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The Direct Numerical Optimization (DNO) approach for airfoil shape design 
requires the integration of modules: a) A geometrical shape function; b) 
Computational flow solver and; c) Search model for shape optimization. These 
modules operate iteratively until convergence based on defined objectives and 
constraints. The DNO architecture is to be validated to ensure efficient optimization 
simulations and is the focus of this paper. The PARSEC airfoil shape function is 
first validated by observing the effect of design coefficients on airfoil geometry and 
aerodynamics. The design variables provide independent one-to-one control over 
airfoil geometry, for imposing shape constraints. The aerodynamic performance of 
PARSEC airfoils through variable perturbations, conform to established 
aerodynamic principles. It confirms the design flexibility of the shape function in 
providing direct control over airfoil geometry. The Particle Swarm Optimization 
(PSO) algorithm is introduced as the search agent.  A PSO simulation requires user-
inputs to define the search pattern. A methodology is presented to validate these 
parameters on pre-defined benchmark mathematical functions. Self Organizing 
Maps (SOM) are applied to illustrate trade-offs between PSO search variables. An 
Adaptive Inertia Weight (APSO) scheme that dynamically alters the search path of 
the swarm by monitoring the position of the particles, provides an acceptable 
convergence. Validation tests indicated the maximum velocity of the particles is less 
than 1% of computational domain size for convergence. The DNO approach is 
computationally inefficient, thus a surrogate model to address this issue is 
presented. An Artificial Neural Network (ANN) model with a training dataset of 
3000 airfoils is applied to develop a model that applies the PARSEC airfoil geometry 
variables as inputs and the equating aerodynamic coefficient as output. System 
validation with 1000 randomly generated airfoils indicated 70% of the simulated 
solutions were within 10% of actual solver run. Future research will involve 
reducing the percentage error of the surrogate model against the theoretical 
solution.  

I. Introduction 
hape optimization process is applied across a wide range of applications that include Aerospace, 
Automotive and Naval. The process involves computing an optimal geometry for a given application to 

minimize a defined cost function, relative to a set of objectives and constraints. In ground vehicle design, 
shape optimization of the aerodynamic elements within a formula one racing car require, maximizing the 
downforce with minimum drag performance. As a result, endplates are developed and attached to front and 
rear wings, with the aim of minimizing induced drag. A compromise between producing sufficient 
downforce particularly at tight corners, to directing adequate cool air to brakes and radiators at high speeds 
is a typical design constraint. In naval applications, shape design optimization includes minimisation of 
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noise generated as a result of turbulent flow past the trailing-edge of a shape. Typical constraints in 
submarine design include maintaining minimum shape span length, while achieving low acoustic sound 
levels. Intelligent search optimization models are implemented by designers that provide a compromise 
between constraints and objective function. In hydrofoil shape design, the lift-to-drag ratio of a foil-strut 
arrangement is maximized, with minimum transit speed and lifting mass constraints imposed.2 In aerospace 
applications, shape optimization is critical in the design process, to obtain optimum flight performance. 
Aerodynamic and geometrical constraints are coupled to satisfy operating flight conditions, while 
maintaining the required geometry features. Wing design involves maintaining minimum allowable volume 
for fuel storage requirements while considering the ease-of-manufacture3 during the design optimization 
process.   

Definition of an objective function with a set of constraints in shape design optimization, require 
intelligent computational design methodologies. Conventional gradient methods are applied for single-point 
airfoil designs,4, 5 but the search process converge prematurely if trapped in a local minima.6 Several 
heuristic tools have evolved to address this issue for design optimization of multiobjective and multi-
constrained problems. These include Evolutionary Programming (EA) techniques such as Genetic 
Algorithms (GA) which originate from evolution biology and have been successfully applied in airfoil 
shape design.6-9 These methods perform a global search process and are not sensitive to convergence as a 
result of local minima, which often occurs in aerodynamic design problems.6, 7 Hybrid techniques through 
the integration of global and local search algorithms are applied in the design of high lift airfoils.10 The 
location of the global solution was approximated using a GA, with the data used as an starting point 
through a gradient-based optimizer.10 Comparison of results between stand-alone gradient and with the 
integration of GA tool, indicated an enhancement in final results - increase in maximum lift for a multi-
element airfoil.10  

Direct search approaches involving the integration of an airfoil shape parameterization method, with a 
computational flow solver and evolutionary programming techniques is computationally demanding. 
Implementation of neural network models to address this issue has been readily explored11, 12 and applied in 
aerodynamics,11, 13, 14 for inverse15 and direct16 airfoil design problems. Prediction of aerodynamic 
coefficients with ANN models, through the interaction of airfoil geometry variables as inputs and equating 
force coefficients as outputs was investigated.14, 17-20 Santos et. al. reported a training database of 10,000 
airfoils, with a multi-layered network consisting of 50 neurons within the two hidden layers, for acceptable 
lift and drag simulations.17 Ross et. al. used three variables in design of a neural network to model flap 
deflection parameters as inputs and the aerodynamic coefficients of lift, drag, moment and lift-to-drag ratio 
as outputs for multi-element airfoils.14 Wind-tunnel data consisting of 20 flap configurations was available 
for network training.14 Validation results indicated only 50% of available wind-tunnel data was required for 
training, to achieve acceptable generalization capabilities over sample test cases.  

