@

Academic
Journals Inc.

j '
1l

Research Journal of
Information

Technology

ISSN 1815-7432

www.academicjournals.com

Research Journal of Information Technology 1 (1): 30-40, 2009
ISSN 1815-7432
© 2009 Academic Journals Inc.

Improving the Performance of the Authorization Process of a Credit Card
System Using Thread-Level Parallelism and Singleton Pattern

S.H.Ab. Hamid, M.H. Nizam Md. Nasir, W.Y. Ming and H. Hassan
Department of Software Engineering,
Faculty of Computer Science and Information Technology,
University of Malaya, 50603 Kuala Lumpur, Malaysia

Abstract: This study presents an architectural framework and prototype of a credit card
authorization system using multi-threading and shared memory pool techniques in order to
improve the response time during the authorization process. Through the multi-threading
technique, cach worker thread will be assigned several child threads to perform online fraud
validation concurrently, depending on the numbers of cryptographic elements presented in
the transaction message. Meanwhile, the worker thread itself performs the card restriction
validation based on the information stored in the card’s shared memory pool. This approach
was implemented to reduce the idle time while waiting for the slow cryptographic operation
in each input/output operation that is performed through an external device and to aceelerate
the authorzation process through a memory operation instead of accessing sirmilar
information from a database. The implementation of these techniques was then measured in
terms of response time. The results showed that the performance of the multi-threaded
authentication engine was almost double that of the single-threaded authentication engine and
the mumber of credit card authorizations that can be processed using the shared memory was
10% higher than the number of credit card authorizations that can be processed using a
database at a single point.

Key words: Performance, NET, single-threaded, singleton design pattern, multi-threaded
enging

INTRODUCTION

Credit card authorization is a process whereby the card issuer decides whether to approve or
decline requests to accept transactions performed by cardholders, which is based on a series of
validations of the card’s risk management profile to verify that the cardholder’s account is open, the
transaction amount is within the available credit limit and comes from the legitimate card and many
other related validation parameters. The validation of the card’s risk management profile can be
classified into two categories, namely card restriction validation and online fraud validation.

Card restriction validation includes the financial and non-financial verification related to the card
whereas online fraud validation involves cryptographic operation through a Host Security Module
(HSM) to verify the security aspect of the authorization in order to determine the legitimacy of the
card. An HSM is an external device connected to the authorization host that keeps the card issuer’s
secret information in tamper-resistant hardware, which is used to perform the verification of the credit
card transaction. Due to various validations during the authorization process for each credit card
transaction, it will take some time to complete a whole process. Moreover, a slow and expensive input

Corresponding Author: Mohd Hairul Nizam Md. Nasir, Department of Software Engineering,
Faculty of Computer Science and Information Technology, University of Malaya (UTM),
50603, Kuala Lumpur, Malaysia Tel: +603-79676435 Fax: +603-21784965

30

Res. J. Inform. Technol., 1 (1): 30-40, 2009

and output operation chring the card restriction and online fraud validation through the database and
HSM also causes some delays. Besides, validation in terms of the security aspect of the card itself also
takes some time to process due to the complexity of the algorithms involved. As a result, the
performance is affected whenever the number of authorization processes is increased. In this case, it
will cause some of the simultancous authorizations accepted at a single point in time not to be able to
respond within the allowed timeframe. These transactions failures are classified as timed-out in the
context of electronic financial services.

This research will look into the current issues relating to the credit card authorization process. It
concludes that a multi-threaded authorization system with a shared memory pool is needed in order
to improve the response time of the credit card authorization process and to overcome the slow
sequential authorization processing problem of a single-threaded model for the current credit card
authorization system. The prototype of the nmulti-threaded authorization system was developed using
the NET framework, then the performance of the multi-threading implementation was measured.

There are various methods proposed in order to improve the response ime of the authorization
process of a credit card transaction. These include the invention of a Host Security Module (HSM),
implementation of a distributed authorization system, utilization of a cardholder-initiated transactions
device and deployment of a digital network access system device.

