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We propose a reduction of the minimization problem for a bottom-up deterministic tree automaton
(DFTA) to the minimization problem for a string deterministic finite automaton (DFA). We proceed
by a transformation of the tree automaton into a particular string automaton and then minimize the
string automaton. We show that for our transformation, the minimization of the resulting string au-
tomaton coincides with minimization original tree automaton. We also discuss the complexity of this
approach in different types of tree automata namely standard, acyclic, incremental, and incrementally
constructed tree automata.

1 Introduction

Tree automata constitute a powerful theoretical tool used in many fields such as XML Schema [15],
natural language processing, verification techniques, and program analysis, but relatively few general
tools and toolkits exist for algorithm experimentation. In this context, we develop a framework 1 that
allows manipulating tree automata and representing large amounts of data as trees.

Minimization is considered as a useful technique to compact the size of automata. In the literature,
almost all the minimization techniques [4, 3] are inspired by string automata minimization which was
studied for the first time by Huffman and Moore. Their algorithm is based on the definition of distin-
guishable pairs of states. At the end of the algorithm, all states judged undistinguishable are merged.
Later, Hopcroft [11] defined a new algorithm which proceeds by refining the coarsest partition until no
more refinements are possible.

Following the same steps, minimization techniques for tree automata have emerged. Early in 1967,
Brainerd [4] proposed the first DFTA minimization method which we call standard method. Since then,
several algorithms and implementations have been created, all following the same approach as Brainerd’s
algorithm, e.g. Arbib [3], Gésceg and Steinby, and Comon et al.

After that, Watson [12] designed the first incremental minimization algorithm. It is based on a re-
cursive function that decides if two states are equivalent. Unlike classical techniques, the process can be
halted at any time and produces a valid tree automaton that recognizes the same language as the departure
one. That algorithm was subsequently refined by Watson and Daciuk [14]. This incremental algorithm
constitutes the basics of many other techniques [2].

However, incrementality is an ambiguous term and has been used by Carrasco et al. [6] to inter-
pret another manner of minimal automata building. In fact, this work is a generalization of a previous

1Project 8/U03/7015 supported by the MESRS - Algeria.
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work [7] on strings. The “incremental” notion is employed here to describe the construction instead
of the construction instead of states verification. Hence the minimal tree automaton is constructed by
adding trees to a minimal tree automaton while maintaining minimality.

As mentioned above, in the wish to develop a toolkit to manipulate tree automata, our observation
from minimization techniques studies is that there exists a degree of analogy with the string automata
minimization2. The question is therefore: does there exist some transformation from a tree automaton
(DFTA — a deterministic finite tree automaton) to a string one (DFA — a deterministic finite string
automaton) while its minimization coincides with the minimization of the original one. The DFA can
then be minimized using one of the well-known techniques, then the result will be transformed back to a
DFTA which will be the wanted minimal tree automaton.

In fact, this idea is not completely novel. First, Carrasco et al. [5] define a “signature” to each state
which represents the “behaviour” of a state in the minimization process. Next, Abdulla et al. [1] extend
this notion to compute an equivalance relation between states called “upward bisimulation” in order to
minimize nondeterministic finite tree automata (NFTA). They transform the computation of the equiva-
lence relation to the resolution of a transition system which is similar with string automata. Therefore the
complexity of this minimization is O(|A ||Q| log(|Q|)) where |A | is the size of the automaton and |Q|
the number of its states. This complexity can be mapped to deterministic finite tree automation (DFTA)
by using Högberg et al. [8].

