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The Direct Numerical Optimization (DNO) approach fa airfoil shape design
requires the integration of modules: a) A geometrial shape function; b)
Computational flow solver and; c) Search model forshape optimization. These
modules operate iteratively until convergence basean defined objectives and
constraints. The DNO architecture is to be validatd to ensure efficient optimization
simulations and is the focus of this paper. The PAREC airfoil shape function is
first validated by observing the effect of design aefficients on airfoil geometry and
aerodynamics. The design variables provide indepeett one-to-one control over
airfoil geometry, for imposing shape constraints. fie aerodynamic performance of
PARSEC airfoils through variable perturbations, corform to established
aerodynamic principles. It confirms the design flebility of the shape function in
providing direct control over airfoil geometry. The Particle Swarm Optimization
(PSO) algorithm is introduced as the search agentA PSO simulation requires user-
inputs to define the search pattern. A methodologys presented to validate these
parameters on pre-defined benchmark mathematical foctions. Self Organizing
Maps (SOM) are applied to illustrate trade-offs betveen PSO search variables. An
Adaptive Inertia Weight (APSO) scheme that dynamicly alters the search path of
the swarm by monitoring the position of the particks, provides an acceptable
convergence. Validation tests indicated the maximurnaelocity of the particles is less
than 1% of computational domain size for convergene. The DNO approach is
computationally inefficient, thus a surrogate modelto address this issue is
presented. An Artificial Neural Network (ANN) model with a training dataset of
3000 airfoils is applied to develop a model that gfies the PARSEC airfoil geometry
variables as inputs and the equating aerodynamic efficient as output. System
validation with 1000 randomly generated airfoils irdicated 70% of the simulated
solutions were within 10% of actual solver run. Futire research will involve
reducing the percentage error of the surrogate modeagainst the theoretical
solution.

I. Introduction

hape optimization process is applied across a waage of applications that include Aerospace,

Automotive and Naval. The process involves comuéin optimal geometry for a given application to
minimize a defined cost function, relative to a skbbjectives and constraints. In ground vehiasidn,
shape optimization of the aerodynamic elementsimvighformula one racing car require, maximizing the
downforce with minimum drag performance. As a renidplates are developed and attached to fraht an
rear wings, with the aim of minimizing induced draf compromise between producing sufficient
downforce particularly at tight corners, to diregtiadequate cool air to brakes and radiators &t $pgeds
is a typical design constraint. In naval applicasioshape design optimization includes minimisatbn
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noise generated as a result of turbulent flow phsttrailing-edge of a shape. Typical constraims i
submarine design include maintaining minimum shgypan length, while achieving low acoustic sound
levels. Intelligent search optimization models amplemented by designers that provide a compromise
between constraints and objective function. In bfeit shape design, the lift-to-drag ratio of alfsirut
arrangement is maximized, with minimum transit spaed lifting mass constraints imposeld. acrospace
applications, shape optimization is critical in ttesign process, to obtain optimum flight perforoean
Aerodynamic and geometrical constraints are couptedsatisfy operating flight conditions, while
maintaining the required geometry features. Wingjgleinvolves maintaining minimum allowable volume
for fuel storage requirements while considering ¢ase-of-manufactutaluring the design optimization
process.

Definition of an objective function with a set obristraints in shape design optimization, require
intelligent computational design methodologies. @mnional gradient methods are applied for singlgvp
airfoil designs’ ° but the search process converge prematurely pip&a in a local minim&.Several
heuristic tools have evolved to address this idsuedesign optimization of multiobjective and muilti
constrained problems. These include EvolutionarpgRrmming (EA) techniques such as Genetic
Algorithms (GA) which originate from evolution bagy and have been successfully applied in airfoil
shape desighi? These methods perform a global search processr@ndot sensitive to convergence as a
result of local minima, which often occurs in agnoamic design problenfs’ Hybrid techniques through
the integration of global and local search algonghare applied in the design of high lift airfdifsThe
location of the global solution was approximateihgsa GA, with the data used as an starting point
through a gradient-based optimiZz&rComparison of results between stand-alone gradiedtwith the
integration of GA tool, indicated an enhancementinal results - increase in maximum lift for a il
element airfoif'°

Direct search approaches involving the integratiban airfoil shape parameterization method, with a
computational flow solver and evolutionary prograimgntechniques is computationally demanding.
Implementation of neural network models to addtkisissue has been readily expldretf and applied in
aerodynamic$™ ** ' for inversé® and direcf airfoil design problems. Prediction of aerodynamic
coefficients with ANN models, through the interactiof airfoil geometry variables as inputs and d¢iqga
force coefficients as outputs was investigdfed’? Santos et. al. reported a training database @000,
airfoils, with a multi-layered network consistin§ %0 neurons within the two hidden layers, for gtaeble
lift and drag simulation¥’ Ross et. al. used three variables in design ouaah network to model flap
deflection parameters as inputs and the aerodynemefficients of lift, drag, moment and lift-to-dyaatio
as outputs for multi-element airfoitd Wind-tunnel data consisting of 20 flap configuras was available
for network training”* Validation results indicated only 50% of availaklid-tunnel data was required for
training, to achieve acceptable generalization lo#iias over sample test cases.

