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ABSTRACT 

 

Celiac disease (CD) is an immune-mediated enteropathy 

triggered by exposure to gluten and similar proteins which 

affects genetically susceptible persons, increasing their risk 

of different complications such as malignant lymphomas, 

small-bowel neoplasia, oropharyngeal tumors, osteoporosis, 

and bone fractures. In the clinical practice, the diagnosis of 

CD is made with a diagnostic intestinal biopsy and the 

concomitant presence of a positive celiac serology. Small 

bowels mucosa damage due to CD involves various degrees 

of endoscopically relevant lesions, that are not easily 

recognized: their overall sensitivity and positive predictive 

values are poor even when zoom endoscopy is used. 

Confocal  laser endomicroscopy (CLE) has recently 

revealed to be a useful technique for in vivo virtual 

histology of small bowels mucosa, but requires skilled and 

specifically trained operators. 

We present a computer-based method for the automatic 

diagnosis of CD-related lesions on the basis of appearance 

features of confocal images. Comparing the automatic 

results with the histological gold standard, the proposed 

method classifies confocal images with accuracy 

comparable to human observer, suggesting the possibility of 

real time diagnosis of CD during endoscopy and a non-

invasive method to replace biopsy 

 

Index Terms— confocal endomicroscopy, computer 

aided diagnosis, celiac disease, random forests 

 

1. INTRODUCTION 

 

Celiac disease (CD) is an immune-mediated enteropathy 

triggered by exposure to gluten and similar proteins which 

affects genetically susceptible persons. Celiac disease is one 

the most frequent enteropathy and most of the celiac 

patients will remain undiagnosed during their life so it is a 

hidden epidemic. Exposure to gluten causes damage to the 

small bowel mucosa.  The damage vary from mild, with 

only an increase in intraepithelial lymphocytes and Crypt 

Hyperplasia (CH), to severe form, which involves various 

degrees of endoscopically relevant lesions such as villous 

Atrophy (VA) [1] (see Fig. 1). VA and CH are important 

findings that could not be easily recognized during 

endoscopy; their overall sensitivity and positive predictive 

values are poor even when zoom endoscopy is used [2] [3]. 

In today practice, the diagnosis of CD is made with a 

diagnostic intestinal biopsy and the concomitant presence of 

a positive celiac serology [4]. Another post-treatment biopsy 

is sometimes necessary for those patients in whom the first 

biopsy and serologic test are inconclusive (e.g., seronegative  

enteropathy) or for patients who remain symptomatic  in 

spite of having strict Gluten Free Diet (GDF) [5]. 

Introduction of a GFD can significantly improve the 

symptoms in symptomatic patients, as well as correct the 

abnormal biochemical measures, therefore improving in 

patient’s quality of life.  

 

 

   

   

Figure 1  Representative images of villi appearance in 

the normal case (left column), in presence of VA (central 

column), and CH (right column)  

 

Confocal laser endomicroscopy (CLE) is a novel endoscopic 

method that permits on-site microscopy of the 

gastrointestinal mucosa after the application of a fluorescent 

agent, allowing the experienced endoscopists to diagnose 

VA, CH as well as intraepithelial lymphocytes with high 

accuracy [6]  [7] [8].  

The ultimate goal of our study is to provide a system that 

has the potential  to diagnose the CD at the time of 

endoscopy. 
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To date, few computer aided detection and diagnosis 

(CADD) systems have been proposed for confocal 
microendoscopic images, either for the analysis of salient 

features of images [9] [10] or for detecting subtle mucosal 

changes linked to pre-neoplastic and neoplastic tissues [11] 

[12] [13].   

 

The classification of the state of colonic villi is made 

difficult by the variability in the appearance of relevant 

cues: common approaches resorting to the preliminary 

identification of single villi and their alterations are  

impractical. We exploit the growing evidence that the 

statistical properties of the image considered as a global 

entity, without any identification and analysis of its 

constituent objects, yield a rich set of cues, that are possibly 

sufficient  for the identification of its correct semantic 

category (class) [14] [15].  