In this paper, we continue in this direction and we construct a string automaton which can fully
replace the tree one for minimization purposes. Abdulla et al. defined an equivalent transition system that
can be used to compute the Myhill-Nerode relation and discussed complexity for standard minimization.
The focus of this present paper is on proving that tree automata minimization can be done through string
automata minimization techniques which are well studied and the different implementation are available.
After the definition of an associated string automaton to a given tree automaton and the proof that Myhill-
Nerode congruence coincides in both automata. We show that for the deterministic minimization, the
complexity is improved in the way that it is given in function of the string automaton instead of the
tree automaton. Next, we show that the associated string automaton minimization coincides also with
the acyclic, incremental minimizations. Finally we discuss the complexity in all of theses minimization
classes and we show that some results are new and improved. Thus, it will be shown that the associated
string automaton can fully replace the initial tree automaton in any minimization technique and reaches
in almost all cases a better complexity.

The paper is organized as follows. Section 2 recalls some preliminaries on trees and their automata.
Next, the standard minimization algorithm is given with a complexity discussion. After that, in Section 4,
we detail the basics of our approach and the algorithm then we discuss its complexity in the deterministic
case. Section 5 discusses the method impact in acyclic, incremental and incremental construction mini-
mization techniques and reports their complexities. Finally, Section 6 presents some concluding remarks
and suggestions for future work.

2 Preliminaries

A ranked alphabet is a pair (Σ, Arity) where Σ is a finite set of symbols and Arity is a mapping
Arity : Σ→ N where N is the set of nonnegative integers. The arity of a symbol f ∈ Σ is noted
Arity( f ), the subset of p-ary symbols of Σ is Σp = { f ∈ Σ | Arity( f ) = p}. We use the notation
f , f ( ), f ( , ), . . . , f ( , . . . , ) respectively for constant, unary, binary,. . . , p-ary symbols. For the sake of

2Similar approaches are being taken by several other tree automata researchers.
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simplicity, we use just Σ to represent a ranked alphabet (Σ, Arity). The set of trees or terms T (Σ) over
a ranked alphabet Σ is the smallest set satisfying Σ0 ⊆ T (Σ) and if p > 1, f ∈ Σp and t1, t2, . . . , tp ∈ T (Σ)
then f (t1, t2, . . . , tp) ∈ T (Σ). A tree language L is a subset of T (Σ). The set St(t) of subtrees of a tree
t = f (s1, . . . ,sn) is defined by St(t) = {t}∪

⋃n
k=1 St(sk). The set t(r← s) is the set all trees in which we

substitute every occurrence of the subtree r ∈ St(t) by the tree s once.
A bottom up finite tree automaton (FTA) over a ranked alphabet Σ is a tuple A = (Q,Σ,Q f ,∆) where

Q is a finite set of states, Q f ⊆ Q is the set of final states and ∆ ⊂
⋃

n≥0 Σn×Qn+1, n ∈N is a finite set
of transitions. The size of a transition ρ = ( f ,q1, . . . ,qn,q), f ∈ Σ, q,q1, . . . ,qn ∈ Q is |ρ|= n+1. Then
the size of the automaton A is defined as
|A |= ∑ρ∈∆ |ρ|. From now, we consider the deterministic FTA (DFTA)

The transition function d for a DFTA is:

d :
⋃
n≥0

Σn×Qn → Q (1)

d( f ,q1, . . . ,qn) = q,( f ,q1, . . . ,qn,q) ∈ ∆ (2)

Γ(q) = {( f ,q1, . . . ,q, . . . ,qn) | ( f ,q1, . . . ,q, . . . ,qn,q′) ∈ ∆} denotes the set of arguments extracted
from transitions in which the state q appears but not as an output.

occq(( f ,q1, . . . ,qn)) = {i | qi = q} denotes the set of positions of the state q in the argument
( f ,q1, . . . ,qn).

Let ρ = ( f ,q1, . . . ,qn) be an argument, then ρ(q :i p) = ( f ,q1, . . . ,qi−1, p,qi+1, . . . ,qn) such that
qi = q denotes the argument computed by substituting q by p in a precise place i in ρ .

In fact, some authors add a special state noted ⊥ to complete a tree automaton, this completion is
usually used to define equivalence between states. Here, we use Γ to avoid the completion of DFTA and
then to define states equivalence using only the existing transitions.

