods and graph neural networks. Graph embedding methods generate node representations that can be combined with

machine learning models to preform downstream tasks, whereas graph neural networks fuse graph topology and attributes to perform end-to-end graph tasks.

graph embedding and GNN models reviewed in this work. This
work provides comprehensive survey of emerging graph repre-
sentation learning and its applications in bioinformatics, which
aims to serve as a useful guide for researchers to apply graph
representation learning approaches in bioinformatics studies.

Graph representation learning:
a brief overview
In this section, we provide a brief overview of graph represen-
tation learning methods. Graph representation learning aims
to encode the nodes in the graph into low-dimensional vector
representations, which maximize the preservation of graph
topology and node attribute information. The notations and

definitions regrading graphs and proximities are described
first. And then we outline the key types of both shallow
graph embedding methods (including homogeneous graph
embedding, heterogeneous embedding and attributed graph
embedding) and GNNs. The hierarchical relationship between
the different methods reviewed in this section is summarized in
Figure 3.

Basic definitions

Many real-world systems can be abstractly represented as differ-
ent levels of information graphs, which focus on the components
and the associations among these components. Graph repre-
sentation learning method aims to solve the generalized graph
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Figure 3. Taxonomy and representative methods of graph representation learning.

embedding problem. In this section, we first define important
concepts related to graph representation learning, including dif-
ferent type of graphs, and graph proximities that different graph
embedding algorithms rely on. For ease of presentation and
analysis, formal definitions of the notations are first introduced.

Suppose G = (
V, E

)
indicates a graph, consists of a set of

vertices (a.k.a. nodes) V = {
v1, v2, . . . , v|V|

}
, where |V| represents

the number of vertices and a set of links (a.k.a. edges) E = {
ei,j

} ∈
R

V×V. The adjacency matrix W of graph G retains nonnegative
weights associated with each edge, if vi is linked with vj, wi,j > 0,
if there is no link between vi and vj, wi,j = 0. For undirected graph,
the adjacency matrix is symmetric, wi,j = wj,i, ∀i, j ∈ [

V
]
. There is

also a node type mapping function φ : V → T, and a link type
mapping function ψ : E → R. T and R are the sets of predefined
node types and link types.

Definition 1. Homogenous and Heterogeneous graph. Given an
information graph G, based on its graph topology and attributed
property (with or without node attributes), it can be categorized
into different type of graph. If the node types

∣∣T
∣∣ > 1 or link

types
∣∣R

∣∣ > 1, that is
∣∣T

∣∣+ | R |> 2, the graph is heterogeneous
graph. Otherwise, it is a homogenous graph

(∣∣T
∣∣ = 1 and

∣∣R
∣∣ = 1

)

[54–56]. The homogenous graph has only one type of node and
a unique link type, whereas the heterogeneous graph contains
multityped, interconnected objects, such as drug–target–disease
graph. At the same time, multiplex graph is a special type of het-
erogeneous graph. Multiplex graph is also known as multiview
graph [57, 58] or multidimensional graph [59, 60], which has only
one type of node but multiple types of edges. It can be treated as
a special type of heterogeneous graph with

∣∣T
∣∣ = 1 and

∣∣R
∣∣ > 1

[61, 62].

Definition 2. Attributed graph. Abstract vertices in an informa-
tion graph usually have their inherent properties. An attributed
graph can be formally defined as G = (

V, E, A
)
, where A denotes

an attribute representation matrix. For each node vi ∈ V, there is

a feature vector ai ∈ A is affiliated with it, where A = {
ai|vi ∈ V

}

is the set of node attribute features for all nodes. ai is the ith row
of the attribute matrix that belongs to node vi [41, 63].

Definition 3. Meta-path. For heterogeneous graph, a meta-path

P = T1
R1→ T2

R2→ T3 → . . .
Rl→ Tl+1 is defined on a network schema

τ (G) = (
T, R

)
, which consists of a composite relation R = R1 ◦ R2 ◦

R3 ◦ · · · ◦ Rl between node types T1 and Tl+1, where l denotes the
length of path (l ≥ 1), and ◦ indicates the composition operator
on relations [64]. Meta-path can handle semantic information

effectively, for example a path Druga

target→ proteinb
interact→ diseasec

notes a treatment mechanism of a disease in a biomedical graph.

Definition 4. First-order proximity. The first-order proximity
captures the local pairwise similarity between two direct
neighbor nodes. If there is a link between two vertices, these
two nodes are similar, otherwise, they are dissimilar. Formally,
the first-order proximity of two nodes vm and vn is measured by
Sm,n. If the node pair

(
vm, vn

) ∈ E, Sm,n > 0; if
(
vm, vn

)
/∈ E, Sm,n = 0

[56, 58].

Definition 5. High-order proximity. The high-order proximity
captured the k-hops (k ≥ 2) neighborships between nodes. And
the second-order proximity is a special case of high-order prox-
imity (k = 2), which is determined by the number of neighbor
nodes connected by intermediate nodes. The high-order proxim-
ity of two nodes vm and vn is measured by the k-hops transition
probability from vm to vn, that is Sm,n = Ê+ Ê2 + Ê3 +· · ·+ Êk, where
Ê denotes the first-hop transition probability. The high-order
proximity captured the global proximity [65].

Definition 6. Semantic proximity. The semantic proximity of two
node vm and vn is obtained by the similarity of their attribute
feature vector am and an [66, 67]. And commonly used simi-
larity measures include Cosine similarity, Pearson correlation
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coefficient, Jaccard similarity coefficient and Gaussian interac-
tion profile (GIP) kernel similarity.