To this end we extract a set of features from each image, 

which are then combined to represent an image signature. 

This signature is then fed to a classifier that identify the 

image as normal or diseased, at the same time assigning the 

image to the one of the classes: normal villi (NV), villous 

atrophy (VA), crypt hypertrophy (CH).  This is achieved  by 

first computing two scores based on the image signature: 

one represents the probability that the image presents  

villous atrophy (VAP), whereas the other represent the 

probability of the image showing crypt hypertrophy (CHP).  

Finally each image, represented by its two dimensional 

score vector [VAP, CHP], is classified with a maximum a 

posteriori Bayesian classifier.   

  

 

2. MATERIALS 

 

In this retrospective study, 128 confocal images from 30 

patients were obtained from previous clinical trial conducted 

at the  Gastroenterology and Liver Services of the  

Bankstown-Lidcombe Hospital (Sydney, Australia) [6].  

Subjects of that study were recruited with known CD, 

suspected CD, and controls. Each patients underwent a 

confocal gastroscopy (Pentax EC-3870FK, Pentax, Tokyo, 

Japan) under conscious sedation and with a IValiquots of 

fluorescein sodium and topical acriflavine hydrochloride to 

enhance images. CEM images and forceps biopsies of the 

same sites were taken  sequentially at standardized locations 

at 5 small intestinal sites. Seven to 10 CEM images of 

different mucosal depths were collected from each site from 

the standardized locations for every forceps biopsy 

specimen. Small intestinal specimens were taken precisely 

matched to the CEM imaging sites and were assessed by 2 

experienced blinded histopathologists independently and 

subsequently reviewed during a single session for internal 

consistency.  

 

 

3. METHODS 

 

3.1 Pyramidal decomposition 

Multiscale representations [14]  [16]  of image 

characteristics have been shown to be powerful tools for 

scene classification [17] [18] [19].  The image    is 

represented  by a Gaussian pyramid decomposition    of   

levels, so that at level           the image component 

  
  can be obtained applying a Gaussian smoothing filter to 

the original image  , and downsampling the filtered image 

by a factor (
 

 
)

 

. At the same time, the image is also 

represented by a Laplacian pyramidal decomposition    of L 

levels,  by which the image component   
  can be obtained 

applying a Laplacian of Gaussian high-pass filter to the 

original image  , and downsampling the filtered image of a 

factor (
 

 
)

 

. 

 

3.2 Image signature 

From  each image   
  and   

  of the pyramidal decomposition 

of the original image   at level    , a set of features   
  and  

  
  are computed,  representing the gray-level distribution, 

the gray-levels spatial organization (texture)  and the 

presence of relevant bright or dark patches. 

The intensity distribution is characterized by a vector of 

statistical descriptors (moments, percentiles, entropy)  

       , whereas the texture are described evaluating rotation 

invariant Local Binary Pattern (LBP) as described in [20] 

[21]. Since LBP assigns to each pixel a binary code that 

represents the difference pattern between the pixel intensity 

and its neighboring pixels evaluated along a circle of radius 

R, it is particularly suited to accommodate the large 

intensity variability both among different CLE images and 

within the same image: the histogram        of the binary 

codes assigned to each pixel can represent the textural 

characteristics of an image, regardless of its mean intensity, 

luminosity drift, and rotation. 

Finally, image bright (dark) patches are evaluated 

thresholding the image with a set   of thresholds. For each 

threshold    , we identify the regions brighter (darker) 

than  . A feature vector           (and corresponding  

       ) is extracted containing the mean area of the bright 

region (dark), the number of regions larger than half of the 

image area, the ratio of perimeter to area, and finally the 

fractal dimension of the bright (dark) pixels, computed with 

the box counting method [22]. 