For t ∈ T (Σ), the output mA (t) when A operates in Q is the state in Q recursively computed as:

mA (t) =
{

d(t) If t ∈ Σ0
d( f ,mA (t1),mA (t2), . . . ,mA (tn)) If t = f (t1, t2, . . . , tn) ∈ T (Σ)−Σ0

(3)

A tree t is accepted by A if and only if mA (t) ∈ Q f .
The language accepted by A is: L(A ) = {t ∈ T (Σ) | mA (t) ∈ Q f }.
In the same way the accepted language (down language) by a state q is defined as follows: L↓(q) = {t ∈
T (Σ) | mA (t) = q}.
The residual (top) language of a state q is defined as follows: L↑(q) = {t(s ← #) | t ∈ T (Σ),s ∈
L↓(q) and mA (t) ∈ Q f }.

Then, a state q is accessible if L↓(q) 6= /0. Furthermore, a state q is co-accessible if there exists
t ∈ T (Σ∪{q}) such as q ∈ St(t) and mA (t) ∈ Q f . A state is useless if it is neither accessible nor co-
accessible. Useless states and the transitions using them can be safely removed from Q and ∆ respectively
without affecting L(A ). We can remove all useless states in O(|A |). Thus, we suppose throughout this
paper that every tree automaton is free from useless states.

3 Tree automata minimization

As this work focusses on deterministic minimization, this section presents the standard deterministic
approach and gives the most adopted algorithm. In fact, this standard algorithm is a “reincarnation”
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of the first DFTA minimization due to Brainerd [4] from which every standard DFTA minimization
algorithm is derived. We note that every deterministic tree automaton can be minimized by computing
states equivalence classes and then merging equivalent states.

Let A = (Q,Σ,Q f ,∆) be a DFTA. We define over Q the following equivalence relation ≡. p≡ q if:

1. p ∈ Q f ⇔ q ∈ Q f and,

2. for all ρ ∈ Γ(p), i ∈ occp(ρ) : ρ(p :i q) ∈ Γ(q) and d(ρ)≡ d(ρ(p :i q))

Minimization for DFTA was first discussed in the late 1960s by Brainerd [4], and standardised in [5].
It computes the equivalence relation ≡ by successive approximations (≡ j) j≥0:

1. p≡0 q if and only if (p ∈ Q f ⇔ q ∈ Q f )

2. p ≡ j+1 q if and only if p ≡ j q and for all ρ ∈ Γ(p), i ∈ occp(ρ) : ρ(p :i q) ∈ Γ(q) and d(ρ) ≡ j

d(ρ(p :i q))

The computation of the family (≡ j) j≥0 can then be done by successive approximations until reaching
the stable point, that is, some natural number k such that ≡k =≡k+1.

Lemma 1 For k ≥ |Q|−2, we have ≡k+1 =≡k

Algorithm 1 describes in a general way the standard tree automata minimization. It iterates over a
sequence of steps. First, the initial partition is set to {Q f ,Q−Q f }. Next, at each iteration i, the current
partition Pi is split by computing ≡i.

Let us recall that this standard algorithm is quadratic and needs O(|A |2). There exists several im-
plementations of this standard algorithms like Carrasco et al. [5] which are quadratic too.

Furthermore, there exists other tree minimization techniques like acyclic, incremental and incremen-
tally constructed ones. But before discussing them, let us introduce our transformation.

4 From DFTA to DFA

The main idea of our reduction is to create an associated string automaton to a FTA to be minimized.
Instead of minimizing the wanted FTA, we proceed by minimizing its associated FA. In this section, we
show how to construct this FA and we prove some efficient properties, the minimization of this FA is left
to the next section.

This idea is not completely novel. First, Carrasco et al. [5] designed a “signature” for each state. We
can say the signature plays the role of states “behaviour” in the minimization process.