An HSM is an external device which is used to generate and store long-term secrets securely for
use in cryptography and physically protect the access to and use of those secrets over time. According
to Chodowiee and Gaj (2003), these secrets include the private keys used in symmetric key protection
and public key cryptography. The HSM is implemented because the hardware implementation is the
only way that can achieve speeds beyond the reach of general-purpose microprocessors. Therefore,
the HSM 1s used as a cryptographic accelerator to hasten the intensity of the mathematical operation,
especially in public key encryption and provide better performance than a normal software-based
cryptographic system as discussed by Eslami ef al. (2006). The functionalities of the HSM include the
verification of an online Personal Identification Number (PIN) by comparing it with an encrypted PIN
block, the validation of credit card transactions by checking card security codes and performing the
host processing component of a Europay Master Card Visa (EMV) based transaction. In recent years,
the introduction of an HSM that supports an Ethernet device is gaiming in popularity because of its
higher speed of data transmission during cryptographic processing. The simulation result performed
by students from one of the Universities in Brazil proves that the IP performance version provides
a better performance than other protocol solutions as mentioned by Panato ef af. (2002). In short, the
HSM provides an industry-leading performance in which it significantly reduces the credit card
transaction processing time and lowers the cost per transaction. The only problem with the HSM is
that there is apparently no global standard in the low-level commumication data exchange protocol due
to the re-engineering cost and market dominancy.

A patented method of a distributed authorization system has been proposed in the last decade
to accelerate the authonzation process. This systemn utilizes a host computer communicating with a
network of remote electronic terminals from the host computer. It includes storing negative file data
in the electronic terminal containing information used to identify accounts for which requested
transactions are to be denied and storing authorization file data in order to determine the authorization
of a requested transaction. The completed transaction is stored in a terminal transaction cqueue file
residing in the terminal for subsequent transmission to the host computer and for use with a transaction
request which is subsequently entered at the terminal for the same account. However, with the
increasing mumber of terminals and credit cards, it will increase the network traffic and it is costly to
maintain this information at the network level. Moreover, the card issuer has less control over the
authonization profile. This would result in some information not being updated instantly in the
network and may cause bad credit accounts. Besides that, there is a higher potential risk of fraudulent
cases that would cause financial loss in the event of a lost card.

31

Res. J. Inform. Technol., 1 (1): 30-40, 2009

Then, the cardholder-initiated transaction device has been introduced. This approach allows end-
user cardholders, by means of their own card devices, to authenticate POS terminal devices in a way
substantially different from the existing EMV protocol. The EMYV protocol is often used for
authenticating user transmissions to Point-Of-Sales (POS) terminal devices. By contrast, the invention
performs authentication of the parties to a prospective transaction at the same time as it transfers the
message data necessary to carry out the authorization of the transaction through the POS terminal
device. If both of the authentications are successful, the exchanged authentication data and transactions
data sent between the devices would be used to complete the transaction. Through this techmque, the
authentication of the card and terminal would greatly reduce the time required to perform the
transaction. This approach claimed to reduce by four times the usual time to complete an electronic
transaction, which averages 15 to 30 sec.

The common emphases of the authomzation process of credit card transactions are on
performance and security. The performance aspect concerns the time to authorize and complete a sales
transaction whereas the security aspect concerns the fraud prevention and confidentiality of the
financial information. The three major factors affecting the efficiency of the authorization process are
the transaction volume, the automatic authorization procedure and the authorizers as discussed by
Leung and Lai (2001). With an increasing number of accounts and transaction volume, these two
aspects remain a major dilemma of the credit card authorization process. Current research in recent
years has focused on the security area of the authorization process of credit cards. This is because the
mumber of fraudulent cases is growing dramatically and it is becoming a serious problem faced by credit
card issuers. In 2004, credit card transactions had a total loss of 800 million dollars of fraud in the
United States, while in the United Kingdom, the loss due to credit card fraud amounted to 425 million
pounds, as discussed by Shen ef of. (2007). Fraud affects all sectors of the community, extending from
individuals who have responded to online offers of making quick money (Smmith, 2008).

