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Abstract

In this paper, a new numerical method for solving time-fractional diffusion equations is introduced. For this
purpose, finite difference scheme for discretization in time and Chebyshev collocation method is applied. Also, to
simplify application of the method, the matrix form of the suggested method is obtained. Illustrative examples
show that the proposed method is very efficient and accurate.
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1. Introduction

Fractional partial differential equations (FPDES)
have comprehensive application in the real world.
For example, see [1, 2, 3]. For this reason FPDES
have attracted the interest of many researchers.

Most FPDEs do not have an exact analytic
solution, thus numerical scheme must be used. The
principals of these methods are Chebyshev spectral
approximation [4], Walsh function method [5],
homotopy perturbation method [6, 7], Adomian
decomposition method [8, 9], variational iteration
method [7] and generalized differential transform
method [10].

One kind of FPDEs is time-fractiona partial
differential equations (TFPDEs). The analytical
solutions of the TFPDES are studied using Green's
functions or Fourier-Laplace transforms. For
instance, see [11, 12, 13]. Also Jiang, et a. [14]
have used high-order finite element methods for
time-fractional partia differential equations.

In this paper, we consider a type of TFPDEs that
can be obtained from the standard diffusion
equation by replacing the first-order time derivative
by Caputo fractional derivative of order O0< ¢ <1.

More precisely, we study time fractional diffusion
equations (TFDES)

a"u(xt)  d’u(x.t) _

attz 6)(2 p(th)y O<X< I_, 0<t§T, (1)

subject to the following initial and boundary
conditions:
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u(x,0) = f(x), O0<x<L, %)
u(0,t)=u(L,t)=0, O<t<T, ©)
where 0< a <1.

The fractional derivative in (1) isthe

o“u(x,t)

ata
Caputo fractional derivative of order & defined by
[3]:

uxt) _ 1 J-t
ot r(1-a)®

(t—r)'“wdr, O<a<l.
or

Lin and Xu [15] have solved TFDESs by using
finite difference and spectra approximation. In
addition, Murio [16] has proposed implicit finite
difference approximation for solving TFDEs. Also,
Crank-Nicolson finite difference method is used by
Sweilam and et a. [17] to solve TFDEs.

The aim of this paper is to use a semi-discrete
scheme and Chebyshev collocation method for
solving time-fractional diffusion equations in the
form (1)-(3).

2. Description of the method

In this section, finite difference scheme and
Chebyshev collocation method is used for solving
TFDEsasin (1)-(3).

2.1. Finite difference scheme for discretization in
time

We describe a finite difference method to
discretize the timefractiona derivative. Let
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t. =kAt, k=0,1,...M where At :% is

the time step.
The time fractional derivative term can then be
approximated by the following formulation [15]:

for k=01,..,M -1

ulxte,) 1 g oy 6u(x 7)
T a)Zj (=) dr

1 ux,t,)-ulx.t) ey, dr » @)
F(l a)JZ; At J.tj (tk+1_f)a + Vs

where }/Kﬁl is the truncation error. It can be seen

that the truncation error takes the following form:

7at <, . a)Zj Mt —7) " (0 —t, - 20)d7 + O(AL?),

where C, isaconstant depending only on u.
Also, from [15] it can be seen that

7';* 1<Cu AtFe,
Since t, =k At, k=0,1,...,M thus

()7 =) =(( +DA)™ - (jAt)™
= (A () +D™ =),

therefore, from (4) we obtain

ruxt,) o 1 i“U(x,tM)—U(x,t,»)thl dr
t

ac rl-e) i At i a0
1 Zu(x’tjﬂ) U(X’t )J‘tk j+1 dé:
F(l a)is At b &7

_ 1 Zu(x7tk—j+1)_u(x’tk—j)J‘tj+ld_§
'l-a)i= At o &

_ AT & U(X1tk—j+1)_u(xltkfj)[(j LD e
r2-a)i= At

—_ 1-a rla .
Let b, =(j+1)™“-j7*, j=01..M,
thus we have

6au(xrtk+1) At ib] [u(x,t,_ |+1) uxt, J)] (5)

ac rR-a)s

Now from (1) and (5) for Kk =0,1,..., M =1 we
obtain:

At ol U(X tk 1) _ (6)

zbk u(xty,) —u(xt;)] - = p(Xte)-

r2-a)i:

Let U(X,t) =u(X), and p(X) = p(Xt),
then from (6) for k =0,1,..., M —1 we have

At

F(Z Uk+1(x) - pk+1(X) (7)

Z[ () =4, (b —

2.2. Chebyshev collocation method

First, Chebyshev polynomials and some of their
properties are briefly reviewed in this section.

