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Abstract. One of the classical problems in the structural optimization field is the Truss Topology Design Problem (TTDP)
which deals with the selection of optimal configuration for structural systems for applications in mechanical, civil, aerospace
engineering, among others. In this paper we consider a TTDP where the goal is to find the stiffest truss, under a given load and
with a bound on the total volume. The design variables are thecross-section areas of the truss bars that must be chosen from
a given finite set. This results in a large-scale non-convex problem with discrete variables. This problem can be formulated
as a Semidefinite Programming Problem (SDP problem) with binary variables. We propose a branch and bound algorithm to
solve this problem. In this paper it is considered a binary formulation of the problem, to take advantage of its structure, which
admits a Knapsack problem as subproblem. Thus, trying to improve the performance of the Branch and Bound, at each step,
some valid inequalities for the Knapsack problem are included.
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INTRODUCTION

Structural optimization problems have received an increasing attention during last years, see [1, 2, 3, 4, 5, 6, 7, 8,
11, 12, 15]. We consider the TTDP of finding the stiffest trussunder a given load with a bound on the total volume,
where the cross-section areas of bars can assume a finite set of possible values. The model is similar to the one given
in [11]. There the authors discuss branch and bound methods to the discrete formulation. Here we propose a binary
reformulation in order to take advantage of its structure, which admits a Knapsack problem as subproblem. In order to
improve the lower bound, valid inequalities obtained from separation of the Knapsack subproblem are added [14].

PROBLEM FORMULATION

This section begins with a brief introduction to the basic engineering concepts and rules typically considered in the
design of truss structures. Afterwards, the formulation ofthe problem is presented.

A truss is a two (2D) or three-dimensional (3D) structure composed of bars whose ends are connected at joints, called
nodes, which may be fixed, free or simply supported. In this work only bars with constant cross section and rectilinear
axis are considered. Each node has associated Degrees-of-Freedom (DoF). In this study, only two-dimensional trusses
are considered. For 2D structures, a fixed node has 0DoF, a free node has 2DoF (one associated to each independent
direction in the plane, X and Y) and a supported node has just 1DoF in the direction perpendicular to the support. The
total number ofDoF of a truss, denoted byNDoF, is the sum of the correspondingDoF of each node. In this analysis,
it is considered that each bari has elastic properties, assuming a constant Young’s modulusEi [13].

Initially, it is given a ground structure, that is a grid witha previously chosen set of nodes and connecting bars, called
“potential bars". If all possible links between the nodes are considered, then it is called a dense topology; otherwise,if
only links between neighbor nodes are considered, it is called a poor topology. In the next is presented the formulation
of the problem, considering a ground planar structure withk nodes,NDoF = n, m potential bars and an external load



vector, f ∈ IRn , acting directly on the nodes. The goal is to find the stiffesttruss capable of withstand the loading
with a total volume not greater than a predefined value,v > 0. The volume of the truss has to be distributed among
the bars in order to get the stiffest structure. The design variables are the cross-section areas,Ai , of the bars whose
values are chosen from a given set,C = {0,c1, . . . ,cl}. When the external loads are acting on the nodes the structure
deforms. That deformation can be described by the vector of nodal displacements,δ ∈ IRn, being the work associated
to the external loads given byf⊤δ . The value of12 f⊤δ is called compliance. This is a measure of the stiffness of the
truss: the smaller the compliance the larger the stiffness of the truss with respect to the loading. The truss should
be able to withstand the external loads that are assured by the equilibrium equations system:K(A) δ = f , where
K(A) = ∑m

i=1Ai l iKi is then×n stiffness matrix of the structure,l i is the length of bari andKi = bib⊤
i is the stiffness

matrix of bari, beingbi =
√

Ei
l i

di anddi the vector of direction cosines of the bari. The problem can be formulated as

follows [1, 2, 3, 4, 6]1:

(TTD)

min f⊤δ

s.t.
m

∑
i=1

Ai l iKi δ = f ,

m

∑
i=1

Ai l i ≤ v,

Ai ∈ {0,c1, . . .cl}.

(1)

This is a large-scale non-convex problem which is equivalent to a min-max problem min
A∈A

max
u∈IRn

{2 f⊤u −
u⊤K(A)u}, whereA = { A ∈ IRm : ∑m

i=1Ai l i ≤ v, Ai ∈ {0,c1, . . .cl} } [4, 12]. This problem can be written as
a SDP problem,

min
τ,a

τ

s.t.

[

τ f⊤

f K(A)

]

� 0,

A∈ A ,

(2)

which can be formulated as a problem with binary variables. In fact,

Ai ∈ {0,c1,c2, . . . ,cl}⇔











Ai = αi1c1 + αi2c2 + . . .αi l cl

αi1 + αi2 + . . .αi l ≤ 1
αi1,αi2, . . . ,αi l ∈ {0,1}

(3)

and so,

(TTD01)

min
α ,τ

τ

s.t.

[

τ f⊤

f ∑m
i=1 ∑l

j=1α j i c jsiKi

]

� 0,

m

∑
i=1

l

∑
j=1

αi j c jsi ≤ v,

l

∑
j=1

αi j ≤ 1, i = 1, . . . ,m,

αi j ∈ {0,1}, i = 1, . . . ,m, j = 1, . . . , l .

(4)

BRANCH AND BOUND ALGORITHM

In this section a branch and bound algorithm to solve the problem (TTD01) is described. The main idea of a branch
and bound algorithm is to build an enumeration tree search tofind an optimal solution and provide its optimality by
successive partitioning of the feasible set.