Various fraud detection techniques have been proposed to combat fraudulent cases, such as using
smart cards and implementing a fraud detection system using data mining techniques including neural
networks, logistic regression and decision trees. However, increasing the security aspect will bring a
downside to performance when it is implemented using more advanced technology (Hwang and
Verbauwhede, 2004). This is the trade-off of the authorization process when it is implemented using
an advanced technique like smart cards due to the higher transmission of bytes to the server and a
longer processing time to perform verification. According to local news published in Motor Traders,
the Managing Director of ProJET Malaysia, Matthew Selbic, has mentioned that chip-based
transactions will take a second or two longer than the usual magnetic stripe transactions to complete
the verification after deployment of the new devices to accept chip-based transactions in petrol
stations. Besides that, the implementation of advanced risk analysis techniques using the computer
intellectual will also confribute to the processing time, which may result in performance degradation.
Apart from that, the size of the database to manage the authentication data is also increasing
enormously with the usage of more advanced technology such as smart cards. For example,
Juang et al. (2008) have proposed a robust and efficient user authentication and key agreement scheme
using smart cards. According to Bourlai ef af. (2005), the use of a fixed precision data type does not
affect system performance very much but can speed up the verification process. As a result, the
verification performance decreases monotonically and appears to saturate when the database size
increases similarly to that mentioned by Bourlai ef af. (2006).

According to Bank Negara Malaysia’s (BNM) Anmual Report (2004), the number of credit cards
in circulation in Malaysia reached a total of 6.6 million at the end of 2004, with total transactions
amounting to RM34.9 billion. Also, in recent years, there has been a dramatic growth in credit card
usage among college students. It can be seen that credit card usage is not only restricted to elite groups
but is spreading among the graduates.

32

Res. J. Inform. Technol., 1 (1): 30-40, 2009

The credit card authorization systems that most banks are using are more than 15 years old, hard-
coded, nigid and time-consuming to change. Furthermore, many of these systems are at capacity and
struggling to keep up with the large increase in card payment volume. Many systems lack embedded
business rules or workflow engines, resulting in, among other things, inefficient risk management
operations. As a consequence, some of the transactions do not have the chance to be processed using
the conventional architecture design during high simultaneous transaction flow.

According to Tim Kelly, director of TSY'S, the transaction delays in the COBOL-based programs
runming on the mainframe have affected their business tremendously when the transaction flow is high.
To cater for this scenario, some of the banks have begun to upgrade the existing card processor
applications to a new enhanced processing platform. For instance, one of the largest banks in Germany,
VOB-ZVD Bank, has appointed Atos Origin to implement its new authorization solution named
Worldline Pay. With the implementation of the new solution, VOB-ZVD Bank hopes to achieve a high
performance authorization platform that can reliably handle all payment transactions. The Managing
Director of the VOB-ZVD Bank, Gabriele Cremer-Wichelhaus, has stated that new requirements and
the constantly increasing number of transactions in card and Internet-based payments require
precocious system adaptations which would enable the bank to meet the demands of the market and
the clients and to handle the future number of transactions.

Many banks are using home-grown authorization of credit card systems that are more than 15
years old and in need of functional and technical upgrades. Other banks are using packaged applications
that still need upgrades as well. In either case, the card authorization systems that most banks have
in place are rigid, at capacity in terms of account and transaction volume and difficult to change in the
face of changing regulations and market conditions. Currently, there are a few big market players in
providing authorization system solutions to the credit card companies. Most of these authorization
systems are parameter-driven in order to give flexibility to the authonzation process and meet the
demand of the market. However, there is still room for improvement as mentioned in the latest
industry survey report on the payment solution to cater for the payment transaction volume.

An analysis of the current authorization systems solution in the market has been conducted and
the findings of this analysis show that the current credit card authorization system does not utilize the
multi-threading technique as part of its architecture design. Most of the systems are using Oracle as
their database management system and none of the current credit card authorization systems use the
shared memory pool for authorization purposes. Apart from that, advanced programming languages
such as NET, for example, are not the most commonly used in the current architecture of credit card
authorization systems.

In this case, performance still remains an issue that requires improvement with the increasing
number of transactions and the implementation of greater security features. Moreover, there are many
home-grown credit card authorization systems still using old technologies to perform authorization that
can not support high transaction flow. Therefore, multi-threading should be deployed as one of the
techmques to improve the response time of the credit card authorization process since modern
operating systems with advanced multi-core processors have good support of multi-threading
implementation.

MATERIALS AND METHODS

The prototype of the credit card authorization system was developed in Jamuary 2008 at the
Department of Software Engineering, Faculty of Computer Science and Information Technology,
University of Malaya, using NET programming language in order to measure the performance of the
authorization process. The functionalities of the prototype authorization credit card system are
categorized into two main broad components, namely the front engine component and the back office
component.