Homogeneous graph embedding

The first category of graph embeddings is homogeneous graph
embedding, which is also known as network embedding or
nonattributed graph embedding. And it is the plainest graph rep-
resentation learning method, which was first developed. Homo-
geneous graph embedding methods generally aim to preserve
graph topology when learning low-dimensional representations
of vertices. Based on their technical details, we categorize these
homogeneous graph embedding methods into three major cate-
gories: matrix factorization-based methods, random walk-based
methods and deep learning-based methods.

Matrix factorization-based methods

Matrix factorization aims to factorize a matrix into low-
dimensional matrix while still maintaining the latent manifold
structure and topological properties in the original matrix. The
pioneer efforts, such as IsoMap [68], Locally Linear Embedding
[69], Laplacian Eigenmaps [70] and graph factorization [71],
represent the relationships between nodes as graph adjacency
matrix, Laplacian matrix or similarity matrix, and then adopt
matrix factorization to obtain the embeddings. The difference
between these methods is that they are based on different first-
order matrices that capture the structure of graph, and they
usually obtain a shallow embedding of nodes.

More recently, matrix factorization-based graph embedding
methods that can preserve high-order proximity also have been
developed. For example, the GraRep [65] and HOPE [72] con-
sider the high-order proximity by factorizing k-hop transition
probability matrices and similarity matrix (measured by Kate
index, Rooted Page Rank, Common Neighbors and Adamic–Adar
score), respectively. Although its effectiveness has been proven,
scalability is still a key bottleneck for matrix factorization-based
methods because of the huge memory overhead and extremely
high computational cost.

Random walk-based methods

Inspired by word2vec [73], researchers extended the embedding
method in natural language processing from word sequences
to graph node sequences, i.e. paths. Random walk is applied
to generate node sequences in graph to capture structural rela-
tionships of nodes. Specifically, for a given graph and a starting
node, Random walk randomly selects its neighbor node and then
moves to this node. By repeating this process, a graph is trans-
formed into node sequences. Then, probability model like skip-
gram model can be employed to learn the node embedding based
on the generated node sequences, which preserve structural
proximity of the graph. The initial work of this category is Deep-
walk [74]. Similarly, node2vec [75] improves a flexible biased
random walk, smoothly combining breadth-first sampling and
depth-first sampling to obtain node sequences. Therefore, both
local and global proximities are preserved. Furthermore, two
variants Walklets [76] and stuc2vec [77] are proposed by biasing
and modifying the random walks. Walklets modified the ran-
dom walk strategy by skipping over some nodes. Rather than
neighborhood node information, struc2vec define random walks
based on structural similarity of nodes.

Deep learning-based methods

The impressive representation learning capabilities of deep
learning techniques are also demonstrated in the field of graph

embedding learning. The widely used embedding method LINE
[58], which can be regard as using a multilayer perceptron
to approximate the first-order proximity and second-order
proximity to learn node embedding. Based on deep autoencoder
architecture, SDNE [78] preserves both global and local graph
structure by modeling both first-order proximity (measured
based on Laplacian Eigenmaps) and second-order proximity
of nodes. To capture higher order proximity, DNGR [79] learns
deep low-dimensional node embedding by applying stacking
denoising autoencoders on the positive pointwise mutual
information matrix. Deep learning-based embedding methods
can learn nonlinearity in graphs, but their calculation cost is
generally high. And most importantly, these deep learning-
based methods are still very primitive. They can only generate
embeddings for nodes that have appeared in training phase.
To alleviate these address, more sophisticated GNNs have been
rapidly developed recently. And we will discuss them specifically
in the ‘Graph neural networks’ section.

Heterogeneous graph embedding

Heterogeneous graphs are more naturally related to real-world
scenarios with multitype of objects and associations, whereas
the homogeneous graph embedding methods mentioned above
cannot be directly work on them. Heterogeneous graph embed-
ding emerged few years ago and rapidly become a booming
research domain. Existing heterogeneous graph embedding
methods can also be roughly divided into three types: meta-
path-based, decomposition-based and deep learning-based
methods.

Due to the heterogeneity of structure and contents, the ran-
dom walk is difficult to find an effective walking strategy to
capture the rich semantics contained in the entire graph. The
meta-path restricts the direction of random walk to reduce
the complexity of traversal in the heterogeneous graph. Meta-
path2vec [61] formalizes the meta-path-guided random walk
to generate heterogeneous neighborhoods of a node and then
leverages a heterogeneous skip-gram model to conduct node
embeddings. As an extension, HIN2vec [62] also uses meta-path-
based random walk and proposed a neural network to capture
the graph heterogeneity. The differences are that it uses the gen-
erated meta-paths as objects to directly learn the representation
of both meta-paths and nodes. Later on, GATNE [41] extended
this strategy to multiplex heterogeneous networks. However, the
appropriate settings of number of walks and walk length are
crucial for this type of model. Otherwise, these methods cannot
completely preserve the whole structure of a graph.

To ease the complexity of heterogeneous graph, another
strategy for solving heterogeneous graph embedding is like
divide and conquer, which divides an input heterogeneous
graph into several small homogeneous or bipartite graphs.
For instance, PTE [80] decomposes a heterogeneous graph
into multiple bipartite graphs according to edge types, and
then utilizes LINE on each bipartite graph to learn the shared
node embeddings. HEER [81] extended the PTE by considering
the typed closeness of node pair atop their edge embedding.
According to defined meta-paths, the HERec [82] also projects
a heterogeneous graph into different dimensions, and then
employed the metapath2vec within each subgraph to learn
vertex embeddings.