In this paper, the hybrid optimization methodoldgyformalized for airfoil shape optimization. The
three components include the integration of the BER shape function for airfoil shape representaton
swarm algorithm as the search agent and an ANN htodeplace the flow solver for airfoil aerodynami
computation. The paper is presented as followSes) 1I: The three modules are introduced anchddfi
b) Sec. lll: The PARSEC variables are pre-scred¢aatetermine the influence of the shape parameters
the search process. A relationship between desigfficients and its affect on airfoil geometry and
aerodynamic properties is examined; c) Sec. IV: praposed swarm search algorithm methodology is
validated. A visualization technique is employedlltgstrate trade-offs between search model vagislaind
its effect on solution convergence over a seriebasfchmark functions; d) Sec. V: The development of
ANN model with PARSEC variables as inputs and theesponding airfoil lift coefficient from XFOIL as
output is established and validated; and e) SecTké research findings and summary of future work
the context of airfoil shape optimization is presein

[I. Problem Definition

An intelligent system for airfoil shape optimizatios proposed. An optimization approach with a
surrogate model to approximate airfoil aerodynanscpresented. The sub-systems need to incorporate
design flexibility and must be independently valeth (top chart in Fig. 1), prior to application felnape
optimization (bottom chart in Fig. 1). The validatiprocess of the PARSEC shape function was tdsted
measuring the flexibility and accuracy of the moaleér a series of airfoil planformi$Definition of design
variables is required to complete the validatioocpss (Sec. IIl). The XFOIL flow solver is appliéde to
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rapid computation, at this preliminary stage anlitheéed extensively in the literature. The PARSEGod
design variables and the corresponding aerodyneofficient from XFOIL are used as inputs and otgpu
respectively, for ANN development and validatiore¢SV). The proposed swarm algorithm also requires
validation, over a series of mathematical benchnfianktions. The optimizer is validated separat8lgd,

IV) and not included within the airfoil shape fuioet, flow solver and ANN test validation set-up.

In the context of airfoil shape optimization, follimg the validation process, the flow solver is de-
coupled from the architecture and the validatedrswalgorithm is integrated with the trained ANN
database which approximates the aerodynamic casftic The information is used by PSO to guide the
search agents towards a global solution (bottomt ¢harig. 1). Application of PSO with ANN for awfl
shape optimization is not addressed in this paper.

Validation of Airfoil Shape Optimization Components

Airfoil Shape Aerodynamic Aerodynamic Pamcle Swarm
Function Flow Solver Coefficients Optimizer |

Airfoil Shape Optimization Process

Airfoil Shape ANN
Function

Figure 1. Validation and Application of Optimization Components for Airfoil Shape Optimization

Aerodynamic
Coefficients

lll.  Airfoil Shape Function — Design Variables Definitim

The PARSEE methodology is a'order polynomial (Eq. 1) and used in airfoil desaptimisatior?:
823, 24The function is governed by eleven parameterstemte different classes of airfoils (Fig. 2) @&nd
mathematically represented as follows:

6
ZpprsedX/ €)= 2, X
n=1

n-1/2

1)

Where:
a, = Real coefficients which are solved directly basadhe eleven PARSEC design parameters.
The coefficientsa,, are related to airfoil geometry. A system of
equations are used to equate the coefficients danetion of
variables and solved simultaneously. Variddgg, controls the

trailing edge thickness and is set to zero. Thusthtrailing edge }
sections are not considered and design variablelgi@n size is Z;oiw /
reduced to ten. The optimizer perturbs the geonatriariables to "
generate different classes of airfoils, until a@ngence criterion is Figure 2. PARSEC Airfoll
satisfied.

PARSEC Design Variables Sensitivity Analysis
The PARSEC variables are independently tested tifyvihe sensitivity of each variable on airfoil
geometry and aerodynamics. The steps undertaktbe isensitivity study are as follows:
Generate base PARSEC airfoils with arbitrarily defl variables;
Select one PARSEC variable for sensitivity analysig. leading edge radiug,) rwith the remaining
ten variables static;
Establish variable test domain (e.gtest domain [0.0, - 0.0415);
Establish variable perturbation magnitude withie test domain (e.getest increments = 0.001);
Generate a series of PARSEC airfoils within thenidied test domain with incremental variable
changes;
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Measure airfoil geometry (Leading Edge Radius, Maxn Thickness, Maximum Thickness Location,
Camber, Camber Location and Trailing Edge Wedgeldng

Evaluate the aerodynamic coefficients of lift, deagl moment of each PARSEC airfoil;

Use the initially generated planform and repeatabeve till all ten variables have been indepergent
tested; and

Repeat test with variations over four independaselrirfoils

Self-Organizing Maps for Data Visualization

A data-mining technique was applied to visuallze processed information. Clustering SOM technique
(two dimensional charts), developed by Teuvo Komdhare based on the technique of unsupervised
neural networks that can classify, organize andalise large sets of dataThe concept behind SOMs is
to projectn-dimensional input data into a two-dimensional nfiapinterpretation. Each input data, in this
case is the airfoil geometry variable which acinggits or neurons to SOM architecture. The corredpgy
measured planform geometry and aerodynamic coefifisiare outputs which are separately mapped for
quick visualization on two dimensional charts basadhe aforementioned test set-up. Thus, the teffiec
PARSEC airfoil design variable on geometry and dgmamics is interpreted, by reducing the resutisnfr
high-to-low dimensional space.