Definition 1. The Chebyshev polynomials of the
first kind of degree N are defined on the interval

[-1,1] as[18]
T,(X) = cog(narccos(x)).

T,() =1, T(X)=X and they satisfy the

recurrence relations:
Tn+1(X) = 2X-I-n(X) _Tnfl(x)i n= 1;2;' .

In order to use these polynomials on the interval
xe[0,L] we define the so caled shifted
Chebyshev polynomials by introducing the change

2
of variable Z:IX—l. The shifted Chebyshev

polynomials are defined as: T, (X) =T, (% x-1).

Now we expand U, (X),k=0,1,...M -1 by
shifted Chebyshev polynomials:

U, (X) = i rik

where rok , rlk yeoes r,'j are unknown coefficients.

T°(x), k=1,..,M, (8)

For convenience, let 1 =T'(2—a)At”, then by
using (7) and (8) for k =0,1,...,
simplifications we obtain

M —1 and some

N

DT (90— T (9

j=0 i=

kK N 9
=3 ST (0B + 4 P (X).

=0 i=0

In order to find the unknown coefficients,
Chebyshev collocation method with collocation
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points xﬁ:%cog(nW”)+%, n=01,..,N is

applied.

Sl 1= - Kl
Z;,)Z;,riﬁ T (X)b _ﬂZ.:ri T (%)
j=0i= i=

ko (20)
:er\l T|*(Xn)bk7] + 4 Pea (%), k=01,...,M -1, n=1,...,N-1.

Also, boundary conditions 3 for
k=0,1,..,M —1 are applied to obtain

N
Ut (%) = D1 T (%) =0, (11)
i=0
N
U, (Xy) = z I’ikJrl T (%) =0. (12)
i=0

Therefore, egautions (10)-(12) generate a set of

(N+1) algebraic equations, which can be solved to

find unknown coefficients rok, rlk yeeny r,L‘ .

Remark: Clearly Uy(X) can be obtained from the
initial condition asfollows:
U (X) = u(X,tp) = ().

3. The matrix form of the proposed method

In order to find the matrix form of the proposed
method, first, by using (10) for n=1,2,..., N -1
we obtain the preliminary matrices T and Q.
Finally, by using (11) and (12) the matrix form for
this method is achieved.

By separating the k™ term from the first term of
the left hand side of equation (10), for

n=0,1,.,N-1, weobtain

irlkﬂT\*(Xn)bD7ﬂirwk+l-rl*”(xn) (13)

k N k-1 N
= zzr\J Tl*(xn)bkq 7zzrwﬁlT|*(Xn)bk—| +/t pk+l(xn)'

For the terms in RHS of the above equation by
making the same upper indices, since b, =0 we
have

R (T () T
;r. (M7 (Xa) =T (X,)) "

)

k
j=0

N .
Z r.iJ Ti*(Xn)(bk—j _bk—j+1)+/u pk+l(xn)'
i=0

Therefore, the matrix form can be obtained for
k=01,.,M-1 and n=12,..,N-1, as
follows:

T[N = Y (0~ BRI + Pl (19)

where
[r]1* =[rS S ST, (16)
[ p] o = [ pk+1(xl)! pk+l(X2)""1 pk+l(XN—l)]T ’ (17)

and the matrix elementsof T and Q are

. T (%), 1<i<N-1,j=12 (18)
oTLX) - a T (%), 1SiSN-13<j< N+,

G =T (%), 1<i <N-1,1< j<N+1 (19)

Finally, from boundary conditions (11) and (12)
the matrix form of the suggested scheme can be
obtained

Alr]* = Z(bm ~B,)BIr]" +[d]*,  (20)

where matrix el ements of A and B are

T1(%), i=11<j<N+1
- TL(%) i=N+11< j<N+1,
N Tra(), 1<i<N-1j=12 (21

T (0) - 4T (%), 1<i<N-13<j<N+1,

i=1,N+11<j<N+1,

b, =1. ; . _ 22)
T (%), 1<i<N-L1<j<N+1,

and

[d]** =[0,u Prca (%) 2 Preca (%) Preca (X 1),01" (23)

4. Numerical examples

In order to illustrate the performance of the
proposed method in solving timefractional
diffusion equations the following examples are
considered. Also, for justifying the accuracy and
efficiency of the suggested method, the numerical
results thus obtained are compared with other
methods.