Despite the importance of this problem, few efforts have
been made on heterogeneous graph embedding based on deep
learning techniques. For example, HNE [83] learns representation
for topological information of graphs and contents through a
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deep neural network and a convolutional neural network, and
then jointly projects them into a common embedding space. And
the BL-MNE [84] model introduced a deep aligned autoencoder-
based embedding method for heterogeneous graph. Recently,
diverse GNNs have also been applied to heterogeneous graph
embedding. To better introduce them below, they are grouped
together and sorted out.

Attributed graph embedding

In addition to graph topology information used by most of graph
embedding algorithms, some works have demonstrated that the
abundant node attributes should also be fully exploited to assist
graph representation learning. Attribute graph embedding can
also have an intersection with the homogeneous or heteroge-
neous graph embedding, for example attributed homogenous
graph embedding or attributed heterogeneous graph embed-
ding [41]. The TADW [67] first adopted an inductive matrix
factorization to fuse node textual attributes and graph structure.
LANE [85] smoothly applies graph Laplacian technique combined
with label information to jointly learn embedding from node
attributes and topological structure. ASNE [86] develops a social
graphs embedding framework by integrating both node proxim-
ity and structural proximity. DANE [87] captures the high nonlin-
earity of various topological structure and node attributes prox-
imities. Liu et al. proposes a unified attributed heterogeneous
graph embedding model AHNG [88] by fusing graph structure,
semantic information and attributes with a Gaussian distribu-
tion. ANRL [89] designed a neighbor enhancement autoencoder
model to merge node attributes affinity and structural proximity
into low-dimensional embedding spaces.

GNNs

Deep learning has gained substantial progress in various fields.
However, original deep learning methods are designed for
Euclidean data, such as texts, sequences, images. To apply
deep learning on non-Euclidean graphs, GNNs have recently
been rapidly developed and widely applied. In addition to
learning graph embedding, GNNs can usually capture both
graph structural information and node properties through a
variety of local message aggregation and propagation steps
and can directly address graph-related tasks in an end-to-end
manner. Suggested by previous work [42, 43], in this section,
we summarize the latest GNNs into four categories based on
model architectures and training strategies: GRNs, GCNs, GAEs
and GGANs. And some variants can combine and overlap these
architectures based on different training strategies, such as
reinforcement learning and contrastive learning.

GRNs

Graph recurrent neural networks are the pioneer works of GNNs,
which encode high-dimensional node representations by apply-
ing the same parameters recurrently over nodes in a graph.
Based on an information diffusion mechanism, Gori et al. pre-
sented the GNN [90, 91], which modified the original recurrent
neural network model to process graph data, where node aggre-
gates their neighbors information until a stable equilibrium
is reached. As a notable improvement, Li et al. developed the
gated GNNs [92] by employing a gated recurrent unit [93] as
a mapping function with shared parameters and adopted the
back-propagation through time to train it. Stochastic Steady-
state Embedding [94] is also presented to improve the scalability
of GNN model, which updates hidden states of node recurrently
and is more effective for large-scale graphs.

GCNs

GCNs extend the convolution operation from structured data
such as images to graph data. The main idea is to learn a map-
ping function f (·) to produce a node’s embedding by aggregating
its own feature and its neighbor’s features. Graph convolutions
can be divided into spectral and spatial method. Kipf et al. intro-
duce the first GCN [95], which applied a renormalization trick
to address the gradient exploding or vanishing problem. Then,
Zhuang et al. present the dual GNN [96], which jointly consider
the local and global consistency on graphs with two convolu-
tional layers, and the adjacency matrix is replaced by positive
pointwise mutual information matrix. However, these methods
require storing the entire adjacency or Laplacian matrix in mem-
ory, which will result in expensive calculations. They are also a
lot of variants of GCNs (for instance, the AGCN [97], LGCN [98],
FastGCN [99]). An important improvement of GCN is GraphSAGE
[100]. It provides a general inductive learning framework that
can generate embedding for unseen nodes by sampling and
aggregating local neighbor’s features. Attention mechanisms
[101] also can be employed to improve GCNs, graph attention
network (GAT) [102] introduces self-attention into propagation
step, and multihead attention is further considered to enhance
the capacity and stability of model. Gated attention networks
[103] improves the multihead attention mechanism by learn-
ing different weights for different attention heads. HAN [55]
learns node embedding for heterogeneous graph by perform-
ing a hierarchical attention on both node level and seman-
tic level, while the node-level attention is used to learn dif-
ferent weights to aggregating meta-path-based neighbors, and
the semantic-level attention lean the importance of different
meta-paths.