SOM Results — PARSEC Airfoil Variable Definition

A series of SOM charts are presented in this aedt illustrate the relationship between the PARSE
variable and its effect on airfoil geometry andaagnamics. The four base PARSEC airfoils and the
specified test domain is summarized in Table 1 ame$ented in Figure 3. The airfoils are with vagyin
geometrical features, to visualize the effect gflg@pg incremental perturbations across differdasses of
airfoils (Fig. 3).

Table 1. PARSEC Airfoil Design Variable Definition Test Case Study

PARSEC Variable Test Domain Casel Case?2 Case3 LA

Mo [0.01: 0.04] 0.01 001 001 0.1

Vie [-0.02 : 0.02] 0 0 0 -0.004
teg [-2.0° : -25] 0 -6.8° 100 -10.5
tew [3.0°: 40°] 17° 8.07 5.6° 4.

X4 [0.30 : 0.60] 03 04324 042 0418
Ya [0.07 : 0.12] 006 0063 0.058  0.055
Vi [-1.0: 0.2] 045 -0.4363 -0.35  -0.22
X; [0.20 : 0.60] 03 03438 0.36  0.4182
V) [(0.02:-0.08] -0.06 -0.059 -0.057 -0.082
Vi [0.2:1.20] 0.45 0.70 0.03 -0.35
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Definition of PARSEC Variables: Case One Definition of PARSEC Variables: Case Two
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Figure 3. Base Airfoils for PARSEC Airfoil Definiti on

Variations in Leading Edge Radius
Effect of varying g, across the four case studies (Fig. 3) on aigedmetry, is presented in Figure 4.
The remaining nine variables are static and a ahangairfoil geometry with independent PARSEC
variable perturbations was recorded. Each clustéiigure 4 represents the individual test caseitsrbf
Figure 3.

Thickness-to-Chord Camber Trailing Edge Wedge Angle

case1

Cased

Figure 4. Effect of Varying reon Airfoil Geometry

The resulting airfoil geometry with leading edgelitas variations is easily identifiable through the
SOM charts (Fig. 4a to 4d). The minimum and maximeatues of g are denoted by ‘cold’ and ‘hot’
regions respectively for each case in Figure 4ainkrease in, has a negligible effect on thickness-to-
chord, and trailing edge wedge angle, with slightiations in camber for airfoil case two (Fig. 4b4d).

As required, one-to-one control over thicknesstiord, camber, and trailing edge wedge angle is
permissible with variations in leading edge radiusPARSEC airfoils. The analysis confirmed thalius
perturbations will not affect planform thicknesshieh is a key design constraint based on structural
strength and payload volume necessities.
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k Lift Coefficient Drag Coefficient Moment Coefficient

Figure 5. Effect of Varying reon Airfoil Aerodynamics

The equating aerodynamic SOMs are presented inrd-i§u XFOIL was applied to compute the
coefficients at an operating Reynolds Number ofr@illion at Mach 0.40. The leading edge radius &as
major influence on Cand G (Fig. 5b to 5c¢), but a minor effect on the momeoéféicient (Fig. 5d).
Optimization of the leading edge radius is cru@@alimproved drag performance. Increasesesincause an
increase in lift and drag. These results are ia-lrth established airfoil aerodynamic knowledgd are
confirmed by Jeony where a similar analysis was performed at tramsonnditions? It was confirmed
that airfoil geometry was not influenced hy perturbations (Fig.4) thus, rsearch dimension in future
optimization studies will be limited to small vakir improved drag performance.

Variations in y,

Similarly the effect of varying ywhich provides thickness control is presentedigufe 6. The analysis
shows that thickness-to-chord and camber increeggogionally as yincreases (Fig. 6b to 6c) with the
trailing edge wedge angle remaining unaffected.(Bd) across the four test cases (Table 1 & FigA3)
repeat of the analysis for PARSEC variahleshich controls the thickness contour on the presside of
the airfoil, indicated similar behavior. The resuttemonstrate variations i gnd y exhibit one-to-one
thickness control which is a key requirement foraanfoil shape function. By coupling the two coritro
parameters, thickness constrain is imposed on ¢oengtry through variable manipulation, for an airfo
shape optimization problem. Thus, the final optinshlape will conform to user-defined thickness

requirements.
Y Thickness-to-Chord Camber  Tiling Edge Wedge Angle

Figure 6. Effect of Varying y,on Airfoil Geometry

Aerodynamic performance with, ywariations is presented in Figure 7. In generaiati@mns in vy,
coincide with established knowledge of airfoil aymeamic performance of thick sections. The lift andg
coefficient rise, as airfoil thickness is increageid). 7b to 7c). Airfoil aerodynamic analysis indies delay
in the onset of stall, with the maximum lift coeféint rising as airfoil thickness is increased. Bena
values of y are related to acceptable lift-to-drag performaMéh thickness constraints imposed on the
model, the requirement of a robust optimizatiorrdeanodel, for efficiently examining potential sbans
within the identified thickness search limits isjueed.