1 To simplify, in the objective function, it was considered twice the compliance.



Let S be the feasible set of the problem(TTD01) andSt be the subset ofS corresponding to the feasible set at
nodet of the tree search. Associated to the enumeration tree we define: a listL of active subproblems and the global
upper bound,ub= mint∈L ubt , whereubt is the value of(TTD01) in the feasible solution found at nodet. Next, we
will briefly present the details of the branch and bound method:

• For the node selection it was used the depth first search rule.
• At each nodet, thelower bound, lbt , is obtained by solving the relaxation of the problem(Rt). In order to improve

the lower bound, cover and lifted cover inequalities obtained from separation of the Knapsack subproblem are
added [14].

• In order to improve theupper bound, ub, at each node of the tree, three heuristics are applied, based on a
rounding scheme of the optimal solution of(Rt) to find feasible solutions for problems(TTD01).

• To choose the branching variable, several options are considered, depending on the optimal solution of the
relaxation. The feasible set,St , is then partitioned in two subsets:St1=St ∩{αi j = 0} andSt2=St ∩{αi j = 1}.

• A node is pruned if one of the following conditions holds:(Rt) is infeasible; the optimal value of(Rt), lbt , is
greater or equal thanub; the optimal solution of(Rt) satisfies the discrete constraints.

At each step, before solving the relaxation, avolume test is performed in order to prune nodes: If the branching
variable isAi , Ai = αi1c1 +αi2c2 + . . .αi l cl with c1 < · · · < cl , first αi1 is fixed to one. If the remaining volume for the
truss does not allowαi1 = 1 then the node is pruned and the other variablesαi2, . . .αi l are automatically equal to zero.

COMPUTATIONAL RESULTS AND CONCLUSIONS

In this section, some computational experience is reported. The branch and bound method was implemented in C-
language. To solve the semidefinite programming problems itwas used the CSDP4.9 package [9] and to solve the
linear programs it was used GLPK4.8 [10].

For all the considered trusses, it is known the type of the ground structure (Nx×Ny-truss): height, width, geometry
(regular or irregular), the nodes in the horizontal direction, Nx, and the nodes in the vertical direction,Ny; the
maximum volume of the structure,v; the setC of possible values for the cross-section areas; the nodes restrictions
(free, fixed or simple supported); the external loads.

It was considered that, for all bari, Ei = 69GPa, the Young’s modulus of the aluminium. For each example it is
presented the optimal design, the nodal displacement vector, δ , and the stress at each memberi, given by σi = Ei

l i
diδ .

For the structure safety verification the stress at each element cannot exceed the aluminium yielding strength which is
assumed to be 250MPa.

Next, results are presented for a 2× 6-truss corresponding to a 400cm× 2000cm grid with v = 140000cm3 and
C = {0,3,6,9,12,15} (in cm2). The nodes are numbered as shown in the Figure 1. There is onefixed node, node 1,
and one supported node, node 11, with a restriction in the vertical displacement. In the ground structure,m= 26 and
NDoF = 21. There are 6 external vertical loads applied at the superior nodes as represented in Figure 1. The values of
the loads applied at nodes 2 and 12 are 50kN and the values of the loads applied at nodes 4, 6, 8 and 10 are 100kN.
Figure 1 represents the optimal solution obtained with the Branch and Bound method, where the objective function is
o. f . = 2576.7884 and the volume in the final structure isv= 139094cm3. The design is symmetric, as it was expected,
because the topology of the ground structure is symmetric aswell as the loading. The thickness of the bars reflects the
values of its cross-section, the majority of the bars have a cross-section of 15cm2, five bars have inferior cross-section
(3, 6 or 9cm2), and 3 bars have cross-section zero.
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FIGURE 1. Optimal solution by Branch and Bound method (o. f . = 2576.7884v = 139094.0)



The stress in the members are between -114MPa and 200MPa. In the design and safety assessment of this kind
of structures, as in bridges, the deformations are controlled in order to guarantee the serviceability limit states. The
maximum displacement calculated for the example 1 was 15cm, at structure mid-span, was less than 1% of the span,
which is a value in the order of the magnitude of the limits imposed for these structures.

If we increase the maximum total volume value tov = 180000cm3, maintaining setC , all the bars in the optimal
solution have cross-section area equal to the maximum, i.e.15cm2. For this case, the stress in members are between
-161MPa and 205MPa. The largest nodal displacements is 7.33cm for the vertical direction and, for the horizontal
direction is 3.45cm. If we considerv= 180000cm3 and setC = {0,4,8,12,14,18}, the nodal displacements decrease.
The largest nodal displacement is now 7.33cmin the vertical direction and 3.45cmfor the horizontal direction. In this
case, the stress in members are between -166MPaand 166MPa.

In this paper is proposed a branch and bound algorithm with valid inequalities to solve the discrete truss topology
design problem(TTD). This formulation has a rich mathematical structure that enables to find an equivalent formula-
tion with less variables. Nevertheless, from the practicalviewpoint, this approach leads to designs which should serve
as “reference designs” rather than to readily implementable solutions for construction. There are constraints, such as
bounds on the nodal displacements and on stresses, that should be considered. The inclusion of this constraints leads
to a large-scale problem hardly tractable. In the examples presented are verified the nodal displacements values as well
as the stress in the members.
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