In this paper, the hybrid optimization methodology is formalized for airfoil shape optimization. The 
three components include the integration of the PARSEC shape function for airfoil shape representation, a 
swarm algorithm as the search agent and an ANN model to replace the flow solver for airfoil aerodynamic 
computation.  The paper is presented as follows: a) Sec. II: The three modules are introduced and defined; 
b) Sec. III: The PARSEC variables are pre-screened to determine the influence of the shape parameters on 
the search process. A relationship between design coefficients and its affect on airfoil geometry and 
aerodynamic properties is examined; c) Sec. IV: The proposed swarm search algorithm methodology is 
validated. A visualization technique is employed to illustrate trade-offs between search model variables and 
its effect on solution convergence over a series of benchmark functions; d) Sec. V: The development of 
ANN model with PARSEC variables as inputs and the corresponding airfoil lift coefficient from XFOIL as 
output is established and validated; and e) Sec. VI: The research findings and summary of future work in 
the context of airfoil shape optimization is presented. 

II.  Problem Definition  
An intelligent system for airfoil shape optimization is proposed. An optimization approach with a 

surrogate model to approximate airfoil aerodynamics is presented. The sub-systems need to incorporate 
design flexibility and must be independently validated (top chart in Fig. 1), prior to application for shape 
optimization (bottom chart in Fig. 1). The validation process of the PARSEC shape function was tested by 
measuring the flexibility and accuracy of the model over a series of airfoil planforms.21 Definition of design 
variables is required to complete the validation process (Sec. III). The XFOIL flow solver is applied due to 
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rapid computation, at this preliminary stage and validated extensively in the literature. The PARSEC airfoil 
design variables and the corresponding aerodynamic coefficient from XFOIL are used as inputs and outputs 
respectively, for ANN development and validation (Sec. V). The proposed swarm algorithm also requires 
validation, over a series of mathematical benchmark functions. The optimizer is validated separately (Sec. 
IV) and not included within the airfoil shape function, flow solver and ANN test validation set-up.  

In the context of airfoil shape optimization, following the validation process, the flow solver is de-
coupled from the architecture and the validated swarm algorithm is integrated with the trained ANN 
database which approximates the aerodynamic coefficients. The information is used by PSO to guide the 
search agents towards a global solution (bottom chart in Fig. 1). Application of PSO with ANN for airfoil 
shape optimization is not addressed in this paper.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

III.  Airfoil Shape Function – Design Variables Definition 
The PARSEC22 methodology is a 6th order polynomial (Eq. 1) and used in airfoil design optimisation.5, 

8, 23, 24 The function is governed by eleven parameters to generate different classes of airfoils (Fig. 2) and is 
mathematically represented as follows:  
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(1) 

Where: 
an = Real coefficients which are solved directly based on the eleven PARSEC design parameters. 

The coefficients an, are related to airfoil geometry. A system of 
equations are used to equate the coefficients as a function of 
variables and solved simultaneously. Variable ,TEZD controls the 
trailing edge thickness and is set to zero. Thus, blunt trailing edge 
sections are not considered and design variable population size is 
reduced to ten. The optimizer perturbs the geometrical variables to 
generate different classes of airfoils, until a convergence criterion is 
satisfied.  

 
PARSEC Design Variables Sensitivity Analysis 

The PARSEC variables are independently tested to verify the sensitivity of each variable on airfoil 
geometry and aerodynamics. The steps undertaken in the sensitivity study are as follows: 
�  Generate base PARSEC airfoils with arbitrarily defined variables; 
�  Select one PARSEC variable for sensitivity analysis (e.g. leading edge radius, rle) with the remaining 

ten variables static; 
�  Establish variable test domain (e.g. rle test domain [0.01min - 0.04max]); 
�  Establish variable perturbation magnitude within the test domain (e.g. rle test increments = 0.001); 
�  Generate a series of PARSEC airfoils within the identified test domain with incremental variable 

changes; 

 

Figure 2. PARSEC Airfoil  

 
Figure 1. Validation and Application of Optimization Components for Airfoil Shape Optimization 
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�  Measure airfoil geometry (Leading Edge Radius, Maximum Thickness, Maximum Thickness Location, 
Camber, Camber Location and Trailing Edge Wedge Angle); 

�  Evaluate the aerodynamic coefficients of lift, drag and moment of each PARSEC airfoil;  
�  Use the initially generated planform and repeat the above till all ten variables have been independently 

tested; and 
�  Repeat test with variations over four independent base airfoils 

 
Self-Organizing Maps for Data Visualization 
 A data-mining technique was applied to visualize the processed information. Clustering SOM technique 
(two dimensional charts), developed by Teuvo Kohonen25 are based on the technique of unsupervised 
neural networks that can classify, organize and visualize large sets of data.24 The concept behind SOMs is 
to project n-dimensional input data into a two-dimensional map for interpretation. Each input data, in this 
case is the airfoil geometry variable which act as inputs or neurons to SOM architecture. The corresponding 
measured planform geometry and aerodynamic coefficients are outputs which are separately mapped for 
quick visualization on two dimensional charts based on the aforementioned test set-up. Thus, the effect of 
PARSEC airfoil design variable on geometry and aerodynamics is interpreted, by reducing the results from 
high-to-low dimensional space. 
 