GAEs

The encoder–decoder architectures have also been widely
applied in both graph embedding and graph generation tasks.
GAE [104] first extends this architecture into graph embedding,
which employs GCNs as the encoder to encode the structural and
node feature information and uses the decoder to reconstruct
the adjacency matrix. And they also proposed a variational graph
autoencoder (VGAE) by training the GAE in a variational manner
[104]. By adopting GCN as the encoder and using a simple bilinear
function as the decoder, GC-MC is proposed and demonstrated
on recommendation tasks [105]. Furthermore, iterative gen-
erative modeling of graphs (Graphite) [106] extends them by
designing a more complicated decoder, which iterates between
paired graph convolutions and decoding functions. In addition
to encode nodes into low-dimensional embedding, Graph2Gauss
(G2G) [107] captures the uncertainties of nodes by learning each
node’s Gaussian distribution. Inspired by SDNE and G2G, DVNE
[108] also represents each node as Gaussian distribution using
a variational autoencoder (VAE), and the Wasserstein distance
is adopted to remain the transitivity of the node similarities.
Assuming a Gaussian prior distribution, GraphVAE [109] uses a
GCN as the encoder and a simple multilayer perception as the
decoder for graph generation tasks. Based on GAEs, contrastive
learning is another way for unsupervised graph embedding,
which is first introduced in Deep Graph Infomax (DGI) [110]. DGI
captures graph global topological information by maximizing
mutual information between node embedding and graph
representation. Similarly, InfoGraph [111] learns graph represen-
tations by maximizing mutual information between graph-level
representation and subgraph-level representations of different
scales.
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GGANs

The generative adversarial networks (GANs) [112] can also be
extended to graph domains. The main idea behind GAN is adver-
sarial training. The generator aims to generate fake samples to
fool the discriminator, whereas the discriminator is designed
to correctly discriminate between real and generated samples.
In the end, both models will benefit from the joint training
of this minimax game. Adversarially regularized graph autoen-
coder [113] adopts the adversarial training principle to regu-
larize GCN-based GAE for learning robust node embeddings.
Network representations with adversarially regularized autoen-
coders (NetRA) [114] presents a encoder–decoder framework to
learn network representations, whereas the input of NetRA is
random walks rooted each node, and the learned embedding is
regularized within a prior distribution through adversarial train-
ing. GraphGAN [115] enhances the inference abilities of node
graph embedding by using a GAN. By employing the adversarial
training strategy, adversarial network embedding [116] enhances
existing graph embedding methods, such as Deepwalk, by taking
a prior distribution as real data and treating the embedding
vectors as the generated samples, where a GAN is adopted as
an additional regularization term. Meanwhile, some brilliant
works demonstrated the adversarial training can also improve
the generalization capability of GNNs. To address the molecular
graph generation problem, molecular GAN [117] combines GCNs,
GANs and reinforcement learning scheme to generate molecular
graphs with desired properties. NetGAN [118] treats the graph
generation task as to learn the biased random walk’s distribu-
tion. The generator produces conceivable random walks using
an LSTM network, and the discriminator try to determine the
fake ones.

In addition, some recent studies on pretraining and accelera-
tion of GNN and very deep GNN models are worth noting, e.g.
GPT-GNN [119], Graph-Bert [120], RevGNN-Deep (deepest GNN
with >1000 layers) [121] and Graph-MLP [122], a new framework
for graph learning without message passing.

Open resources

To facilitate researchers to implement and develop graph rep-
resentation learning algorithms, we first provide graph repre-
sentation learning and graph computing platforms and libraries
in Table 1. These platforms and libraries assist researchers to
quickly benchmark graph representation learning algorithms
and develop their own models. And we also summarize the
implementations of graph embedding and GNNs reviewed in the
paper in Table 2, most of which are official implementations.

Applications in bioinformatics
From molecular level to healthcare level, graph is widely applied
to represent and model multimodal biological and medical sys-
tems. An illustration of biomedical graphs at different scales
is shown in Figure 4. Although several enlightened works have
applied graph representation learning techniques in biomedical
tasks, e.g. molecular generation, drug repurposing, interaction
predication, the use of graph representation learning in biomed-
ical tasks has not been thoroughly explored. In this section, we
introduce a series of representative applications of graph rep-
resentation learning in molecular graph analysis, multi-omics
graph analysis, pharmaceutical and healthcare graph analysis.

Graph representation learning for molecules

The structure of molecules such as proteins and chemical
compounds can be regarded as molecular graphs composed

of atoms and bonds. The nodes are atoms or amino acids, and
the edges are chemical bonds or peptide bonds. Graph represen-
tation learning for molecules aims to generate novel molecules
efficiently and automatically with optimized properties.

Molecule representation learning

Learning efficient representations of molecules plays a funda-
mental role in many downstream tasks, such as protein function
prediction, molecule property prediction and drug discovery. In
addition to string-based representations, graph representation
learning provides more flexible and better representations of
molecules that are optimal for special tasks. For example, Duve-
naud et al. [123] proposed an end-to-end framework to learn a
differentiable molecular fingerprints by using GNNs. Based on
geometric deep learning, Gainza et al. [124] presented molecular
surface interaction fingerprinting to capture fingerprints that
are optimized for specific biomolecular interactions under the
hypothesis that proteins involved in similar interactions may
share common fingerprints. Recently, Li et al. [125] proposed the
3DMol-Net to learn molecule representation using adaptive GCN
and considered both the topology and rotation invariance of the
3D molecular structure.

Molecule properties prediction

Accurate prediction of molecular properties is crucial for com-
pound design and drug discovery. Gilmer et al. [126] proposed a
unified framework message passing neural networks (MPNNs)
and demonstrated superior performance on molecular proper-
ties prediction benchmark. To remain the spatial connection
information on molecules, a convolution spatial graph embed-
ding layer (C-SGEL) is introduced by Wang et al. [127] to predict
molecular property utilizing molecular graph data. Multilayer C-
SGEL is integrated to form a convolution spatial graph embed-
ding model and molecular fingerprints are fused to predict
molecular properties. And Wieder et al. [128] provided a com-
pact review of GNNs with different architectures for predicting
molecular properties.