33

Res. J. Inform. Technol., 1 (1): 30-40, 2009

The front engine component is the authentication engine of the credit card authorization system.
This component consists of four modules, namely the listener module, worker thread module,
authorization module and shared memory module. The listener module contains functionalities that
include activating the listener service, activating the worker thread-pool, activating the child thread-
pool, activating the shared memory pool and accepting the socket connection. The worker thread
module contains filnctionalities that include handling the socket connection, parsing the authorization
message, displaying the authorization message, updating the authorization message, building the
authorization message, saving the authorization message, updating the card balance, saving the card
changes and closing the socket connection. The authorization module contains functionalities related
to card restriction validation and online fraud validation. Card restriction validation consists of checking
the card’s existence, checking the card status, checking the card activation status, checking the card
expiration date, checking the card usage and checking the card balance whereas online fraud validation
consists of checking the card security code, checking the card identification number, checking the
personal identification number and checking the chip application eryptogram. The functionalities of
online fraud validation are performed through child threads. The shared memory module contains
functionalities that include activating the synchronization service, searching the modified card
information and updating the card information.

On the other hand, the back office component stores the authentication data used in the
authorization of the credit card system. This component consists of user management and card
management. The functionalities related to the user management include displaying the user
information, saving the user information and validating the user information, whereas card management
consists of displaying the card information, displaying the card activity, displaying the card history,
saving the card information, updating the card information, searching the card information and saving
the card changes.

Architectural Design

As shownin Fig. 1, the architectural design of the authornization of the credit card system consists
of a front engine and a back office. These two components will interact with the system database to
store and retrieve application-related data. Apart from the system main components, there are a few
sub-systems that have communication with the authorization of the credit card system including the
Host Secunity Module (HSM) server, Point-Of-Sale (POS) server, Automated Teller Machine (ATM)
server and electronic commerce (g-commimerce) server.

All these sub-systems will communicate with the authorization of the credit card through TCP/TP
protocol. The message format that is used for communication between the authorization system and
the HSM server is specific proprietary command, whereas for the other sub-systems, the message
format that is used to communicate with the authorization system is ISO 8583. ISO 8583 is the
standard interchange message specification defined by the International Organization for
Standardization (ISO) for electronic transactions made by cardholders using payment cards.

The multi-threading techmique is adopted into the architectural design of the authorization engine
of the credit card system. Through this technique, multiple threads can be run simultancously within
the single memory space of the process and all the threads share the same system resources during the
authorization process of the credit card transaction. In this study, the thread-pool model is used to
handle the concurrent authorization requests from the payment gateway and the shared memory pool
is implemented in conjunction with the multi-threading technique to hasten the authorization
processing. The shared memory pool is implemented in this study to reduce the time searching for card
information from the system database, which involves an expensive I/O operation as compared with
obtaining the similar information through a shared memory pool stored in random access memory using
a binary scarch. There are two thread-pools implemented in the system, namely the worker

34

Res. J. Inform. Technol., 1 (1): 30-40, 2009

Credit card authorization system

Back office 5d vIcw tser Tnformaton

administratar
PAYMENT GATEWAY
' : Il o
erver
e —— f Aurizaion mesage |\ éf‘),I &
g] C
"ﬁ g I;'ds? &2 sson:; g?j
3 3 g :
] £ L
‘g g
]_j [POS
Server
Cryptographic command
h Y h
Host security module

Fig. 1. Overall system architecture

thread-pool and the child thread-pool. When the listener service is activated, all the worker threads and
child threads are constructed and started in their related thread-pools through the listening thread.
Besides that, all the card information is also loaded to the shared memory pool before the authorization
request can be serviced.

The worker threads in the pool are combined with a work queue. Each accepted client socket
through the listening thread from the payment gateway will be put in the work queue. The work queue
will signal the waiting worker threads each time a new authorization job arrives to make the relative
waiting threads process the authorization request immediately. Each authorization job is mapped to
a client connection. The assigned worker thread acquires a socket from the queue and serves the request
on that socket until the connection is closed. Once the authorization job is accepted, the worker thread
will acquire a mutex lock not only to synchronize the access to the shared data area but also to
accelerate the processing in the thread-pool environment. To avoid a starvation situation, a timer has
been set to release the mutex after a pre-defined period has clapsed.