SOM Results – PARSEC Airfoil Variable Definition 
 A series of SOM charts are presented in this section to illustrate the relationship between the PARSEC 
variable and its effect on airfoil geometry and aerodynamics. The four base PARSEC airfoils and the 
specified test domain is summarized in Table 1 and presented in Figure 3. The airfoils are with varying 
geometrical features, to visualize the effect of applying incremental perturbations across different classes of 
airfoils (Fig. 3).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. PARSEC Airfoil Design Variable Definition Test Case Study 

PARSEC Variable Test Domain Case 1 Case 2 Case 3 Case 4 
r le [0.01 : 0.04] 0.01 0.01 0.01 0.01 
yte [-0.02 : 0.02] 0 0 0 -0.004 
teg [-2.0° : -25°] 0 -6.8° -10° -10.5° 
tew [3.0° : 40°] 17° 8.07° 5.6° 4.4° 
xu [0.30 : 0.60] 0.3 0.4324 0.42 0.418 
yu [0.07 : 0.12] 0.06 0.063 0.058 0.055 

yxxu [-1.0 : 0.2] -0.45 -0.4363 -0.35 -0.22 
xl [0.20 : 0.60] 0.3 0.3438 0.36 0.4182 
yl [-0.02 : -0.08] -0.06 -0.059 -0.057 -0.082 

yxxl [0.2 : 1.20] 0.45 0.70 0.03 -0.35 
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�  Variations in Leading Edge Radius 
 Effect of varying rle, across the four case studies (Fig. 3) on airfoil geometry, is presented in Figure 4. 
The remaining nine variables are static and a change in airfoil geometry with independent PARSEC 
variable perturbations was recorded. Each cluster in Figure 4 represents the individual test case airfoils of 
Figure 3.  

 
       
 
 
 
 
 
 
 
 
 
The resulting airfoil geometry with leading edge radius variations is easily identifiable through the 

SOM charts (Fig. 4a to 4d). The minimum and maximum values of rle are denoted by ‘cold’ and ‘hot’ 
regions respectively for each case in Figure 4a. An increase in rle, has a negligible effect on thickness-to-
chord, and trailing edge wedge angle, with slight variations in camber for airfoil case two (Fig. 4b to 4d). 
As required, one-to-one control over thickness-to-chord, camber, and trailing edge wedge angle is 
permissible with variations in leading edge radius for PARSEC airfoils. The analysis confirmed that radius 
perturbations will not affect planform thickness, which is a key design constraint based on structural 
strength and payload volume necessities.   
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Figure 3. Base Airfoils for PARSEC Airfoil Definiti on  

              rle                                        Thickness-to-Chord               Camber                Trailing Edge Wedge Angle 

           
                (a)                               (b)                            (c)                           (d) 

Figure 4. Effect of Varying rle on Airfoil Geometry 
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The equating aerodynamic SOMs are presented in Figure 5. XFOIL was applied to compute the 

coefficients at an operating Reynolds Number of 6.0 million at Mach 0.40. The leading edge radius has a 
major influence on Cl and Cd (Fig. 5b to 5c), but a minor effect on the moment coefficient (Fig. 5d). 
Optimization of the leading edge radius is crucial for improved drag performance. Increases in rle, cause an 
increase in lift and drag. These results are in-line with established airfoil aerodynamic knowledge and are 
confirmed by Jeong,24 where a similar analysis was performed at transonic conditions.24 It was confirmed 
that airfoil geometry was not influenced by rle perturbations (Fig.4) thus, rle search dimension in future 
optimization studies will be limited to small values for improved drag performance.   

 
�  Variations in yu 

Similarly the effect of varying yu which provides thickness control is presented in Figure 6. The analysis 
shows that thickness-to-chord and camber increase proportionally as yu increases (Fig. 6b to 6c) with the 
trailing edge wedge angle remaining unaffected (Fig. 6d) across the four test cases (Table 1 & Fig. 3). A 
repeat of the analysis for PARSEC variable yl, which controls the thickness contour on the pressure side of 
the airfoil, indicated similar behavior. The results demonstrate variations in yu and yl exhibit one-to-one 
thickness control which is a key requirement for an airfoil shape function. By coupling the two control 
parameters, thickness constrain is imposed on the geometry through variable manipulation, for an airfoil 
shape optimization problem. Thus, the final optimal shape will conform to user-defined thickness 
requirements.    

 
 
 
 
 
 
 
 
 
 
Aerodynamic performance with yu variations is presented in Figure 7. In general variations in yu 

coincide with established knowledge of airfoil aerodynamic performance of thick sections. The lift and drag 
coefficient rise, as airfoil thickness is increased (Fig. 7b to 7c). Airfoil aerodynamic analysis indicates delay 
in the onset of stall, with the maximum lift coefficient rising as airfoil thickness is increased. Smaller 
values of yu are related to acceptable lift-to-drag performance. With thickness constraints imposed on the 
model, the requirement of a robust optimization search model, for efficiently examining potential solutions 
within the identified thickness search limits is required.  