 All features vector for the images in the Gaussian and 

Laplacian pyramidal decomposition are then  concatenated 

to create the image signature          , with    

⋃         
        

           
         

     
   , interpreting the union 

operator as concatenation.  
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3.3 Image Classification 

For each image, the probabilities that it presents VA or CH 

are computed as the score of two binary random forest 

classifiers [23] [24] applied to its signature. One binary 

random forest classifier provides the score of an image 

presenting VA, whereas the other provides the score of an 

image presenting CH. The scores are normalized in the 

range [0,1], and can be interpreted as probabilities, since 

they are computed as the fraction of classification trees in 

the random forest “voting” for the presence of VA or  CH.  

Finally, the image is classified as NV, VA, or CH by means 

of a Bayesian maximum a posteriori classifier, under the 

hypothesis of normal  multivariate distribution for the three 

classes. 

 

 

Figure 2 ROC analysis showing the specificity and 

sensitivity varying the classification threshold 

 

 

4. EXPERIMENTS 

 

The performance of the classifier has been evaluated using a 

leave-one-out procedure. At each round of the validation, 

out of the N=128 hystologically classified images, one 

image was used for testing, while the others N-1 (training 

set) were used for the classifier set-up.  

The two random forests are grown with 500 classification 

trees each using Breiman algorithm [11], providing a two 

dimensional score vector [VAP, CHP] for each image in the 

training set. The score distribution for each class of interest 

(NV, VA, CH)  is assumed to be fully described by the first 

two moments (mean vector and covariance matrix) of the 

score vectors of the images in the training set and belonging 

to the class. A maximum a posteriori classifier (naïve 

Bayes) is then used to assign each image to its final class. 

The a priori probability          ,      ,     , of each class  

can be used to set the operating point of the classifier, so to 

weight differently  the risk of lesion misdetection. 

The test image is then classified: its scores VAP and CHP 

are computed and the image is finally classified as normal or 

presenting villous alterations (and which).  

Considering as positive output are considered when a 

detection of either VA or CH or VACH results from the 

classification, and negative output when a normal image 

results, we can compute sensitivity (fraction of positive 

outputs over the number of positive samples in the dataset), 

specificity (fraction of negative outputs over the number of 

negative samples in the dataset), and accuracy of the 

classifier (fraction of images correctly classified). 

To set the optimal operating point of the classifier, we 

performed a ROC analysis varying          from 0 to 1 and 

setting correspondingly                  
           

 

 

5. RESULTS 

 

On the 128 biopsied-matched images coming from the 30 

subjects a leave one out validation scheme was used, 

coupled with a receiver operating characteristics (ROC) 

analysis to set the optimal value of the a priori probability 

        (Fig. 2).  The proposed method reached 96% 

sensitivity (probability of detecting images with either VA 

or CH or both) with 89% specificity (probability of 

detecting normal images). This method was successful in 

automatically identifying all four combinations of VA and 

CH presence of (1) no VA, no CH (normal mucosa), (2) 

prevalence of VA, (3) prevalence of CH. The AUC was 

0.935 and the estimated classification error 0.07 (95% CI: 

0.004-0.14) with accuracy 0.93 (95% CI: 0.86- 0.99). The 

naïve Bayes classifier bidimensional space (VAP, CHP) is 

shown in Fig.3 together with the posterior iso-probability 

lines  at P=0.5. 

 

Figure 3 Naive Bayes classification space, with the 

posterior iso-probability lines at P=0.5 for the three 

classes superimposed (normal-green, VA-blue, CH-

black). The lower left corner represent images showing 

both CH and VA 
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5. CONCLUSIONS 

 

We have presented a computer-aided system for the 

automatic detection of small bowels mucosal lesions due to 

celiac disease on confocal microendoscopy images. The 

proposed method classifies confocal images with high 

accuracy with respect to the histological gold standard. 

These result  may provide a system for easier lesions 

detection/classification, allowingthe possibility of real time 

diagnosis of CD during endoscopy and a non-invasive 

method to replace biopsy 
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