After that, Abdulla et al. [1] use another way to identify states behaviour in order to provide a NFTA
minimization. They compute a composed bisimulation relation which composes downward and upward
bisimulation relations. The authors reduce the computation of the upward bisimulation to the resolution
of word finite transition systems.

The authors prove that for this transformation, the computation of the upward bisimulation can be
done by computing an analog equivalence function on the word TS. This can be done using Tarjan-Paige
algorithm [9].

For DFTA, this transformation holds using results of Högberg et al. [8]. They report that the upward
bisimulation can compute the minimal DFTA.

Based on the previous works, we continue in this direction and we propose a transformation using
a similar reduction to that proposed by Abdulla et al. that creates a valid string DFA to prove then
that it can replace the DFTA to be minimized in any of minimization techniques and then proving that
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there is no need to re-implement those algorithms anew. We show also that in term of complexity, this
transformation gives the same complexity as the direct techniques in some cases, and better complexity
in other ones.

Indeed, our approach proceeds on two steps. First, we construct the equivalence relation ∼ defined
on the states of a DFTA A and then we regroup states which are possibly equivalent according to the
equivalence relation ≡. We show that (p≡ q⇒ p∼ q).

Next, using the relation∼ we construct a string automaton MA using the same states as A . Then we
prove that two states in MA are equivalent by the Nerode equivalence relation ∼= if and only if they are
equivalent by the equivalence relation ≡.

In the following definition, we associate to the transitions set ∆ a string language L∆ called “horizontal
language”. For each transition ρ ∈ ∆, we deduce a set of strings Lρ . The union of all these languages Lρ

constitutes L∆. An equivalence relation ∼ is defined using L∆ in which we keep for each state a list of
strings from L∆ instead of keeping its signature.

Definition 1 Let A = (Q,Σ,Q f ,∆) be DFTA. The horizontal language of ∆ noted L∆ is defined as fol-
lows:

L∆ =
⋃

ρ∈∆

Lρ (4)

Lρ =
n⋃

i=1

qi f q1 . . .qi−1 •qi+1 . . .qn (5)

where ρ = ( f ,q1, . . . ,qn,q) and • 6∈ Σ0∪Q is a special symbol.

Definition 2 Let p,q ∈ Q. We say that p and q are possibly equivalent (we note p ∼ q), if and only if,
(p ∈ Q f )⇔ (q ∈ Q f ) and for all f ∈ Σ,u,v ∈ Q∗ : p f u• v ∈ L∆⇔ q f u• v ∈ L∆.

Proposition 1 For p,q ∈ Q, we have p≡ q⇒ p∼ q

Lemma 2 The equivalence relation ∼ can be computed in O(|A |).

Now, after the identification of the states that are possibly equivalent by ≡, we associate for each
state q in a transition ( f ,q1, . . . ,qi−1,q,qi+1, . . .qn,q′) the “letter” fq1···qi−1,qi+1···qn . Indeed, we transform
the transition of the tree automaton to a transition of a string automaton.

We let Q = {q | ∃p 6= q such that q ∼ p}. To each state, we associate an alphabet σq defined as
follows: σq = { fu,v | ∃q f u• v ∈ L∆}

Proposition 2 We have |
⋃

q∈Q

σq| ≤ |A |

The automaton MA will be defined on the alphabet σ = (
⋃

q∈Q

σq). It is clear that the size of the

alphabet σ depends on the number of equivalence classes in ∼.
Indeed, the new alphabet coincides with the environment defined by Abdullah et al. [1] and we can

construct an FA which represents the same transitions system. However, in deterministic case, there is
no need to add transitions between states and environment because in this case the left and right sides are
equal. Just transitions from environment to the output states are considered. It is possible to show that
this construction minimizes the wanted DFTA using the fact that DFTA can be minimized using upward
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bisimulation (see Högberg et al. works [8]) and then using Paige-Tarjan algorithm to achieve it. But, we
prove below the equivalence between Nerode equivalence in the string and tree automata and we show
that it is beneficial in other minimization algorithm especially in the incremental construction of tree
automata.