 
 
 
 
 
 
 
 
 
 

                rle                                                 Lift Coefficient                Drag Coefficient            Moment Coefficient   

                
                (a)            (b)           (c)          (d) 

Figure 5. Effect of Varying rle on Airfoil Aerodynamics 

                          yu                              Thickness-to-Chord                Camber         Trailing Edge Wedge Angle 

                  
                  (a)         (b)                 (c)                (d) 

Figure 6. Effect of Varying yu on Airfoil Geometry 

                       yu                                       Lift Coefficient            Drag Coefficient        Moment Coefficient 

                  
                     (a)                 (b)               (c)                   (d) 

Figure 7. Effect of Varying yu on Airfoil Aerodynamics 
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�  Summary of SOM Analysis 
The goal of utilizing SOMs for PARSEC airfoil definition is not to locate an optimum planform, but to 

obtain an insight into the cluster structure of the data. The technique provides vital information with regards 
to the sensitivity of the variables. The SOM mapping analysis was simulated over the ten PARSEC design 
coefficients and the relationship between variable, airfoil geometry and aerodynamics mapped. The entire 
set of SOM charts for each design variable is not presented in this paper. The analysis indicated that the 
shape variables provide one-to-one geometrical control as required from a shape parameterization method. 
The sensitivity of the design parameters was confirmed from the mapping analysis. Parameters xu and xl 
which control the chord-wise location of the maximum thickness point on upper and lower surfaces, are 
sensitive and need to be set accordingly to mitigate un-realistic airfoil geometries. Design values within a 
threshold 60.020.0 ££ ux for upper and 70.020.0 ££ lx for lower contours, constitute ‘realistic’ surfaces. 
The function loses one-to-one geometrical control of the respective design parameter outside of the 
identified range, due to the generation of undulating airfoils. This information is applied in the formulation 
of search limits and constraints during an optimization run to mitigate airfoils that are aerodynamically and 
geometrically unfeasible.  

The aerodynamic convergence data identified the influence of design coefficients on the aerodynamic 
properties of airfoils. It is evident that design coefficients with acceptable drag may not offer the required 
lift performance. Thus, a design compromise is necessary and the development of an intelligent search 
agent to address this issue needs to be the design focus.  

IV.  Airfoil Shape Optimization – Intelligent Search Agent Validation 
In this section, the search agent used for airfoil optimization is introduced and validated. The algorithm 

is tested over a series of benchmark functions, to determine the sensitivity of the model for convergence. 
SOMs are used to qualitatively show the results of the validation process. The maps illustrate the 
relationship between variables that control the search process, and the effect on solution convergence. From 
the charts, the set-up of the search model with robust convergence across the test envelope is established.  

A. Particle Swarm Optimizer 
A global seeking search agent capable of handling multi-objective problems is identified for this study. 

The PSO method, first developed by Eberhart and Kennedy26 evolves from the paradigm of swarm of birds. 
The method provides a simple and efficient architecture and is ideal for continuous variable problems. 
Consequently, the algorithm has been applied across various optimization disciplines.27 The methodology is 
similar to evolutionary programming techniques, with the population initialized through random dispersion 
of particles. Each particle maintains a personal record of its position, thus fitness from an optimization 
perspective. An information sharing methodology is initiated within the swarm to guide the remaining 
particles towards the group leader. Over time the particles reach a consensus and settle onto the final 
destination to provide an optimal solution.  

Each particle in swarm of size ‘m’, is a potential solution of the objective function and is represented by 
the relative position '' ix and velocity '' iv . The velocity rate of change (Eq. 3) is a function of user pre-

defined learning factors as follows: a) Cognitive;1c and b) Social 2c parameters that influence local and 

global search patterns. At each iteration the position ],...,2,1),([ ,...,2,1 mixxxx iniii ==  and 

velocity ],...,2,1),([ ,...,2,1 mivvvv iniii == of the individual particles is recorded and solution fitness evaluated 

and stored )].([ ,...,2,1 gngggbest PPPP = A particle with the ‘best’ global solution, ,'' gbestP from the population, 

is recorded and the remaining particles update their position and velocity to followgbestP over the 

subsequent iterations until solution convergence.27 At each iteration ,''k the search direction is refined by 
updating the position, ,)'1(' +kxi and velocity, ,)'1(' +kvi  (Eqs. 2 & 3) of the particles, with convergence 
occurring when all particles are within a set threshold of each other. 