Lift Coefficient

Drag Coefficient ~ Moment Coefficient

Figure 7. Effect of Varying y,on Airfoil Aerodynamics
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Summary of SOM Analysis

The goal of utilizing SOMs for PARSEC airfoil deftion is not to locate an optimum planform, but to
obtain an insight into the cluster structure ofdla¢a. The technique provides vital informationhwitgards
to the sensitivity of the variables. The SOM mapgpamalysis was simulated over the ten PARSEC design
coefficients and the relationship between variabidpil geometry and aerodynamics mapped. Theenti
set of SOM charts for each design variable is mesgnted in this paper. The analysis indicated ttieat
shape variables provide one-to-one geometricalrabas required from a shape parameterization ngetho
The sensitivity of the design parameters was cowgit from the mapping analysis. Parametgrand x
which control the chord-wise location of the maxmmthickness point on upper and lower surfaces, are
sensitive and need to be set accordingly to miiget-realistic airfoil geometries. Design valueshin a
threshold020£ x, £ 060for upper and020£ x, £ 0.70for lower contours, constitute ‘realistic’ surfaces

The function loses one-to-one geometrical controlthee respective design parameter outside of the
identified range, due to the generation of undotatirfoils. This information is applied in the foulation
of search limits and constraints during an optitiararun to mitigate airfoils that are aerodynartiicand
geometrically unfeasible.

The aerodynamic convergence data identified theente of design coefficients on the aerodynamic
properties of airfoils. It is evident that desigpefficients with acceptable drag may not offer teguired
lift performance. Thus, a design compromise is sgagy and the development of an intelligent search
agent to address this issue needs to be the desigs.

IV. Airfoil Shape Optimization — Intelligent Search Agent Validation

In this section, the search agent used for aidpilmization is introduced and validated. The aildpon
is tested over a series of benchmark functionsletermine the sensitivity of the model for conveige
SOMs are used to qualitatively show the resultstref validation process. The maps illustrate the
relationship between variables that control thedeprocess, and the effect on solution convergefroem
the charts, the set-up of the search model withgbbonvergence across the test envelope is establi

A. Particle Swarm Optimizer

A global seeking search agent capable of handlintji+objective problems is identified for this stud
The PSO method, first developed by Eberhart anchKeyi® evolves from the paradigm of swarm of birds.
The method provides a simple and efficient architecand is ideal for continuous variable problems.
Consequently, the algorithm has been applied asar$sus optimization disciplinés.The methodology is
similar to evolutionary programming techniques,hattie population initialized through random disjars
of particles. Each particle maintains a personebm of its position, thus fithess from an optintiaa
perspective. An information sharing methodologyingiated within the swarm to guide the remaining
particles towards the group leader. Over time thdiges reach a consensus and settle onto thé fina
destination to provide an optimal solution.

Each particle in swarm of size', is a potential solution of the objective functiamd is represented by
the relative positiofw;'and velocityyv;'. The velocity rate of change (Eq. 3) is a functwfnuser pre-

defined learning factors as follows: a) Cognitiyeand b) Sociat, parameters that influence local and
global search patterns. At each iteration the odik = (XX, %), i=212,...,m and

is recorded and the remaining particles updater thesition and velocity to follow,.qover the

subsequent iterations until solution convergefiokt each iteratiotk’, the search direction is refined by
updating the positionx; (k +1)', and velocity,v, (k +2)', (Egs. 2 & 3) of the particles, with convergence
occurring when all particles are within a set thi#d of each other.

The PSO algorithm has been adequately modified thighaim of implementing a robust model to be
applied across various optimization problet&3°The two variants tested in this study are as ¥estoa)
Standard-PSO (SPSO) algorithffhand b) Adaptive Inertia Weight (APSOnodel - Table 2. APSO was
introduced to add greater search flexibility in qarison to the SPSO algorithm and to address the
shortfalls of the standard search model.