Definition 3 Let A = (Q,Σ,Q f ,∆) be a DFTA. The string automaton associated to A noted MA is the
tuple MA = (Q′,σ ,{is},F,δ ) where Q′ = Q∪{is} is the state set, σ =

⋃
q∈Q

σq∪Q is the alphabet, {is}

is the initial state, F = Q f is the final states set and δ : Q′×σ → Q′ is the transition function defined as
follows.

• for all q in Q: δ (q,a) = q′ where a = fq1···qi−1,qi+1···qn ,d( f ,q1, . . . ,qi−1,q,qi+1, . . . , qn) = q′.

• for all q in Q: δ (is,q) = q.

Let us notice that the state is, the alphabet symbols Q, and transitions leaving is have no importance
in the minimization process. We use them just to construct a habitual string automaton because it is
usual to define string automata with an initial state. Moreover, we can see that states from Q−Q have
no equivalent states because ∀p ∈ Q,q ∈ Q−Q : p 6∼ q then p 6≡ q. Here, no transition is outgoing from
those states.

In the next section, we will prove that the associated string FA can fully replace DFTA minimization
the minimization processes namely standard, acyclic, incremental and incrementally constructed mini-
mization and then avoid the re-implementation of those algorithms. We discuss also the complexity of
this transformation and we show that it have no negative influence on the time and space process.

5 Minimization techniques using the associated FA

In what follows, we will show and discuss how that the associated FA can fully replace the FTA to be
minimized in the specified deterministic minimization techniques namely standard, acyclic, incremental
and incrementally constructed minimization. We prove also that in some cases (Acyclic and incremetal
techniques) the complexities are improved.

5.1 DFTA standard minimization

We show in this part that the minimization of a given DFTA is no more than minimizing its associated
string DFA. But first, let us show that the FA is deterministic.

Proposition 3 The associated string automaton MA of a DFTA A is deterministic.

We note that is and all transitions outgoing from it are not considered in the minimization process.
Then we use σ in what follows to denote σ −Q.

After the string automaton MA is defined, we show that the computation of the equivalence relation
≡ defined on A can be done by computing the Nerode equivalence ∼= relation defined on MA . ∼= is
defined as follows.

p∼= q⇔
{

p ∈ F ⇔ q ∈ F
for all a ∈ σ ,δ (p,a)∼= δ (q,a)

(6)
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Proposition 4 For p,q ∈ Q, we have (p∼= q)⇔ (p≡ q)

We can also check this corollary:

Corollary 1 Let p ∈ Q′−Q,q ∈ Q′(q 6= p) we have p 6∼= q.

As a consequence of this Corollary and as mentioned above, only states in Q are considered in the
minimization algorithm. We can easily check that is is not equivalent to any state. Indeed, for each
state q ∈ Q′−Q, its equivalence class is [q]. Using Hopcroft Algorithm [11], the automaton MA can be
minimized in O(|σ ||Q| log |Q|).

Lemma 3 The automaton MA can be minimized in O(|σ ||Q| log |Q|).

Theorem 1 Let A = (Q,Σ,Q f ,∆) be a DFTA, A can be minimized in O(|A |+ |σ ||Q| log(|Q|)).

Note that this complexity is the same as if Abdulla et al. [1] reduction is combined with results of
Högberg et al. [8]. The only difference here is that the complexity is given in function of the string
automaton which is the output of the transformation algorithm.

5.2 Acyclic minimization

Acyclic automata are a beneficial data structure that represent and store finite set of objects. When objects
are trees like in Xml, it is useful to store a finite Xml files in a compact and small structure. Acyclic DFA
(ADFA) minimization was largely discussed like in [13, 10] and almost of these techniques have linear
asymptotic complexity. Here we show how the associated FA can positively minimize an acyclic DFTA.