The PSO algorithm has been adequately modified with the aim of implementing a robust model to be 
applied across various optimization problems.1, 28-30 The two variants tested in this study are as follows: a) 
Standard-PSO (SPSO) algorithim;29 and b) Adaptive Inertia Weight (APSO)1 model - Table 2. APSO was 
introduced to add greater search flexibility in comparison to the SPSO algorithm and to address the 
shortfalls of the standard search model.  
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The PSO requires user inputs to define the search parameters. In the two variants (SPSO and APSO), 
social and cognitive parameters are set to 221 == cc  and have been successfully applied in previous 
optimization studies.1, 27 The inertia weight factor ‘w’,  which provides a balance between local and global 
search patterns, is constant throughout the iteration run (Eq. 4) for the SPSO and is a function of user-
defined learning factors.29 Thus, social and cognitive parameters need to be set accordingly to influence the 
search behavior and is challenging to set. A new method of calculating w, was proposed by Qin. et. al1 , 
referred to as the APSO where w, is dynamically calculated at each iteration.1 The position of each particle 
within the swarm, including individual and overall global ideal solution (Eq. 5)1 is considered in the 
calculation of w within the APSO scheme (Eq. 6).1 At each iteration the behavior of the swarm is 
established and w modified, to adapt the model with the current search region. Theoretically, this 
methodology permits global search capabilities at the start of the PSO run with large values of w, which 
dampen into smaller values as the search region narrows.   

 
)1()()1( ++=+ kvkxkx iii  (2) 

))(.(.))(.(.)(.)1( 21 kxPrandckxPrandckvwkv igiiii -+-+=+  (3) 

;
42

2
2 jjj ---

=w where 421 =+= ccj  
(4)29 

Individual Search Ability (ISA): 
e+-

-
=

gjij

ijij
ij

pp

px
ISA  (5)1 

(0,1] range in the is   where;
1

1
1 aa ��

�

�
��
�

�

+
-=

- ijISAij
e

w  (6)1 

The effect of varying the maximum velocity of the particles across both the SPSO and APSO scheme is 
further examined in the validation run. If the maximum velocity of the particles is too high, the particles 
overshoot the dimensional space and the global minimum. This causes solution oscillations thus, increasing 
the number of iterations required for convergence. The application of wall boundary conditions will be 
required to re-instate the particles back into the search domain. To mitigate this requirement, the maximum 
velocity of the particles was examined in the range 0.1% - 10% of the maximum dimensional search space 

,'' maxl for each variable. The two PSO models examined in the validation study is summarised in Table 2: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Particle Swarm Optimizer: Model Variants for Validation 

PSO Model SPSO APSO1 
Scaling Learning Factors       

Cognitive & Social           

(c1 & c2) 

21 =c  

22 =c  

21 =c  

22 =c  

Swarm Population (m) 20,40 & 80 20,40 & 80 

Number of Dimensions (D) 10,20 & 30 10,20 & 30 

Maximum Iterations 1000,1500 & 2000 1000,1500 & 2000 

Inertia Weight (w) 

;
42

2
2 jjj ---

=w     

where 421 =+= ccj  

e+-

-
=

gjij

ijij
ij

pp

px
ISA  

0.3   where;
1

1
1 =��

�

�
��
�

�

+
-=

-
aa

ijISAij
e

w  

Maximum Velocity (Vmax) 0.1 – 10% of maxmax1 ,, nll �  0.1 – 10% of maxmax1 ,, nll �  
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B. Optimizer Validation 
Two mathematical functions (Fig. 8 to 9) are applied in the validation process. The objective (Eq. 7) is 

to use the two PSO models (Table 2), to locate the global minimum of the functions (Eqs. 8-9)  
Objective Function: min)(xf  (7)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The search parameters and the theoretical solution of the functions, is summarized in Table 3. 
 
 
 
 
 
 
 
 

C. Validation Results and Visualization  
�  Rosenbrock Function 
A series of SOM charts are applied to represent the results of the validation process. The fitness 

convergence for SPSO (Fig. 10b) and APSO (Fig. 10c), with variations in Vmax (Fig. 10a) as a percentage 
of search space (Table 3), over the number of dimensions D (Table 2), is represented by each cluster 
separator in Figure 10. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. PSO Set-Up for Test Function Evaluation and Summary of Theoretical Solution 

Function 
Dimension Search Space 

(l 1,2,...,n) 
Particle 

Initialization Range 
Global Minima         

(Theoretical Solution) 

Rosenbrock nixi ,,2,1,100100 �=££-  3015 ££ ix  0)(),1,,1( ** == xfX �  

Schwefel nixi ,,2,1,500500 �=££-  500250 ££ ix  0)(),1,,1( ** == xfX �  

 

 Low  Velocity = Low Fitness   
 
Velocity           SPSO         APSO 

     
   Vmax as a % of l max        Fitness         Fitness 
       (a)             (b)               (c) 

Figure 10. Rosenbrock Function Convergence: SOM Visualization 
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Schwefel  Function: 
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-=
n

i
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1

)sin(9829.418)(  (9) 
 

 
Figure 8: Test Function One: Rosenbrock Function 

 
Figure 9: Test Function Two: Schwefel Function 
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The SOM charts (Fig. 10a to 10c) indicate that low velocity equates to low fitness for both SPSO and 
APSO. This is evident across the entire test domain where an increase in D, equates to an increase in 
fitness. It is thus established, that particles need to navigate about the solution space at slow speeds to 
converge. Faster moving particles mitigate global minima regions by overshooting key areas of interest.  