7
American Institute of Aeronautics and Astronautics



The PSO requires user inputs to define the seaadhneters. In the two variants (SPSO and APSO),
social and cognitive parameters are sefltoc2=2 and have been successfully applied in previous
optimization studie$.?’ The inertia weight factom’, which provides a balance between local and global
search patterns, is constant throughout the iteratin (Eq. 4) for the SPSO and is a function arus
defined learning factorS. Thus, social and cognitive parameters need tebacsordingly to influence the
search behavior and is challenging to set. A newhatkof calculatingv, was proposed by Qin. et.'al
referred to as the APSO whereis dynamically calculated at each iteratfofhe position of each particle
within the swarm, including individual and overajlobal ideal solution (Eq. 5)is considered in the
calculation ofw within the APSO scheme (Eq. 6)At each iteration the behavior of the swarm is
established andv modified, to adapt the model with the current skaregion. Theoretically, this
methodology permits global search capabilitieshat start of the PSO run with large valuesapfwhich
dampen into smaller values as the search regionwsr

X (K+1)=x (k) +v; (k+1) 2
Vi (k +1) =wy; (K) + ¢.rand.(RB - X (K)) +c,.rand.(R, - X; (K)) (3)

w= 2 ;wherej =c, +c, =4
- i N —’ - v 2~ 429
‘2_/_/7/2_4/‘ @
. . _ _ |Xij - p|j| 1
Individual Search Ability (ISA):ISA =———— (5)

|le' - pgi|+'9
w =1-a —<x  Wherea isin therange(0,1] (6)*
1+ 'h

The effect of varying the maximum velocity of tharficles across both the SPSO and APSO scheme is
further examined in the validation run. If the ntawim velocity of the particles is too high, the phes
overshoot the dimensional space and the globalhmimi. This causes solution oscillations thus, insirea
the number of iterations required for convergenidge application of wall boundary conditions will be
required to re-instate the particles back intogéarch domain. To mitigate this requirement, th&imam
velocity of the particles was examined in the ra@dés - 10% of the maximum dimensional search space
'/ max  for each variable. The two PSO models examinedenvalidation study is summarised in Table 2:

Table 2. Particle Swarm Optimizer: Model Variants for Validation

PSO Model SPSO APSO!
Scaling Learning Factors c =2 ¢ =2
Cognitive & Social
c,=2 c,=2
(c1&cy)
Swarm Populationng) 20,40 & 80 20,40 & 80
Number of Dimensiond)) 10,20 & 30 10,20 & 30
Maximum Iterations 1000,1500 & 2000 1000,1500 & 2000
X = By
w= 2 ; ISA = bo-ml
. . oo i 4 |p,j-pgj|+e
Inertia Weight W) /=N Y
. _ 1 . _
where;j =c, +c, =4 w; =1-a m ; Wherea = 0.3

Maximum Velocity ¥/na) 0.1 -10%of/y .. ./

' 7 Nmax

0.1-10%of/y .., ./

'7 Nmax
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B. Optimizer Validation

Two mathematical functions (Fig. 8 to 9) are applie the validation process. The objective (Eqis7)
to use the two PSO models (Table 2), to locatgytbleal minimum of the functions (Eqgs. 8-9)

Objective Functionf (X) i @)
Rosenbrock Function: Schwefel Function:
n-1 n
F= [1006¢- x.)2+(%-DF (8 f(x)=4189829-  (xsinf}x]) (9
i=1 i=1

Rosenbrock Function Schwefel Function

2000
1500 ..
w1000

500 | (-

0
500

5 i &0 A
7 A0 40 b

Figure 8: Test Function One: Rosenbrock Function Figure 9: Test Function Two: Schwefel Function

The search parameters and the theoretical solafitre functions, is summarized in Table 3.

Table 3. PSO Set-Up for Test Function Evaluation ash Summary of Theoretical Solution

Function Dimension Search Space Particle Global Minima
(/12..0 Initialization Range  (Theoretical Solution)
Rosenbrock -100£ x, £100i =12, ,n 15£x £30 X"=@ D, f(x)=0
Schwefel -500£ x; £500i =12, ,n 250£ x; £500 X'=@ 2,f(x)=0

C. Validation Results and Visualization
Rosenbrock Function

A series of SOM charts are applied to representrésalts of the validation process. The fitness
convergence for SPSO (Fig. 10b) and APSO (Fig.,Mith variations in V. (Fig. 10a) as a percentage

of search space (Table 3), over the number of diines D (Table 2), is represented by each cluster
separator in Figure 10.

Low Velocity = Low Fitness
SPSO ) AP

£

L
2 zﬂ=

Viax @S a % of 1y Fitness Fitness
(@) () S
Figure 10.  Rosenbrock Function Convergence: SOM Vimlization
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The SOM charts (Fig. 10a to 10c) indicate that lehocity equates to low fitness for both SPSO and
APSO. This is evident across the entire test domdirre an increase iD, equates to an increase in
fitness. It is thus established, that particlesdnte navigate about the solution space at slow dgpéa
converge. Faster moving particles mitigate globlima regions by overshooting key areas of interest

Direct comparison between SPSO and APSO (Fig. d0tOc) indicates that the APSO provides
superior convergence across the evaluated testingich in comparison to the SPSO model (Fig. 10b). |
all tests, the termination criterion is based omfeximum iteration count (Table 2). It is evidéoim the
charts, that SPSO and APSO are not capable of ogingeto the theoretical solution based on the
formulated termination criteria. In general SPS@idates greater areas of ‘hot’ regions in ‘red’ diha
referring to higher fitness. The APSO evolutiontte same operating conditions, consists of |aiged’
regions in ‘dark blue’ shade, thus indicating tttee APSO map consists of lower fitness in compatiso
across the testing domain. Thus, comparison bet&&30 and APSO (Fig. 10b to 10c) confirms that a
linear decreasing inertia weight, where a globalrae process is enabled at the start of the sqarake
and local, during the later stages provides acbéptsolution convergence. A fixed inertia weightises
solution convergence instabilities, as the seaattem (global vs. local) does not adapt duringdéarch
phase.