Molecule graph generation

To design or generate molecules with desired properties is a
challenge problem with applications in drug discovery and
development. Existing graph generative models aim to model
the joint distribution directly. Jin et al. [129] presented a VAEs-
based method to generate a junction tree-structured chemical
substructure and then combined them into a graph using a graph
massage passing network. Shi et al. [130] proposed a flow-based
autoregressive model for generating molecular graph. They
formulate graph generation as a sequential decision process,
generate a new atom in each step, and then determine the
bonds between generated atoms and existing atoms. Zang et al.
[131] proposed an invertible flow-based generative model for
molecular graph generation and achieved the state of the art
performance in molecular graph generation and reconstruction,
property optimization, etc. Recently, Mahmood et al. [132]
developed a masked graph model for molecule generation,
which learns the conditional distribution of masked graph
components, given the rest of graph, using simple MPNN GNNs.

Graph representation learning for multi-omics

The integrated analysis of multi-omics data has become a new
direction for exploring life mechanisms. Graph representation
learning is a valuable tool to accelerate relational multi-omics
data analysis, including genomics, proteomics and transcrip-
tomics.
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Table 1. Platforms and libraries for graph computing and graph representation learning

Package URL Framework Contributor Models
included/Overview

OpenNE https://github.com/thu
nlp/OpenNE/tree/pytorch

TensorFlow/PyTorch Tsinghua University LLE, GF, GraRep, Deepwalk,
node2vec, LINE, TADW,
SDNE, HOPE, GCN, GAE,
VGAE

CogDL [161] https://github.com/THU
DM/cogdl

PyTorch/TensorFlow Tsinghua University Extensive task-oriented
graph embedding
methods and graph
neural networks

PyTorch Geometric (PyG)
[162]

https://github.com/rusty1
s/pytorch_geometric

PyTorch Dortmund University of
Technology

Geometric deep learning
extension library for
PyTorch. A variety of
methods for deep learning
on graphs from published
papers

Deep Graph Library (DGL)
[163]

https://github.com/dmlc/
dgl

PyTorch/MXNet/TensorFlow New York University and
Amazon Web Services
(AWS)

Easy-to-use, high
performance and scalable
Python package for deep
learning on graphs

Dive into Graphs (DIG)
[164]

https://github.com/divela
b/DIG

PyTorch/ PyTorch
Geometric/RDKit

Texas A&M University Unified testbed for higher
level, research-oriented
graph deep learning tasks,
such as graph generation,
self-supervised learning,
explainability and 3D
graphs

Graphvite [165] https://github.com/dee
pgraphlearning/graphvite

Linux/Python Mila-Quebec AI Institute General graph embedding
engine, dedicated to
high-speed and
large-scale embedding
learning in various
applications.

Graph-Learn [166] https://github.com/aliba
ba/graph-learn

Python Alibaba Industrial graph neural
network framework

Paddle Graph Learning
(PGL)

https://github.com/Paddle
Paddle/PGL

PaddlePaddle/Cython Baidu Efficient and flexible
graph learning framework
based on PaddlePaddle

Genomics graph analysis

Li et al. [133] proposed a single-cell representation learning
method based on LINE to learn meaningful representations for
single-cell high-throughput RNA sequencing (scRNA-Seq) data
by considering gene–gene associations from gene expression
data and pathway priors. Li et al. merged a variety of genomic
and phenotype graphs into a heterogenous multigraph and
developed a random walk-based method for disease gene
identification [134]. GCN-MF [135] combined the GCN and matrix
factorization to discover gene–disease associations. By using a
subset of gene expression matrices, Yang et al. [136] proposed a
unified model of graph variational generative adversarial nets
(CONDGEN) integrated GCN, VAE and GAN framework for graph
generation. Rhee et al. [137] combined the gene expression data
into PPI graph and uses it as the GCN’s input, and they defined a
relation network to given priority to the edges weighted by graph
convolutional layer, representing the associated gene sets.

Proteomics graph analysis

Protein is the direct bearer of life activities, and proteomics plays
an important role in elucidating the molecular mechanisms of
life activities and complex diseases. You et al. [138] presented to

use IsoMap-based embedding method to encode protein nodes
in PPI network. And they measure the similarity between pro-
teins in the embedding space to predict PPIs. An attributed
network embedding method, Graph2Go [139] fused the attribute
feature and graph embedding of protein and adopted VGAE and
GCN to infer protein functions and GO. Yao et al. [140] used
stacked GCN to construct more reliable PPI network by removing
less credible PPIs for protein complex detection.