Direct comparison between SPSO and APSO (Fig. 10b to 10c) indicates that the APSO provides 
superior convergence across the evaluated testing domain in comparison to the SPSO model (Fig. 10b). In 
all tests, the termination criterion is based on the maximum iteration count (Table 2). It is evident from the 
charts, that SPSO and APSO are not capable of converging to the theoretical solution based on the 
formulated termination criteria. In general SPSO indicates greater areas of ‘hot’ regions in ‘red’ shade 
referring to higher fitness. The APSO evolution, at the same operating conditions, consists of larger ‘cold’ 
regions in ‘dark blue’ shade, thus indicating that the APSO map consists of lower fitness in comparison, 
across the testing domain. Thus, comparison between SPSO and APSO (Fig. 10b to 10c) confirms that a 
linear decreasing inertia weight, where a global search process is enabled at the start of the search phase 
and local, during the later stages provides acceptable solution convergence. A fixed inertia weight causes 
solution convergence instabilities, as the search pattern (global vs. local) does not adapt during the search 
phase. 

The relationship between particle population 
(m = 20, 40, 80) and velocity as a function of 
fitness is represented in Figure 11. Higher 
particle population (m = 80), with the velocity 
restricted to approximately 0.1% of 

,  to maxmax1 nll indicates low fitness. At the same 

speed, with fewer particles (m = 20), fitness 
increases by 4% in comparison. It is observed 
from the test, that greater number of particles is 
required to assist convergence.  

The fitness presented here is compared with 
the findings reported by Z. Qin et al.1 with their 
AIWPSO model.1 Essentially the APSO used in 
this study is the model developed by Z. Qin et 
al.1 with the exception being in the treatment of 
the maximum velocity. Essentially Z. Qin et al.1 fixed Vmax equal to the maximum distance of each 
dimension.1 In this study, we examined the effect of varying Vmax for both models (Table 2) on solution 
convergence. Table 4 presents fitness comparisons between the SPSO, APSO and Z. Qin et al.1 AIWPSO 
model, with the data taken directly from literature.1 The SPSO and APSO data (Table 4), equates to a 
velocity threshold of 0.1% of ,maxl as this condition was proven to be most effective (Fig. 10 to Fig. 11). 
Comparing the SPSO with AIWPSO model, it is seen that in most conditions, the SPSO model yields lower 
fitness. Thus, the benefits associated with a linearly decreasing inertia weight, within the AIWPSO model 
does not provide the expected search benefits, as this is counteracted by the higher particle velocity. The 
SPSO model, which has a fixed inertia weight at lower velocities, outperforms a model with an adaptive 
inertia weight with higher velocities. Thus, the importance of correctly setting the maximum allowable 
velocity, on solution convergence is re-enforced.  

Comparisons between the APSO and AIWPSO model, indicates that the APSO provides superior 
convergence across the examined test domain, due to particle simulation at a lower velocity. Comparing the 
SPSO and APSO, it is evident that the adaptive inertia weight scheme clearly outperforms a model with 
fixed inertia weight, associated with the SPSO model. 

 
 
 
 
 
 
 
 
 

 
Figure 11. Rosenbrock Function: Effect of 

Varying Particle Population & Velocity on Fitness 
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�  Schwefel Function 
The Schwefel function, the second model applied for optimizer validation indicated similar results. It 

was observed that an optimum velocity of 0.1% of ,maxl  provided a theoretical fitness of zero. Solution 
convergence towards the theoretical minima was accelerated with a larger particle population. The position 
of the particles (Eq. 2), thus solution is dependent on the velocity (Eq. 3). By restricting the maximum 
speed, the probability of the particles overshooting a global solution over successive iterations is minimized 
thus, assisting convergence. 

V. Artificial Neural Networks 
The DNO process is computationally time demanding, especially if Navier-Stokes solvers are integrated 

for aerodynamic computation. PSO validation indicated the requirement for large number of particles to 
support convergence. A DNO 
simulation for single-point 
airfoil design analysis was 
attempted.31 The optimizer 
examined in excess of 2000 
airfoils before converging to an 
optimal planform.31 With the 
integration of panel method 
solvers, computational time was 
negligible. By replacing low 
fidelity solver with Navier-
Stokes model for solution 
accuracy, the computational 
time is excessive, thus the use 
of ANN is proposed to address 
this issue. 

It is hypothesized that a 
trained network, when integrated to a DNO structure, will significantly reduce the computation expense of 
airfoil shape optimization. The network will de-couple the solver from the DNO process, with the swarm 
algorithm operating simultaneously with the neural network. The technique was successfully applied in the 
design of single15 and multi-element airfoils,10 including the design of turbomachinery sections11 and in the 
minimisation of wind tunnel data for aerodynamic performance evaluation.14 In this study, an ANN 
structure is introduced (Fig. 12), to develop a relationship between PARSEC airfoil shape variables as 
inputs and the equating aerodynamic coefficient as output.  