Although Proposition 4 is sufficient for proving the use of the associated DFA to minimize ADFTA,
but let us recall some useful definitions.

Definition 4 Let A = (Q,Σ,Q f ,∆) be a DFTA. Then A is acyclic (ADFTA) if and only if for all q ∈ Q,
if t ∈ L↓(q) then St(t)∩L↓(q) = {t}.

We can consider the following lemma (the proof is trivial and then omitted).

Lemma 4 The associated DFA of a ADFTA is acyclic.

Using Proposition 4 we know that states from an ADFTA which are not in ∼ are distinguishable and
cannot be merged during minimization since ADFTA are trivial case of DFTA.

Thus, after computing the associated string ADFA MA of a DFTA A using one of the string acyclic
minimizations like [10] in linear time:

Theorem 2 A ADFTA A =(Q,Σ,Q f ,∆) can be minimized using its associated ADFA MA =(Q′,σ ,{is},F,δ )
in O(|σ ||Q|).

5.3 Incremental minimization

Incremental minimization is a useful technique in practise. It is used when minimization process may be
halted in any time producing a reduced automaton in terms of states number and producing a valid one
which recognizes the same language as the departure automaton.

In string case, Watson et al. introduce for the first time the incremental version for cyclic DFA, but
the complexity as reported by authors is exponential. Next, Watson et al. [14] improve this algorithm
and give an almost quadratic implementation. After that, Almeida et al. [2] present the best known
incremental implementation using the UNION-FIND algorithm.
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However, in tree case, Cleophas et al. generalize the incremental approach to trees and give a cubic
implementation to this need.

Here also, we show that the incremental minimization can be done using the associated DFA and the
complexity of this minimization is better than previous works on trees.

Let A = (Q,Σ,Q f ,∆) be a DFTA and MA = (Q′,σ ,{is},F,δ ) be its associated DFA. We extend
the transition function δ by δ ′ as follows. δ ′(q,a) = δ (q,a) where a ∈ σ and δ ′(q,ax) = δ ′(δ (q,a),x)
where ax ∈ σ+. We define the right language of a state q ∈ Q by: −→L (q) = {x ∈ σ+,δ ′(q,x) ∈ F}.

Lemma 5 Let p,q ∈ Q then L↑(p) = L↑(q)⇔−→L (p) =−→L (q).

Using this lemma, we can compute equiv(p,q) in MA instead of computing it in A .
Thus, we can use the best-known complexity algorithm for DFA due to Almeida et al. [2] to minimize

a DFTA by incremntally minimizing its associted DFA:

Theorem 3 A DFTA A = (Q,Σ,Q f ,∆) can be incrementally minimized using its associated DFA MA =
(Q′,σ ,{is},F,δ ) in O(|σ ||Q|2α(|Q|)) where α is the inverse Ackermann time function.

5.4 Incremental construction of minimal tree automata

Incremental construction of automata is an important approach which is discussed in string and tree
cases. It allows to add or delete words (resp. trees ) to an existing minimal automaton. In other words
if A is a DFA (resp. DFTA) and w is a word (resp. t is a tree) then the incremental construction con-
sists on creating a new automaton which recognizes L(A )∪{w} (resp. L(A )∪{t}) while maintaining
minimality. First, incremental construction was presented by Daciuk et al. [?] for ADFA. Next, Carrasco
et al. [7] generalize this notion to cyclic DFA. Later, they redefine the incremental construction for trees
in [6].

Theorem 4 Let A = (Q,Σ,Q f ,∆) be a minimal DFTA and MA = (Q′,σ ,{is},F,δ ) be its associated
minimal DFA then the minimal automaton that recognizes L(A ∪{t} where t is constructed in O(|∆|2r̂ +
|A |).