Remark: In al of the examples, the time step is
taken as At = 0.001.

Example 4.1. [17] Consider the following time-
fractional diffusion equation
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a"u(xt)  d%u(x.t) _ 0
ot” ox?

, 0<x<1, 0<t<1],

with theinitial condition
u(x,0) =sin(zx), 0<x<1

and the boundary conditions

u(0,t) =u(1,t)=0, 0<t<1.

The exact solution of this problem for o =1 is

—71'2t :
u(x,t)=e” "sin(zx) . The proposed method
was applied and the following results were
obtained.
In Table 1 absolute error function

[U(X,1) = U (XD | for @ =1, N=6 in

x=0,0.1,0.2,...,0.9,1 is reported. Computer
plots for different valuesof a giveninFig. 1 show
that as « approaches to 1, the corresponding
solutions of time-fractional diffusion equation in
t = 0.001 approach the solutions of integer order
differential equation.

Note that this problem has been solved in [17] by
using Crank-Nicolson finite difference method. In
Table 2 we illustrate the magnitude of the
maximum error at time t =1 between the exact
solution and the numerical solution at different

vauesof At =k and AX = h by this method.

Table 1. Absolute errors for example
4.1withN=6for & =1

X |U(X,2) — Ugpprox(X,1)

0 0
01 4.23<10°
02 7.48x107°
03 2.27x10°°
04 4.13x10°°
05 6.39x10°°
0.6 5.12x107°
0.7 2.93x10°°
0.8 1.80x10°°
09 3.44x10°®

1 0

02+

0.6 o

0.4+

02+

T T T T ¥
o 0z 04 0é 0g 1

o=0.2 — o=0.5 o=0.8 — o=1

<  exact solution

Fig. 1. Approximate solution with N=6 and different
valuesof & for Ex. 4.1

Table 2. Maximum error for the numerical solution using
(C-N-FDM) at t =1 for Ex. 4.1.

At AX  Maximum error

0001 23  0.7816x10°
0.001 2%  0.2454x10°°
0002 25  0.1969x10°°
0002 26  0.1645x10°°
0002 27  0.1566x10’

Example 4.2. In this example, we solve
numerically the time-fractional diffusion equation
(2) with the following initial condition [14]

u(x,0)=0, 0<x<1,
and boundary conditions
u(o,t) =u(1,t) =0, 0<t<1,
and the source function

2

t>* sin(27x) + 47t Sin(27x).
I'B-a)

p(xt) =

The exact solution of this problem is
u(x,t) = t*sin(22x). We solved the problem for

a=0.5 by applying the proposed technique
described in section 2.

In Table 3, the maximum error between the exact
solution and the approximate solution for N =3,

t=0.1,0.2,...,0.9,1 and 0< X <1 is obtained.
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Figure 2 shows the exact solution and approximate
solution for u(x,1) with N = 3.

In [14], high-order finite element method has
been developed by Jiang and Jingtang to solve this
method. Table 4 shows maximum absolute error by

using this method for ¢ = 0.5, L =20000 and
different valuesof N .

Table 3. Maximum absolute errors for example
4.2 with N=3in domain 0< X<1

X maxl U(X,t) - uapprox(xvt)

01 5.21x107"
0.2 8.62x1077
03 8.73x1077
04 5.43x10°°
05 7.39x10°°
06 9.94x10°°
0.7 2.28x107°
08 3.72x10°
09 4.31x107°

1 6.50x107°

0.5

T T
0z 0.4

=054

el

Fig. 2. Approximate solution and exact solution for
u(x,1) with N =3 for Ex. 4.2

Table 4. Maximum absolute errors for example 4.2 with
a = 0.5 by using the method in [14]

N 10 15 20 25

maﬁ u"-U "Hw 801877x10°  15856x107°  4.9917%10° 2.0658x10°°
N 30 35 40

ma% u"-U" 0.9666x107  53572x107  3.1174x107

5. Conclusion

In this paper, a semi-discrete scheme for time-
fractional diffusion equations by using finite
difference and Chebyshev collocation method was
studied. Since using matrix form of the method is
more convenient for application of collocation
method, the matrix form for the suggested method
was obtained. The solution of time-fractiona
diffusion equations by this method is quite
satisfactory. The results of numerical examples
confirmed the relaibility and efficiency of our
method.
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