 
�  Neural Network Training and System Generalization  

The network training data consisted of 3000 PARSEC airfoils generated by Latin Hypercube Sampling 
(LHS). A training dataset with LHS methodology guarantees acceptable, uniform distribution for the 
proposed solution space. A requirement of neural network is to provide acceptable generalization 
performance with minimal training dataset. The LHS methodology for training dataset distribution provides 
an acceptable framework to address this requirement.               
 A batch training process with Bayesian regularization by MacKay,32 and the combination of Levenberg-

 

Figure 12. PARSEC Airfoil Artificial Neural Network  Structure 

Table 4. Rosenbrock Function: Fitness Evaluation Comparison through different PSO Model  

Population Size Dim Max. 
Iteration SPSO APSO AIWPSO1 

20 10 
20 
30 

1000 
1500 
2000 

34.4393 
92.4618 
156.8884 

17.1394 
17.3522 
19.1374 

48.6378 
115.1627 
218.9012 

40 10 
20 
30 

1000 
1500 
2000 

18.0475 
85.2453 
129.5636 

17.2192 
16.7663 
18.8235 

24.5149 
60.0686 
128.7677 

80 10 
20 
30 

1000 
1500 
2000 

13.2744 
79.2820 
100.9905 

17.8872 
17.9988 
18.3088 

19.2232 
52.8523 
149.4491 

a Bold face indicates the best result in the respective PSO variant test run 



 
American Institute of Aeronautics and Astronautics 

 

12 

Marquardt training algorithm is used to train the network. The aerodynamic computations for network 
development and validation were simulated at a Reynolds and Mach number of 3.0 million and 0.35 
respectively at an angle-of-attack of zero degrees. The training goal for convergence was set with one of the 
following conditions: 
�  Network Training Error - Zero Sum-Square-Error between theoretical and network computed lift 
coefficient; or 
�  Overfitting - When network exhibits over-fitting of training data over a succession of 50 training 
iterations 
 In total ten networks with different combinatorial experiments were conducted with the following 
network structure variations: 
�  Data Preprocessing – To improve network efficiency, inputs and outputs were scaled within a specified 
range. Two normalization techniques were tested: 

�  Normalizing data in the range [-1,1]; and 
�  Normalizing data to have a mean of zero and unity standard deviation  

�  Number of Hidden Layers – Variation in the size of hidden layers was tested; and  
�  Transfer Functions – Order of sequence of transfer functions within the hidden layers with variations in 
tan-sigmoid and log-sigmoid functions. Linear function used to model the output data 
  A minimum number of 50 neurons were evaluated within the hidden layers. This is based on a 
thumb-of-rule assumption that the number of neurons in the hidden layer equals five times the number of 
input neurons (ten PARSEC variables). The assumption was proven reasonable by Rajkumar et. al. in the 
prediction of lateral and longitudinal aerodynamic forces using neural networks.20 Results with variations in 
network architecture for two networks, with acceptable convergence based on the measure of R-Square 
correlation value for 1000 generalization airfoils is presented in Table 5.  
 
 
 
 
 
 
 
 
 
 

 
The two networks exhibit similar performance based on the R-Correlation measure from network 

generalization simulation (Table 5). The response of the models is presented by performing a regression 
analysis between network response and the corresponding targets (Fig. 13). The network outputs are plotted 
versus the targets (open circle data points) and the best linear fit, through the data is indicated by the 
‘dashed’ line. The correlation between network and target data is indicated by a ‘solid’ line (Fig. 13). The 
charts (Fig. 13a & Fig. 13b) for the two networks, indicates acceptable linear fit. Model 2 exhibits a higher 
R-Correlation of 0.98 in comparison to 0.97 for Model 1 (Table 5 and Fig. 13).       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5. Neural Network Configuration for PARSEC Airfoils Lift Coefficient Prediction  

 Transfer Function 
Model 

ANN  
Architecture 

Training 
Algorithm  Input -

Hidden 
Hidden -  
Output 

Training 
Dataset 

Generalization 
Dataset R-Square 

1 10-60-50-1 
Bayesian 

Regularization 
with LM 

tansig tansig 3000 1000 0.97 

2 10-50-50-1 
Bayesian 

Regularization 
with LM 

tansig logsig 3000 1000 0.98 

-0.2 0 0.2 0.4 0.6 0.8
-0.2
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Best Linear Fit:  A = (0.956) T + (0.0144)

R = 0.97

Data Points

Best Linear Fit

A = T

 
(a) Model 1: Network Generalization Regression 

Analysis 10-60-50-1; tansig - tansig 
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Best Linear Fit:  A = (0.958) T + (0.0146)

R = 0.98

Data Points

Best Linear Fit
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(b) Model 2: Network Generalization Regression 

Analysis 10-50-50-1; tansig – logsig 
 

Figure 13. Neural Network Regression Analysis for PARSEC Airfoils Lift Coefficient Prediction 
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The R-Correlation value is further defined against the proposed network output - coefficient of lift over 
the generalization population data. A summary of network results, based on the measure of percentage 
difference between network output and theoretical data, over a testing envelope of 1000 airfoils of the two 
models is presented in Table 6.   