6 Conclusion

In this paper, we have shown how the minimization problem of deterministic tree automata can be re-
duced to the minimization problem of deterministic string automata which is considered as well-studied
since the 60s. Indeed, we use the environment (and the TS transformation) notion proposed by Abdulla
et al. [1] to create a string alphabet which is read by an associated string automaton and then minimize
it. Hence, we prove that there is actually no need to implement existing algortihms proposed for trees
and exploit the large range of minimization algorithms for strings to add minimization procedures in tree
toolkits. Moreover, We prove that DFTA minimization can be done in O(|A |+ |σ ||Q| log(|Q|)), where
σ is the alphabet of the DFA MA associated to A for standard minimization (which is considered in term
of asymptotic complexity as the same as the best known one) and we show that the minimization using
associated DFA gives better complexities in other existing minimization approaches namely acyclic and
incremental minimization (which are clearly improved in this present paper).

In fact, it is interesting to study the average size of σ . This leads us to consider the problem of
random generation of deterministic tree automata. But instead of the existing random generators in
literature, no real generator is developed. We hope that we consolidate this work with an experimental
tests and comparisons with other techniques after developing a such generator.



Y.Guellouma, H.Cherroune, D.Ziadi & B.W.Watson 9

References

[1] Parosh Aziz Abdulla, Ahmed Bouajjani, Lukás Holı́k, Lisa Kaati & Tomás Vojnar (2009): Composed Bisimu-
lation for Tree Automata. Int. J. Found. Comput. Sci. 20(4), pp. 685–700, doi:10.1142/S0129054109006814.

[2] Marco Almeida, Nelma Moreira & Rogrio Reis (2010): Incremental DFA Minimisation. In Michael Do-
maratzki & Kai Salomaa, editors: CIAA, Lecture Notes in Computer Science 6482, Springer, pp. 39–48,
doi:10.1007/978-3-642-18098-9 5.

[3] Michael A. Arbib & Yehoshafat Give’on (1968): Algebra Automata I: Parallel Programming as a Prole-
gomena to the Categorical Approach. Information and Control 12(4), pp. 331–345, doi:10.1016/S0019-
9958(68)90374-4.

[4] Walter S. Brainerd (1968): The Minimalization of Tree Automata. Information and Control 13(5), pp. 484–
491, doi:10.1016/S0019-9958(68)90917-0.

[5] Rafael C. Carrasco, Jan Daciuk & Mikel L. Forcada (2007): An Implementation of Deterministic Tree Au-
tomata Minimization. In Jan Holub & Jan Zdarek, editors: CIAA, Lecture Notes in Computer Science 4783,
Springer, pp. 122–129, doi:10.1007/978-3-540-76336-9 13.

[6] Rafael C. Carrasco, Jan Daciuk & Mikel L. Forcada (2009): Incremental Construction of Minimal Tree
Automata. Algorithmica 55(1), pp. 95–110, doi:10.1007/s00453-008-9172-4.

[7] Rafael C. Carrasco & Mikel L. Forcada (2002): Incremental Construction and Maintenance of Minimal
Finite-State Automata. Computational Linguistics 28(2), pp. 207–216, doi:10.1162/089120102760173652.
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Algorithm 1 Tree automata minimization
1: function MINIMIZATION(DFTA A = (Q,Σ,Q f ,∆))
2: P0← Q
3: P1←{Q f ,Q−Q f }
4: i← 1
5: repeat
6: create Pi+1 by refining Pi so that p≡i+1 q iff for all ρ ∈ Γ(p), i ∈ occp(ρ) : ρ(p :i q) ∈ Γ(q)
7: d(ρ)≡ d(ρ(p :i q))
8: i← i+1
9: until (Pi = Pi−1)

10: Qmin←
⋃

q∈Q[q]
11: ∆min←{( f , [q1], . . . , [qn]) | ( f ,q1, . . . ,qn) ∈ ∆}
12: Qmin f ←{[q] | q ∈ Q f }
13: return Amin = (Qmin,Σ,Qmin f ,∆min)
14: end function

Γ(p) but ( f ,q1, . . . ,qi−1,q,qi+1, . . . ,qn)(p :i q) 6∈Γ(q) although i∈ occp(( f ,q1, . . . ,qi−1, p,qi+1, . . . ,qn)).
By states equivalence ≡ we have p 6≡ q.