The relationship between particle population
(m = 20, 40, 80) and velocity as a function of
fithess is represented in Figure 11. Higher
particle population ro = 80), with the velocity
restricted to  approximately 0.1%  of
! 1max 10/ nmax: iNdicates low fitness. At the same

speed, with fewer particlesm(= 20), fithess
increases by 4% in comparison. It is observed
from the test, that greater number of particles is
required to assist convergence.

The fitness presented here is compared with
the findings reported by Z. Qin et aWwith their
AIWPSO modef. Essentially the APSO used in Figure 11.  Rosenbrock Function: Effect of
th'f study is the model developed by Z. Qin €l/5ying Particle Population & Velocity on Fitness
al.” with the exception being in the treatment of
the maximum velocity. Essentially Z. Qin et'afixed Vi equal to the maximum distance of each
dimensior In this study, we examined the effect of varying.)Mor both models (Table 2) on solution
convergence. Table 4 presents fitness comparisemgebn the SPSO, APSO and Z. Qin €t AIWPSO
model, with the data taken directly from literatdr&he SPSO and APSO data (Table 4), equates to a
velocity threshold of 0.1% of ., as this condition was proven to be most effectkig.(10 to Fig. 11).

Comparing the SPSO with AIWPSO model, it is see ith most conditions, the SPSO model yields lower
fitness. Thus, the benefits associated with a tlgedecreasing inertia weight, within the AIWPSO deb
does not provide the expected search benefitdiiggst counteracted by the higher particle velocitye
SPSO model, which has a fixed inertia weight atdowelocities, outperforms a model with an adaptive
inertia weight with higher velocities. Thus, thepamtance of correctly setting the maximum allowable
velocity, on solution convergence is re-enforced.

Comparisons between the APSO and AIWPSO modelcamet that the APSO provides superior
convergence across the examined test domain, cherticle simulation at a lower velocity. Comparthg
SPSO and APSO, it is evident that the adaptivetimereight scheme clearly outperforms a model with
fixed inertia weightassociated with the SPSO model.
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Table 4. Rosenbrock Function: Fitness Evaluation Qmparison through different PSO Model

Max.

Population Size Dim | ) SPSO APSO AIWPSD
teration
20 10 1000 34.4393 17.1394 48.6378
20 1500 92.4618 17.3522 115.1627
30 2000 156.8884 19.1374 218.9012
40 10 1000 18.0475 17.2192 245149
20 1500 85.2453 16.7663 60.0686
30 2000 129.5636 18.8235 128.7677
80 10 1000 13.2744 17.8872 19.2232
20 1500 79.2820 17.9988 52.8523
30 2000 100.9905 18.3088 149.4491

#Bold face indicates the best result in the respedSO variant test run

Schwefel Function
The Schwefel function, the second model appliedofatimizer validation indicated similar results. It
was observed that an optimum velocity of 0.1%/qf,,, provided a theoretical fitness of zero. Solution

convergence towards the theoretical minima waslexated with a larger particle population. The fosi
of the particles (Eq. 2), thus solution is depemdanthe velocity (Eq. 3). By restricting the maxim
speed, the probability of the particles overshaptirglobal solution over successive iterationsismized
thus, assisting convergence.

V. Artificial Neural Networks

The DNO process is computationally time demandasgecially if Navier-Stokes solvers are integrated
for aerodynamic computation. PSO validation indidathe requirement for large number of particles to
support convergence. A DNO
simulation  for  single-point Iprepe
airfoil design analysis was '

|
attempted® The optimizer P : i
examined in excess of 2000 & T i
airfoils before converging to an S Ve '
optimal planforn®® With the 3 ::9 !
integration of panel method x: :
solvers, computational time was X Yu , C
negligible. By replacing low R Yixu :
fidelity solver with Navier- I Xi !
Stokes model for solution Q ¥ ,
accuracy, the computational L |
time is excessive, thus the use g ; i

of ANN is proposed to address
this ISSue. . Figure 12. PARSEC Airfoil Artificial Neural Network Structure

It is hypothesized that a
trained network, when integrated to a DNO strugtwid significantly reduce the computation expemse
airfoil shape optimization. The network will de-gde the solver from the DNO process, with the swarm
algorithm operating simultaneously with the neuratwork. The technique was successfully appliethén
design of singl® and multi-element airfoil¥ including the design of turbomachinery sectfdm@sd in the
minimisation of wind tunnel data for aerodynamicrfpemance evaluatiotf. In this study, an ANN
structure is introduced (Fig. 12), to develop atiehship between PARSEC airfoil shape variables as
inputs and the equating aerodynamic coefficierdwput.