35

Res. J. Inform. Technol., 1 (1): 30-40, 2009

The worker thread assigned to each authorization process of the credit card transaction will begin
to read the raw buffer message in ISO 8583 format accepted from the socket connection and proceed
with message parsing to obtain all the elements. Once the message is parsed, the worker thread will
perform the card restriction validation and online fraud validation based on the elements present in the
message. The worker thread begins to assign several child threads to perform eryptographic operations
in online fraud validation and the number of child threads assigned for online fraud validation is in
accordance with the number of cryptographic elements present in the credit card transaction itself.
Simmilar to the worker threads, the child threads in the pool are also combined with a child queue. Each
assignment of a child thread is putin the child queue and the child queue will signal available waiting
child threads cach time a cryptographic task is added. The assigned child thread will remove the
cryptographic task and proceed with its validation through HSM. These cryptographic operations
encompass card security code validation, card identification number validation, personal identification
number validation and chip application cryptogram validation.

Once all the child threads have been assigned to these cryptographic operations, the worker thread
itself will perform an operation pertaining to the card restriction validation. This operation is done in
parallel with the child threads handling the cryptographic processing. The card restriction validation
includes card existence validation, card status validation, card activation status validation, card
expiration date validation, card usage validation and card balance validation. All the operations related
to card restriction validation are carried out through the shared memory pool without accessing the
system database.

Once the worker thread finishes its card restriction operation, it waits for a completion signal from
the child threads that perform the online fraud validation. Upon receiving all the completion signals
from the child threads, all the assigned child threads are put back into the child thread-pool for the next
assignment while the worker thread will be working on providing the final response code to the
cardholder on whether to approve or decline the transaction based on the result of the entire validation.
If there were any declines during the validation, the final response code will be based on the first
occurrence of the decline. Otherwise, the transaction will be approved and a unique authorization
mumber will be randomly generated as part of the authorization response message that will be used as
a reference. Next, the assigned worker thread will proceed with building the authorization response
message in ISO 8583 format. Once the response message has been built, the worker thread will write
the message to the socket and this authorization response will be sent back to the payment gateway
that originated the transaction.

After the authorization response has been sent, the assigned worker thread will drop the socket
connection and proceed with the internal processing. This internal processing includes saving the
authorization message into an authorizations table for record purposes and performing balance
updating for the particular card. The balance adjustment will be updated in both the shared memory
pool and the system database. Next, the acquired mutex is released and the pending timer set earlier
is cancelled before the worker thread is put back into the worker thread-pool for its next assignment.
In this project, an additional synchromzation thread is started against the background of the
authorization engine to update any changed information of the card made through the back office
component in the shared memory pool. This is implemented to ensure the data kept in the shared
memory is always synchronous with similar information stored in the system database.

In a single-threaded credit card authorization system, both card restriction validation and online
fraud validation have to be done one after another. Thus, the system resources are not fully optimized
because the waiting time of the slow I/Q operation, especially during the validation of the
cryptographic element, is wasted. This not only causes the authorization of the credit card transaction
to take a longer time to process but it also degrades the performance of the server, especially during
the heavy traffic during peak hours. In that case, the cardholder might encounter a problem in gaining
authorization from the system because of the slow response time from the eredit card authorization
systern.

36

Res. J. Inform. Technol., 1 (1): 30-40, 2009

In this study, the multi-threaded credit card authorization system is used to accelerate the
authorization process. Multiple tasks of the authorzation process can be executed concurrently
through multiple threads. If there were two or more cryptographic operations to be performed during
the authorization process, the ideal time of the waiting 1/O operation could be reduced to at least half
of the total time required in processing those operations sequentially. Apart from time, the thread-pool
model is applied to mimimize the system resources spent in creating and destroying this type of
recyclable thread.

Besides that, the response time could be further reduced by loading all the cards” information into
random access memory to let the authorization system obtain information from the shared memory
pool through a binary search instead of accessing similar data from the database for authorization
processing. Through all these methods, the response time of the credit card authorization process could
be significantly improved.

In this study, a singleton design pattern was applied to the card object which is acting as a shared
memory pool that holds all the cards® information for authorization purposes. When the listener
service is activated, the listening thread will load all the information of the cards into random access
memory through a configurable array. After an authorization is received, a worker thread will obtain
the only instance of the card’s object and perform a binary search through the related array of the
card’s object in order to retrieve the information of the card related to the transaction from the shared
memory for authorization purposes. A separate synchronization thread is imtialized in the background
of the authorization engine to browse the system database for any modified card information requiring
updating in the shared memory pool. This is implemented to ensure the data kept in the database is
synchronized with the data in the shared memory pool. Once modified, the card information is loaded
into the shared memory pool and the synchronization thread will update the system database to mark
that the card has been processed.