B.2 Proof of Lemma 2

Proof 2 As the language L∆ is finite, equivalence relations ∼ can be computed in linear time on the size
of |A |. This can be done by minimizing an acyclic automaton which reads L∆.

C Proofs of section 5

C.1 Proof of Proposition 3

Proof 3 By definition we have for all q ∈ Q′−Q,a ∈ σ : |δ (q,a)| ≤ 1. Let q ∈ Q and assume that there
exists a symbol fu,v ∈ σ such that δ (q,a) = {q′,q′′} with q′ 6= q′′. Let u = q1 . . .qi−1 and v = qi+1 . . .qn.
Using Definition 1 we have then ( f ,q1, . . . ,qi−1,q,qi+1, . . . ,qn,q′)∈∆ and ( f ,q1, . . . ,qi−1,q,qi+1, . . . ,qn,q′′)∈
∆. This leads to a contradiction because the tree automaton A is deterministic.

C.2 Proof of Proposition 4

Proof 4 It is well known that the Nerode equivalence ∼= can be computed by successive approximations
∼= j defined as:

p∼=0 q iff (p ∈ F ⇔ q ∈ F) (7)

p∼= j+1 q iff p∼= j q and for all a ∈ σ , p,q ∈ Q′ : δ (p,a)∼= j δ (q,a). (8)

Here, and as mentioned below, useless states which appear in the DFA are equivalent and distort the
correctness of the approach. The solution is to initialize ∼=0 with what follows. ∼=0= Q2 ∪{(q,q) | q ∈
Q−Q}.
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To prove this proposition we show that for all p,q ∈ Q, j ∈N : p ∼= j q⇔ p ≡ j q. The proof is done by
induction on the definitions of ≡ j and ∼= j. For the basic case ( j = 0), as Q f = F, for p,q ∈ Q, we have
p∼=0 q⇔ p≡0 q. Assume now that for all p,q ∈ Q,(p∼=k q)⇔ (p≡k q) for some k ≥ 0.
First, we prove that (p∼=k+1 q)⇒ (p≡k+1 q):

Suppose that (p∼=k+1 q). By the successive approximations of ∼= we have

(p∼=k+1 q) ⇔ p∼=k q and for all fu,v ∈ σ ,δ (p, fu,v)∼=k δ (q, fu,v) (9)

By applying induction hypothesis, we get that

(p∼=k+1 q) ⇔ p≡k q and for all fu,v ∈ σ ,δ (p, fu,v)≡k δ (q, fu,v) (10)

Let u = q1 · · ·qi−1 and v = qi+1 · · ·qn. Using the horizontal language definition we get that p f u •
v,q f u• v ∈ L∆. So, there exists two states p′ and q′ in Q such that ( f ,q1, . . . ,qi−1, p,qi+1, . . . ,qn, p′) and
( f ,q1, . . . ,qi−1,q,qi+1, . . . ,qn,q′) are in ∆ (see equation (6)). From Definition 3 we have p′= δ (p, fu,v) =
d( f ,q1, . . . ,qi−1, p,qi+1, . . . ,qn) and q′ = δ (q, fu,v) = d( f ,q1, . . . ,qi−1,q,qi+1, . . . ,qn). Finally, we get
then (p≡k+1 q) by applying (13).
Now, the next step of the proof is to show that (p≡k+1 q)⇒ (p∼=k+1 q). This proof can be done following
the same steps as the first implication (this part is omitted).
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