Neural Network Training and System Generalization
The network training data consisted of 3000 PARSEils generated by Latin Hypercube Sampling
(LHS). A training dataset with LHS methodology gastees acceptable, uniform distribution for the
proposed solution space. A requirement of neurdivork is to provide acceptable generalization
performance with minimal training dataset. The Lid8thodology for training dataset distribution pes
an acceptable framework to address this requirement
A batch training process with Bayesian regulaiiraby MacKay*? and the combination of Levenberg-
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Marquardt training algorithm is used to train thetwork. The aerodynamic computations for network
development and validation were simulated at a Blegnand Mach number of 3.0 million and 0.35
respectively at an angle-of-attack of zero degréks.training goal for convergence was set with ainde
following conditions:

Network Training Error- Zero Sum-Square-Error between theoretical ansvor& computed lift
coefficient; or

Overfitting - When network exhibits over-fitting of trainingath over a succession of 50 training
iterations

In total ten networks with different combinatoriekperiments were conducted with the following
network structure variations:

Data Preprocessing To improve network efficiency, inputs and outpwisre scaled within a specified
range. Two normalization technigues were tested:

Normalizing data in the range [-1,1]; and
Normalizing data to have a mean of zero and unégdard deviation

Number of Hidden LayersVariation in the size of hidden layers was testad

Transfer Functions- Order of sequence of transfer functions withie tiidden layers with variations in
tan-sigmoid and log-sigmoid functions. Linear fuaotused to model the output data

A minimum number of 50 neurons were evaluatechiwithe hidden layers. This is based on a

thumb-of-rule assumption that the number of neuiarthe hidden layer equals five times the numider o
input neurons (ten PARSEC variables). The assumptias proven reasonable by Rajkumar et. al. in the
prediction of lateral and longitudinal aerodynarfticces using neural networkSResults with variations in
network architecture for two networks, with accéptaconvergence based on the measure of R-Square
correlation value for 1000 generalization airféigresented in Table 5.

Table 5. Neural Network Configuration for PARSEC Airfoils Lift Coefficient Prediction

Transfer Function
Input - Hidden -
Hidden Output

ANN Training
Architecture Algorithm

Training Generalization

Model Dataset Dataset

R-Square

Bayesian
Regularization tansig

with LM

Bayesian
Regularization tansig logsig 3000 1000 0.98

with LM

1 10-60-50-1 tansig 3000 1000 0.97

2 10-50-50-1

The two networks exhibit similar performance basedthe R-Correlation measure from network
generalization simulation (Table 5). The responfsthe models is presented by performing a regressio
analysis between network response and the corrdspptargets (Fig. 13). The network outputs ardtetb
versus the targets (open circle data points) aedbtst linear fit, through the data is indicatedthg
‘dashed’ line. The correlation between network garget data is indicated by a ‘solid’ line (Fig.)13he
charts (Fig. 13a & Fig. 13b) for the two networkglicates acceptable linear fit. Model 2 exhibitsigher
R-Correlation of 0.98 in comparison to 0.97 for Mbd (Table 5 and Fig. 13).

Best Linear Fit: A =(0.956) T + (0.0144) Best Linear Fit: A =(0.958) T + (0.0146)
1 1

| |
| |
| |
| |
| |

06— — — — l———— !
| |
| |
| |
| |
| |
|

02— - - —

of- - ° Data Points

Best Linear Fit

I
: - = A=T

-0.2
-0.2

0.2 0.4 0.6 0.8

T
(a) Model 1: Network Generalization Regression
Analysis 10-60-50-1; tansig - tansig

° Data Points

Best Linear Fit

- - A=T

0.2 L L
-0.2 0 0.2 0.4 0.6 0.8

.
(b) Model 2: Network Generalization Regression
Analysis 10-50-50-1; tansig — logsig

Figure 13. Neural Network Regression Analysis for RRSEC Airfoils Lift Coefficient Prediction
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The R-Correlation value is further defined agathst proposed network output - coefficient of lifteo
the generalization population data. A summary dfvoek results, based on the measure of percentage
difference between network output and theoretiedhdover a testing envelope of 1000 airfoils &f o
models is presented in Table 6.

Table 6. Neural Network Configuration for PARSEC Airfoils Lift Coefficient Summary of Errors

Model  ANN Architecture  Min. % Error Max. % Error A verage % Error
1 10-60-50-1 0 1766 15.32
2 10-50-50-1 0 294 12.46

Theoretically, an R-Correlation value of 0.98 irates an excellent fit between two datasets. The
measure is analysed as function of aerodynamicalifproximation of PARSEC airfoils from neural
network simulations. A percentage error of appratety 15% between network output and theoretical
solution over the tested population of 1000 aisf@sl evaluated for Model one, compared to 12% déopad
model. Both models contained samples where theiqteelift represented the theoretical solutionystta
minimum percentage error of zero (Table 6). Maximpencentage difference in the two models is large
(Table 6). This corresponds to a point were theriécal lift coefficient is close to zero and thetwork
fails to adequately simulate data at this regiorhigtogram analysis of the two models, to illugtrtie
frequency airfoils, belonging to several grouppefcentage error categories is presented in Fitfire