A singleton design pattern is applied to ensure all the workers threads can access the shared
memory pool for card information during authorization. Without a singleton design pattern, shared
memory pool implementation is not possible in an object-oriented environment. Through the shared
memory pool, the access time is faster and, hence, improves the response time of the credit card
authorization process.

RESULTS AND DISCUSSION

Timing testing has been used to evaluate the response time of the authorization process under
different circumstances. The response time was measured using the embedded testing tools that were
built in as part of both the authorization system and the payment gateway to obtain the time taken
before and after the transaction was sent and received. The measurement unit for the response time was
recorded in seconds.

In this study, the response time was evaluated from two major aspects. These aspects are the
authorization system using the multi-threaded authentication engine against the authorization system
using the single-threaded authentication engine and the multi-threaded authentication engine accessing
the shared memory pool for authentication data against the multi-threaded authentication engine
accessing the systern database for authentication data. For both aspects, an incremental testing
approach has been chosen as the technique to obtain the result.

In the comparison between the multi-threaded authentication engine and the single-threaded
authentication engine, incremental testing was performed to evaluate the response time of a group of
authorizations performed sequentially. For this evaluation, there is no simultaneous authorization

37

Res. J. Inform. Technol., 1 (1): 30-40, 2009

Table 1: Test result of multi-threaded and single-threaded authentication engines

No. of sequential Multi-threaded Ringle-threaded
authorizations authentication engine (sec) authentication engine (sec)
10 4.7 8.1
20 9.4 16.5
30 14.2 24.8
40 18.8 33.0
50 23.4 41.1
60 28.2 49.4
70 32.7 57.7
80 37.6 65.9
90 42.1 74.7
100 46.9 823

Table 2: Test result of authentication engine using shared memory and database

No. of sequential Authentication data Authentication data
authorizations via shared memory (sec) via database (sec)
10 04.1 04.4

20 08.1 08.9

30 12.1 13.4

40 16.4 17.7

50 20.3 22.0

60 24.5 26.7

70 28.7 31.4

80 32.8 36.2

90 36.9 41.0

100 40.5 45.9

performed. The next authorization will be sent upon receiving a response from the previous
transaction. The number of worker threads and child threads that were used in the multi-threaded
authorization system is 3 and 9, respectively. In this testing, the result is recorded based on the best
response time taken in 5 attempts for each category. This is done to minimize the impact of the context
switching between multiple threads runming in the system over the result obtained and to ensure the
accuracy of the testing performed.

Based on the test result as shown in Table 1, it has been confirmed that the performance of the
multi-threaded authentication engine is better than the single-threaded authentication enging in the
NET platform. From the result, the performance of the multi-threaded authentication engine is almost
double that of the single-threaded authentication engine.

In the second aspect, the testing was carried out to assess the response time of a group of
authorizations performed one after another using the multi-threaded authentication engine accessing
the shared memory pool for authentication data and the multi-threaded authentication engine accessing
the system database for authentication data. Similar to the first aspect, the next authorization will be
sent upon receiving a response from the previous transaction and there is no simultaneous
authorization performed. The number of worker threads and child threads that were used in the multi-
threaded authorization of the credit card system is also similar, which is 3 and 9, respectively. The
test result is recorded based on the best response time taken in 5 attempts for each category. This is
done to mimimize the impact of the context switching between multiple threads runming in the system
over the result obtained and to ensure the accuracy of the testing performed.

Based on the test result as shown in Table 2, the performance of the multi-threaded authentication
engine using the shared memory for authentication data is better than the multi-threaded authentication
engine using the database for authentication data in the NET platform. The difference is insignificant
at the earlier stage, but it becomes more significant when the number of authorizations increases. From
the test result, the number of credit card authorizations that can be processed using the shared memory
is 10% more than the number of credit card authorizations that can be processed using the database
at a single point in time.