Transcriptomics graph analysis

The transcriptome of an organism contains a large amount of
noncoding RNAs, including miRNAs, lncRNAs, circRNAs, etc.,
which play an important role in gene expression, cell devel-
opment and diverse life activities, and are closely related to
complex human diseases. MMGCN [141] developed a multiview
multichannel attention-based GCN to predict miRNA–disease
associations. Sheng et al. [142] constructed a triple-layer het-
erogeneous graph to integrated similarities and associations
between miRNAs, lncRNAs and diseases. They also proposed
heterogeneous attributed embedding methods VADLP combined
random walk, convolutional autoencoder and VAE using atten-
tion mechanism to learn node feature for predicting lncRNA–
disease associations. Wang et al. [17] proposed a FastGCN-based
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Table 2. A summary of open-source implementations of graph representation learning algorithms

Category Algorithm Source code Description Last update References

Homogeneous graph
embedding

GraRep https://github.com/ShelsonCao/GraRe
p

SVD; proximity
matrix

2017 [65]

HOPE http://git.thumedia.org/embedding/
HOPE

Matrix factorization 2016 [72]

Deepwalk https://github.com/phanein/deepwa
lk

Random walk;
Skip-gram

2020 [74]

node2vec https://github.com/aditya-grover/no
de2vec

Biased Random walk 2016 [75]

Walklets https://github.com/benedekrozembe
rczki/walklets

Python/C++ 2019 [76]

struc2vec https://github.com/leoribeiro/struc2
vec

Python; structural
identify

2018 [77]

LINE https://github.com/tangjianpku/LINE C++/python 2018 [58]
SDNE https://github.com/suanrong/SDNE Autoencoder; Python 2018 [78]
DNGR https://github.com/ShelsonCao/DNGR MATLAB/Keras 2016 [79]

Heterogeneous graph
embedding

metapath2vec https://ericdongyx.github.io/metapa
th2vec/m2v.html

Meta-path 2017 [61]

HIN2vec https://github.com/csiesheep/hin2vec Meta-path 2019 [62]
GATNE https://github.com/THUDM/GATNE TensorFlow/PyTorch 2021 [41]
PTE https://github.com/mnqu/PTE C++ 2017 [80]
HEER https://github.com/GentleZhu/HEER PyTorch 2019 [81]
HERec https://github.com/librahu/HERec Factorization 2019 [82]

Attributed graph
embedding

TADW https://github.com/thunlp/tadw Text information 2015 [67]

LANE https://github.com/xhuang31/LANE MATLAB 2018 [85]
ASNE https://github.com/lizi-git/ASNE TensorFlow 2018 [86]
DANE https://github.com/gaoghc/DANE Python 2018 [87]
ANRL https://github.com/cszhangzhen/A

NRL
TensorFlow 2020 [89]

Graph recurrent
networks

GGNN https://github.com/yujiali/ggnn Lua; Torch 2016 [92]

SSE https://github.com/Hanjun-Dai/stea
dy_state_embedding

C++ 2018 [94]

Graph convolutional
networks

GCN https://github.com/tkipf/gcn TensorFlow 2020 [95]

DGCN https://github.com/ZhuangCY/DGCN Theano;
semi-supervised

2018 [96]

AGCN https://github.com/yimutianyang/A
GCN

TensorFlow; attribute
inference

2020 [97]

LGCN https://github.com/divelab/lgcn Large-scale; Python 2020 [98]
FastGCN https://github.com/matenure/Fa

stGCN
TensorFlow 2019 [99]

GraphSAGE https://github.com/williamleif/Gra
phSAGE

Inductive learning;
TensorFlow/PyTorch

2018 [100]

GAT https://github.com/PetarV-/GAT Attention
mechanism

2021 [102]

GaAN https://github.com/jennyzhang0215/
GaAN

MXNet; GRU 2019 [103]

HAN https://github.com/Jhy1993/HAN Heterogeneous;
GAT-based

2020 [55]

Graph autoencoders VGAE https://github.com/tkipf/gae TensorFlow 2020 [104]
GC-MC https://github.com/riannevdberg/gc-

mc
Tensorflow; matrix
completion

2018 [105]

Graphite https://github.com/ermongroup/gra
phite

TensorFlow;
generative

2019 [106]

Graph2Gauss https://github.com/abojchevski/gra
ph2gauss

Inductive learning 2019 [107]

(Continued)

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/1/bbab340/6361044 by N

TU
 Library user on 20 January 2022

https://github.com/ShelsonCao/GraRep
https://github.com/ShelsonCao/GraRep
http://git.thumedia.org/embedding/HOPE
http://git.thumedia.org/embedding/HOPE
https://github.com/phanein/deepwalk
https://github.com/phanein/deepwalk
https://github.com/aditya-grover/node2vec
https://github.com/aditya-grover/node2vec
https://github.com/benedekrozemberczki/walklets
https://github.com/benedekrozemberczki/walklets
https://github.com/leoribeiro/struc2vec
https://github.com/leoribeiro/struc2vec
https://github.com/tangjianpku/LINE
https://github.com/suanrong/SDNE
https://github.com/ShelsonCao/DNGR
https://ericdongyx.github.io/metapath2vec/m2v.html
https://ericdongyx.github.io/metapath2vec/m2v.html
https://github.com/csiesheep/hin2vec
https://github.com/THUDM/GATNE
https://github.com/mnqu/PTE
https://github.com/GentleZhu/HEER
https://github.com/librahu/HERec
https://github.com/thunlp/tadw
https://github.com/xhuang31/LANE
https://github.com/lizi-git/ASNE
https://github.com/gaoghc/DANE
https://github.com/cszhangzhen/ANRL
https://github.com/cszhangzhen/ANRL
https://github.com/yujiali/ggnn
https://github.com/Hanjun-Dai/steady_state_embedding
https://github.com/Hanjun-Dai/steady_state_embedding
https://github.com/tkipf/gcn
https://github.com/ZhuangCY/DGCN
https://github.com/yimutianyang/AGCN
https://github.com/yimutianyang/AGCN
https://github.com/divelab/lgcn
https://github.com/matenure/FastGCN
https://github.com/matenure/FastGCN
https://github.com/williamleif/GraphSAGE
https://github.com/williamleif/GraphSAGE
https://github.com/PetarV-/GAT
https://github.com/jennyzhang0215/GaAN
https://github.com/jennyzhang0215/GaAN
https://github.com/Jhy1993/HAN
https://github.com/tkipf/gae
https://github.com/riannevdberg/gc-mc
https://github.com/riannevdberg/gc-mc
https://github.com/ermongroup/graphite
https://github.com/ermongroup/graphite
https://github.com/abojchevski/graph2gauss
https://github.com/abojchevski/graph2gauss