3
=3
S

sof --4---7------7------9---p------4  Ecof---Fj-----—————T-———-—G-————-———————+

Frequency of Neural Network Simulation Airfoils
Frequency of Neural Network Simulation Airfoils

| | |
| | |
| | |
| | |
| | |
| | [ |
| | | |
| | | |
400F - — 71— — — I e e 400 -1 - -0 -- - = L
| | | | | | | | | | | | |
| | | | | | | | | | | | |
L e R e e A e el et el 300f- - - -+ - - - - - -- == L it -
| | | | | | | | | | | | |
| | | | | | | | | | | | |
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Figure 14. Histogram of Percentage Errors

The percentage error histogram is in intervals@¥o1(Fig. 14) and distributed evenly in the two ¢har
(Fig. 14a & 14b) for ease of comparison. Most dsf@re in interval one for the two models thus,
representing an error of 0% - 10% between netwinnkilstion and theoretical data. Model one simudate
70% of airfoils out of the total 1000 with an ertess than 10% compared to 68% for Model two. Qker
first two intervals, relating to a percentage erabr0% - 20%, network one models 83% of airfoils
compared to 82% for Model two. Thus, over the fixgo intervals, the two networks (Table 6) present
similar performance. The difference between the tvamlels is in scatter of data, in particular thespnce
of outliers defined asl.5” Inter- Quartile- Range Model one contains 104 outliers compared to 94 fo

Model two. Percentage errors in excess of 800%peesent for the extreme most outliers in Model one,
compared to 294% in Model two. The excessively tpghcentage errors within the outliers in Model one
result in a higher mean error percentage in corapario Model two.
It is evident from the analysis, that the neuratwoek methodology is suitable for the proposed

architecture (Fig. 12). Percentage errors grehter 1.0% are considered excessive and approximzdéty

of airfoils (300 out of 1000) exceeded this thrddha Model two, which is optimal from the initiaén
networks developed and tested in this study. Tthes,neural network requires design modifications to
further reduce the percentage error and the sazftdata, in particular the presence of extreméarst At

this stage, the training dataset was fixed to 3€fils with the size dependent on the availalwmputing
hardware. Further increases in training populati@mand greater computing memory. Thus, alternate
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training algorithms and/or computer hardware thgtpsrt the required memory requirements, need to be
explored to address this constraint.

VI. Conclusion and Future Work

The DNO approach for airfoil design and analysis waroduced. A study to independently validate the
components within the DNO architecture was propo8ediata mining technique, through SOM charts was
applied to project multi-dimensional output datatoi two dimensional maps for results visualization.
Within the overall DNO structure, the following cponents were validated for eventual integration in
airfoil design optimization architecture:

Definition of PARSEC shape function design variable
Validation of the PSO model; and
Design and validation of an ANN structure to matthe lift coefficient

The behavior of the design variables within the IS&R function was defined. A series of PARSEC
airfoils were generated (Fig. 3) and periodic pdxations applied to each variable to study thecefée
airfoil geometry and aerodynamics. It was provedt thariables provide one-to-one geometrical control
which is a key requirement for a parameterizatiechhique, such that shape constraints can be idpose
All variables are operational up to an identifiddeshold, beyond which un-realistic shapes are rgéec:
This further assists in the development of seanctitd of the PARSEC coefficients for detail design
optimization routines. Aerodynamically, the effaftvariable perturbations on airfoil performanceswa
mapped, with the findings conforming to establisteetodynamic knowledge. The variable definition
process provided an indication as to the expecthvior of each variable, and the design limitseund
which these variables can operate. Consequenttyngtical constraints through each of these vagmbl
can be imposed and the search limits defined wathfidence, to mitigate the optimizer searching for
airfoils that are geometrically and aerodynamicalheasible.

A PSO search agent was proposed with two variasted. A series of simulations over two benchmark
functions was undertaken to determine the suitgbif each model. The effect of varying particle
population and velocity across multiple dimensioms,convergence towards the theoretical solutioa wa
examined. The results were mapped onto a seri8OM charts, which indicated that the adaptive iaert
weight model was superior in comparison to a stah®&0 algorithm. Large particle population witlwlo
velocities provides acceptable convergence in coisga to an optimization run with fewer particles
navigating at faster speeds. Current research éscas developing an adaptive inertia velocity fiorct
similar to the inertia weight model, to adapt tipeed of the particles through a PSO run. This has t
potential of providing greater solution agreemeithviewer design iterations.

The ANN methodology within the overall DNO framewowas introduced. The PARSEC design
variables were used as inputs, with the lift ca#fit as output to the system (Fig. 12). Prelimjirrasults
indicate that the proposed methodology is suitéttedesign application within the DNO structure.eTh
model proposed requires further design, developraadtvalidation to reduce the simulation percentage
errors. Current research focuses on increasingtrining dataset of the network, with the aim of
simulating output data that represents the themaiesiolution with minimal percentage difference terk
development to simulate drag and moment coeffisientlso a present research activity.
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