38

Res. J. Inform. Technol., 1 (1): 30-40, 2009
CONCLUSION

This research provides a solution to optimize the performance of credit card authorization
systems through the multi-threading technique in the NET platform. This techmique enables the
authorization of credit card transactions to be processed in a shorter length of time. From the business
point of view, a fast and reliable authorization process will generate more revenue to the organization,
whereas from the customer point of view, the authorization process in time builds the confidence of
the cardholder to use the credit card as a payment method. In short, this study provides a win-win
situation for both organization and community as both parties will gain the benefits from the
implementation of the multi-threaded authorization of credit card systems.

Besides that, the multi-threaded authorization of the credit card system implemented in this study
enables several tasks related to the card’s risk management profile validation to be executed
concurrently during the authorization process. This will not only provide a better response time for
the authorization process but also enables more credit card transactions to be processed in a multi-
threaded authorization system in a shorter amount of time. A shared memory pool is also used in
conjunction with the multi-threading technique. Since multiple threads are runmng in a single process
space, the shared memory pool is implemented to keep all the card information that will be used for
the credit card authorization process in the random access memory arca. Besides that, the multi-
threaded architectural design presented in this study supports the dynamic tuning of the size of the
thread-pool rurming at runtime. The number of fixed worker threads and child threads can be adjusted
to ensure the utilization of the multiple threads to its optimal level. This is implemented to ensure the
capacity of the thread-pool matches the necessities of the application based on the estimated volume
and velocity of the credit card transactions processed in a specified period. Besides, the multi-threaded
credit card authorization systems implemented in this study can accept multiple connections from the
payment system at a single port number. This is implemented to allow more simultaneous
authorizations to be received through these multiple links for load balancing usage in the future.

ACKNOWLEDGMENTS

First and foremost, we would like to express our gratitude to Almighty hat gave us the possibility
to complete the research work successfully. Secondly, we would like to forward our deepest thanks
to our colleagues, lecturers and techmical staff from the Department of Software Engineering for their
endless assistance, technical advice and co-operation.

REFERENCES

BNM, 2004. Anmual Report, 2004. hitp://www. bnm.gov.my/files/publication/ar/en/2004/ar
2004.complete.pdf.

Bourlai, T., J. Kittler and K. Messer, 2005. Scenario based performance optimisation in face
verification using smart cards. Audio and Video Based Biometric Person Authentication,
3546: 289-300.

Bourlai, T., J. Kittler and K. Messer, 2006. Database size effects on performance on a smart card face
verification system. Proceedings of the 7th International Conference on Automatic Face and
Gesture, April 10-12, Recognition, pp: 61-66.

Chodowiec, P. and K. Gaj, 2003. Very compact FPGA implementation of the aes algorithm. Lecture
Notes Comput. Sci., 2779: 319-333,

Eslami, Y., A. Sheikholeslami, P.G. Gulak, S. Masui and K. Mukaida, 2006. An area-efficient universal
cryptography processor for smart cards. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, Jan. 2006, IEEE, pp: 43-56.

39

Res. J. Inform. Technol., 1 (1): 30-40, 2009

Hwang, D.D. and 1. Verbauwhede, 2004. Design of portable biometric authenticators energy,
performance and security tradeoffs. IEEE Trans. Consumer Elect., 50: 1222-1231.

Juang, W.S., S.T. Chen and H.T. Liaw, 2008. Robust and efficient password-authenticated key
agreement using smart cards. IEEE Trans. Ind. Elect., 55: 2551-2556.

Leung, W.K. and K.K. Lai, 2001. Improving the quality of the credit card authorization process-a
quantitative approach. Int. I. Service Ind. Manage., 12: 328-341.

Panato, A., M. Barcelos and R. Reis, 2002. An IP of an advanced encryption standard for altera
devices. The 15th Symposium on Integrated Circuits and Systems Design, Sept. 9-14, IEEE,
pp: 197-202.

Pinto, M.B., D.H. Parente and T.8. Palmer, 2001. College student performance and credit card usage.
I. College Stud. Dev., 42: 49-58.

Shen, A.H., R.C. Tong and Y.C. Deng, 2007. Application of classification models on credit card fraud
detection. International Conference on Service System and Service Management, June 9-11, IEEE,
pp: 1-4.

Smith, R.G., 2008. Coordinating individual and organizational responses to fraud. Crime Law Soc.
Change, 49: 379-396.

40

	Research Journal of Information Technology.pdf
	Page 1