10 Yi et al.

Table 2. Continued

Category Algorithm Source code Description Last update References

GraphVAE https://github.com/snap-stanford/Gra
phRNN/tree/master/baselines/gra
phvae

PyTorch; unofficial
implementation

2018 [109]

DGI https://github.com/PetarV-/DGI contrastive learning;
PyTorch

2020 [110]

infoGraph https://github.com/fanyun-sun/Info
Graph

PyTorch 2021 [111]

Graph adversarial
networks

ARGA https://github.com/GRAND-Lab/ARGA TensorFlow 2018 [113]

NetRA https://github.com/chengw07/NetRA PyTorch 2019 [114]
GraphGAN https://github.com/hwwang55/Gra

phGAN
Adversarial training 2019 [115]

MolGAN https://github.com/nicola-decao/Mo
lGAN

Molecular generation 2020 [117]

NetGAN https://github.com/danielzuegner/ne
tgan

TensorFlow 2020 [118]

Figure 4. An overview of graphs in biomedicine at different scales. From molecules to healthcare systems, graphs are ubiquitous in the biomedical field with

multiple types of intraclass and interclass relationships. The structures and functions of protein and pharmaceutical compounds can be regarded as molecular graphs.

Comprehensive associations between proteins and noncoding transcripts (including miRNAs, lncRNAs, circRNAs, etc.) modeled the multi-omics graphs. Drugs, protein

targets, ncRNAs, microbes, disease indications and their interactions constituted pharmaceutical graphs. And electronic medical records, personalized omics and other

data can be further integrated into the healthcare systems-level knowledge graphs. These interconnected multimodal graphs can be systematically integrated and fully

understood based on a holistic perspective.

method GCNCDA to predict circRNA–disease associations by
merging disease semantic similarity information and GIP of
circRNA. In our previous work [143], we proposed a molecular
association network that systematically integrated comprehen-
sive associations among miRNAs, lncRNAs, circRNAs, mRNAs,
proteins, microbes, drugs and diseases, and proposed SDNE- and
node2vec-based methods to learn node embedding. The node
embedding and node attributes are fused to predict intermolec-
ular relations such as lncRNA–protein interaction and miRNA–
disease association.

Graph representation learning for pharmaceutical

Modern pharmaceuticals have huge investments, long cycles
and high risks of failure. Graph representation learning can

accelerate the drug discovery and drug repositioning by inte-
grating compounds chemical information, target interactions
and clinical data such as side-effects and drug combination
information.

Drug–target interaction prediction

Zong et al. [20] applied Deepwalk on drug–target–disease tripar-
tite graph to predict drug–target interactions. Zhao et al. [144]
incorporated the associations between drug–target interactions
and drug–protein pairs and proposed a GCN-based method to
encode the feature of drug–protein pairs for inferring drug–
target interactions. Based on heterogeneous graph representa-
tion learning, Peng et al. [145] proposed an end-to-end learning
method to predict drug–target interactions based on GCN. And
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they considered the association between drug, protein, disease
and side effect. Thafar et al. [146] use node2vec to learn rep-
resentation for drugs and targets and calculated similarities
between drug–drug, drug–target and target–target. Nguyen et al.
[147] introduced GraphDTA that encode the drugs as graphs and
applied the GNN to predict the drug–target binding affinity.

Drug–disease association prediction

Accurate prediction of drug–disease associations can find new
indications for existing drugs or promote new drug for diseases,
which so called drug repositioning. Zhang et al. [148] proposed
a similarity constrained graph factorization-based approach to
predict drug–disease associations by using known drug–disease
associations, drug features and disease semantic information.
By using graph embedding methods such as Deepwalk, LINE,
SDNE and HOPE, Guo et al. [149] represented the Medical Sub-
ject Headings as drug–disease graph to learn the embedding of
drugs and diseases. Yu et al. [150] constructed a heterogeneous
graph consists of known drug–disease associations, drug–drug
similarities and disease–disease similarities, and proposed layer
attention GCN to learn embedding of drugs and diseases for
predicting drug–disease associations.

Drug–drug interaction prediction

Drug–drug interactions can affect the effects of different drug
combinations and even lead to serious adverse effects. Effec-
tive drug–drug interaction prediction is critical for patients and
reduction of drug development cost. Based on multiple data
sources, Karim et al. [151] combined various knowledge graph
embedding approaches with convolutional LSTM and classic
machine learning classifiers for drug–drug interaction predic-
tion. They formed a knowledge graph consists of drug features
from DrugBank, PharmGKB and KEGG. Park et al. [152] developed
an attention-based GCNs for extracting drug–drug interaction
from the biomedical literature. To enhance the scalability and
robustness of existing drug–drug interaction prediction meth-
ods, Chen et al. [153] explored a graph representation learning-
based method for more accurate drug–drug interaction pre-
diction. Celebi et al. [154] compared and evaluated different
knowledge graph embedding methods for predicting drug–drug
interaction and tested the drug–drug interaction prediction task
under disjoint cross-validation.