 
 
 
 
 
 
 
Theoretically, an R-Correlation value of 0.98 indicates an excellent fit between two datasets. The 

measure is analysed as function of aerodynamic lift approximation of PARSEC airfoils from neural 
network simulations. A percentage error of approximately 15% between network output and theoretical 
solution over the tested population of 1000 airfoils is evaluated for Model one, compared to 12% for second 
model. Both models contained samples where the predicted lift represented the theoretical solution, thus a 
minimum percentage error of zero (Table 6). Maximum percentage difference in the two models is large 
(Table 6). This corresponds to a point were the theoretical lift coefficient is close to zero and the network 
fails to adequately simulate data at this region. A histogram analysis of the two models, to illustrate the 
frequency airfoils, belonging to several groups of percentage error categories is presented in Figure 14. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The percentage error histogram is in intervals of 10% (Fig. 14) and distributed evenly in the two charts 

(Fig. 14a & 14b) for ease of comparison. Most airfoils are in interval one for the two models thus, 
representing an error of 0% - 10% between network simulation and theoretical data.  Model one simulates 
70% of airfoils out of the total 1000 with an error less than 10% compared to 68% for Model two. Over the 
first two intervals, relating to a percentage error of 0% - 20%, network one models 83% of airfoils 
compared to 82% for Model two. Thus, over the first two intervals, the two networks (Table 6) present 
similar performance. The difference between the two models is in scatter of data, in particular the presence 
of outliers defined as Range-Quartile-Inter5.1 ´ . Model one contains 104 outliers compared to 94 for 
Model two. Percentage errors in excess of 800% are present for the extreme most outliers in Model one, 
compared to 294% in Model two. The excessively high percentage errors within the outliers in Model one 
result in a higher mean error percentage in comparison to Model two. 

It is evident from the analysis, that the neural network methodology is suitable for the proposed 
architecture (Fig. 12). Percentage errors greater than 10% are considered excessive and approximately 30% 
of airfoils (300 out of 1000) exceeded this threshold in Model two, which is optimal from the initial ten 
networks developed and tested in this study. Thus, the neural network requires design modifications to 
further reduce the percentage error and the scatter of data, in particular the presence of extreme outliers. At 
this stage, the training dataset was fixed to 3000 airfoils with the size dependent on the available computing 
hardware. Further increases in training population demand greater computing memory. Thus, alternate 

Table 6. Neural Network Configuration for PARSEC Airfoils Lift Coefficient Summary of Errors  

Model ANN  Architecture Min. % Error Max. % Error A verage % Error 
1 10-60-50-1 0 1766 15.32 
2 10-50-50-1 0 294 12.46 
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(b) Model 2 

 
Figure 14. Histogram of Percentage Errors  
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training algorithms and/or computer hardware that support the required memory requirements, need to be 
explored to address this constraint.   

VI.  Conclusion and Future Work 
The DNO approach for airfoil design and analysis was introduced. A study to independently validate the 

components within the DNO architecture was proposed. A data mining technique, through SOM charts was 
applied to project multi-dimensional output data, into two dimensional maps for results visualization. 
Within the overall DNO structure, the following components were validated for eventual integration in 
airfoil design optimization architecture: 
�  Definition of PARSEC shape function design variables; 
�  Validation of the PSO model; and 
�  Design and validation of an ANN structure to model the lift coefficient 

The behavior of the design variables within the PARSEC function was defined. A series of PARSEC 
airfoils were generated (Fig. 3) and periodic perturbations applied to each variable to study the effect on 
airfoil geometry and aerodynamics. It was proved that variables provide one-to-one geometrical control 
which is a key requirement for a parameterization technique, such that shape constraints can be imposed. 
All variables are operational up to an identified threshold, beyond which un-realistic shapes are generated. 
This further assists in the development of search limits of the PARSEC coefficients for detail design 
optimization routines. Aerodynamically, the effect of variable perturbations on airfoil performance was 
mapped, with the findings conforming to established aerodynamic knowledge. The variable definition 
process provided an indication as to the expected behavior of each variable, and the design limits under 
which these variables can operate. Consequently, geometrical constraints through each of these variables 
can be imposed and the search limits defined with confidence, to mitigate the optimizer searching for 
airfoils that are geometrically and aerodynamically unfeasible.  

A PSO search agent was proposed with two variants tested. A series of simulations over two benchmark 
functions was undertaken to determine the suitability of each model. The effect of varying particle 
population and velocity across multiple dimensions, on convergence towards the theoretical solution was 
examined. The results were mapped onto a series of SOM charts, which indicated that the adaptive inertia 
weight model was superior in comparison to a standard PSO algorithm. Large particle population with low 
velocities provides acceptable convergence in comparison to an optimization run with fewer particles 
navigating at faster speeds. Current research focuses on developing an adaptive inertia velocity function, 
similar to the inertia weight model, to adapt the speed of the particles through a PSO run. This has the 
potential of providing greater solution agreement with fewer design iterations.  

The ANN methodology within the overall DNO framework was introduced. The PARSEC design 
variables were used as inputs, with the lift coefficient as output to the system (Fig. 12). Preliminary results 
indicate that the proposed methodology is suitable for design application within the DNO structure. The 
model proposed requires further design, development and validation to reduce the simulation percentage 
errors. Current research focuses on increasing the training dataset of the network, with the aim of 
simulating output data that represents the theoretical solution with minimal percentage difference. Network 
development to simulate drag and moment coefficients is also a present research activity.  
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