Graph representation learning for healthcare

Recent graph representation learning-based computational
methods were also used to integrate and exploit multimodal
healthcare system data, such as biomedical knowledge graphs,
electronic health records (EHRs), electronic medical records
(EMRs) and biomedical images, to better enable personalized
medicine. EHRs or EMRs are usually indicated by International
Classification of Disease codes with hierarchical structure,
which can naturally represent as comprehensive medical
knowledge graphs. And the disease symptoms, molecules
information, drug interactions and side-effects information can
also be involved.

To promote clinical decision support systems in medicine
and healthcare, Rotmensch et al. [27] developed an automated
approach for mining and constructing high-quality medical
knowledge graph connecting diseases and symptoms from
EMRs. Ruiz et al. [155] proposed a powerful method to explain
disease treatment, they integrated multiple disease-perturbed
proteins, drug targets and biological functions into a multiscale

interactome and developed a random walk-based method to
capture how drugs effects through PPIs and biological func-
tions. The multiscale interactome predicts disease treatment-
related drug–disease associations, proteins and biological
functions, and predicts genes that affect treatment effects and
adverse reactions. Based on brain magnetic resonance imaging
images, Song et al. [156] proposed a GCN-based method to
classify Alzheimer’s disease. Wu et al. [157] proposed ME2Vec
to learn continuous low-dimensional embeddings for general
entities in EHRs, and the medical services, doctors and patients
are embedded by word2vec, GAT and LINE, respectively. To
avoid the limitation of manually labeled EMR data, Sun et al.
[158] introduced a GNN-based model for disease prediction by
using external knowledge bases to augment the insufficient
EMR data to learn effective representation for diseases,
symptoms and patients based on patients record graph and
medical concept graphs. And they further explored GAT and
graph isomorphic network [159] aggregators for comparison.
Furthermore, Choi et al. [160] proposed a graph convolu-
tional transformer to learn hidden structure of EHR rather
than treating EHR data as a flat-structured bag-of-features.

Challenges and opportunities
Although graph representation learning has demonstrated
promising results in diverse biomedical tasks, multi-omics
data integration will promote biological and medical research.
However, current graph representation learning on biomedical
graphs is not good enough to provide fabulous solutions for any
biological and medical graph in any condition. There are some
challenges and opportunities for future directions.

Data quality

Compared with clean and well-organized data in other fields,
biomedical graphs are usually sparse, noisy and incomplete.
At the same time, collecting original and reliable data usually
requires time consuming and laborious wet experiments, and
the data has the problem of high false negative and false positive
rates. Meanwhile, biomedical data is scattered and accumulated
quickly, lacking a good structure. In view of the sparse and
incomplete of biomedical data, it is a challenging problem to bet-
ter integrate multisource high-quality data and develop targeted
graph representation learning approaches.

Complex graph structure

Graphs structures are flexible and complicated in biomedical
and healthcare applications. Various efforts are made to handle
homogeneous graph, and several works considered complex
graph structures, for example heterogeneous graphs and spatial
and temporal dynamic graphs. In real-life biomedical scenarios,
the nodes and linkages may appear and disappear, and graphs
are dynamically changed time by time. Moreover, scRNA-seq
data and domain knowledge-associated data, which also offers
promising opportunities but with complex graph structure. How
to deal with complex biomedical graphs for downstream appli-
cations is a promising issue.

Interpretability and robustness

The risk-sensitive scenarios of biomedicine put forward
higher requirements for the interpretability and robustness
of graph representation learning methods, whereas neural
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network-based GNNs are still black-boxes and lack of expla-
nations. Therefore, the ability to interpret the results of deep
graph learning is crucial in decision-making applications. Also,
as a lot of models based on deep learning, like the domains of
computer vision and natural language processing, these graph
representation learning methods are vulnerable to adversarial
attacks. More robust and interpretable graph representation
learning methods are important to apply graph representation
learning on biomedical problems with trusted explanations and
credible defenses.

Conclusion
Graph representation learning bridges comprehensive graph-
structured biomedical data and advanced machine learning
methods, which promotes biomedical research from molecules
to healthcare systems. In this work, we conducted a com-
prehensive and structured survey of graph representation
learning and its applications in bioinformatics. Both graph
embedding methods, including homogeneous graph embedding,
heterogeneous graph embedding, attribute network embedding,
and emerging GNNs such as GRNs, GCNs, GAEs and GGANs
are summarized. And we analyzed representative applications
of graph representation learning for molecules, genomics,
pharmaceutical and healthcare. In addition, open resource
platforms and libraries for graph representation learning are
also provided. It is anticipated that this work could promote
graph representation learning and biomedical studies.

Key Points
• From molecules to healthcare systems, graphs are

ubiquitous to effectively integrate and model multi-
source multimodal biomedical relational data, which
is rapidly generated and accumulated by biomedical
research.

• Graph representation learning bridges non-Euclidean
biomedical graphs and machine learning techniques
to promotes drug discovery, molecular mechanisms
exploration, complex diseases diagnosis and treat-
ment, and healthcare.

• This article provides a clear and comprehensive sum-
mary of graph representation learning and its brilliant
applications in the biomedicine field, which will ben-
efit interdisciplinary researchers as useful guidance.

• Challenges and opportunities are discussed for future
research, and graph computing platforms and imple-
mentations are provided to accelerate benchmark
research and development of methods suitable for
bioinformatics problems.
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