A Branch and Bound approach for trusstopology design
problemswith valid inequalities

Adelaide Cerveirg Agostinho Agrd, Fernando Bast¢sand Humberto Varum

*DM & CIO, Universidade de Tras-os-Montes e Alto Douro, Pgal
cerveira@utad.pt
Dmat & CIDMA, Universidade de Aveiro, Portugal
aagra@ua.pt
**DEIO & CIO, Universidade de Lisboa, Portugal
fbastos@fc.ul.pt
*DECIvil & CEC-FEUP, Universidade de Aveiro, Portugal

hvarum@ua.pt

Abstract. One of the classical problems in the structural optimizafield is the Truss Topology Design Problem (TTDP)
which deals with the selection of optimal configuration foustural systems for applications in mechanical, civéra@space
engineering, among others. In this paper we consider a TT#Parthe goal is to find the stiffest truss, under a given |load a
with a bound on the total volume. The design variables aretthes-section areas of the truss bars that must be chosen fro
a given finite set. This results in a large-scale non-conveklpm with discrete variables. This problem can be foritaaa

as a Semidefinite Programming Problem (SDP problem) witarlgimariables. We propose a branch and bound algorithm to
solve this problem. In this paper it is considered a binargnfdation of the problem, to take advantage of its structwigch
admits a Knapsack problem as subproblem. Thus, trying todwepthe performance of the Branch and Bound, at each step,
some valid inequalities for the Knapsack problem are inetlid
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INTRODUCTION

Structural optimization problems have received an inéngaattention during last years, see [1, 2, 3, 4, 5, 6, 7, 8,
11, 12, 15]. We consider the TTDP of finding the stiffest trusdler a given load with a bound on the total volume,
where the cross-section areas of bars can assume a finitepgetsible values. The model is similar to the one given
in [11]. There the authors discuss branch and bound metlootte tdiscrete formulation. Here we propose a binary
reformulation in order to take advantage of its structurgiclvadmits a Knapsack problem as subproblem. In order to
improve the lower bound, valid inequalities obtained fraparation of the Knapsack subproblem are added [14].

PROBLEM FORMULATION

This section begins with a brief introduction to the basigiaaering concepts and rules typically considered in the
design of truss structures. Afterwards, the formulatiothefproblem is presented.

Atrussis atwo (D) or three-dimensional (3) structure composed of bars whose ends are connectedtat jratied
nodes, which may be fixed, free or simply supported. In thigkwaly bars with constant cross section and rectilinear
axis are considered. Each node has associated Degreesenfein DoF). In this study, only two-dimensional trusses
are considered. Foi@structures, a fixed node ha®oF, a free node has RoF (one associated to each independent
direction in the plane, X and Y) and a supported node has jDstFlin the direction perpendicular to the support. The
total number oDoF of a truss, denoted Y DoF, is the sum of the correspondibgpF of each node. In this analysis,
it is considered that each bianas elastic properties, assuming a constant Young's me&u[d3].

Initially, it is given a ground structure, that is a grid wilpreviously chosen set of nodes and connecting bars, called
“potential bars". If all possible links between the nodes@nsidered, then it is called a dense topology; othenifise,
only links between neighbor nodes are considered, it iedalpoor topology. In the next is presented the formulation
of the problem, considering a ground planar structure witodesNDoF = n, m potential bars and an external load



vector, f € IR", acting directly on the nodes. The goal is to find the stiffas$s capable of withstand the loading
with a total volume not greater than a predefined value,0. The volume of the truss has to be distributed among
the bars in order to get the stiffest structure. The desigiabkes are the cross-section are&s,of the bars whose
values are chosen from a given sét= {0,c,...,¢ }. When the external loads are acting on the nodes the steuctur
deforms. That deformation can be described by the vectoodéidisplacements, € IR", being the work associated
to the external loads given by . The value of% fTd is called compliance. This is a measure of the stiffness @f th
truss: the smaller the compliance the larger the stiffnéshetruss with respect to the loading. The truss should
be able to withstand the external loads that are assuredebgdtilibrium equations systenkK(A) o = f, where
K(A) =3, AlliK; is then x n stiffness matrix of the structurg,is the length of bar andK; = bb{ is the stiffness

matrix of bari, beingh; = @di andd; the vector of direction cosines of the bailhe problem can be formulated as
follows [1, 2, 3, 4, 6]~

min 7o
m
s.t. ZlAiliKi o=f,
(TTD) = 1)
Aili <v,
2
A € {O,C]_,...C|}.
This is a large-scale non-convex problem which is equitatena min-max problem Argnm%x {2f'u —
e« UuelR"

uK(Au}, whereeZ ={ AcIR™ : Y™ Al <v, A € {0,c1,...ci} } [4, 12]. This problem can be written as
a SDP problem,

mint
T,a

T fr 2)

sit. [ f KA } =0,
Ac o,

which can be formulated as a problem with binary variable$att,

A = Qj,C1+ Qi,C2+ ... 0; G
A €{0,c,Co,....0} & ¢ o +ai,+...0, <1 3)
Qiy, Ui,,...,a;, € {0,1}

and so,
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BRANCH AND BOUND ALGORITHM

In this section a branch and bound algorithm to solve thelprmlT T D01) is described. The main idea of a branch
and bound algorithm is to build an enumeration tree searéimdican optimal solution and provide its optimality by
successive partitioning of the feasible set.

1 To simplify, in the objective function, it was considereddw/the compliance.



Let .7 be the feasible set of the problegT DO1) and.# be the subset of” corresponding to the feasible set at
nodet of the tree search. Associated to the enumeration tree weedefiistZ of active subproblems and the global
upper boundyub = minc & uly, whereuly is the value of T T DO1) in the feasible solution found at notdeNext, we
will briefly present the details of the branch and bound métho

- For the node selection it was used the depth first search rule.

- At each node, thelower bound, Iby, is obtained by solving the relaxation of the probléR). In order to improve
the lower bound, cover and lifted cover inequalities ol#difrom separation of the Knapsack subproblem are
added [14].

« In order to improve thaipper bound, ub, at each node of the tree, three heuristics are applieddb@zea
rounding scheme of the optimal solution(®%) to find feasible solutions for problen($ T DO1).

« To choose the branching variable, several options are @eresi, depending on the optimal solution of the
relaxation. The feasible se¥, is then partitioned in two subsetg}; =4 N {aij =0} and.#2=4N {aij =1}.

« A node is pruned if one of the following conditions hold&) is infeasible; the optimal value ¢R;), Ib, is
greater or equal thaumb; the optimal solution ofR;) satisfies the discrete constraints.

At each step, before solving the relaxationyaelume test is performed in order to prune nodes: If the branching
variable isAj, Aj = i, C1 + Qj,C2+ ... 0, ¢ with ¢1 < --- < ¢, first a;, is fixed to one. If the remaining volume for the
truss does not allow;, = 1 then the node is pruned and the other variablgs. . aj, are automatically equal to zero.

COMPUTATIONAL RESULTS AND CONCLUSIONS

In this section, some computational experience is repofithd branch and bound method was implemented in C-
language. To solve the semidefinite programming problems# used the CSDP4.9 package [9] and to solve the
linear programs it was used GLPK4.8 [10].

For all the considered trusses, it is known the type of theigdstructure.(fx x 4-truss): height, width, geometry
(regular or irregular), the nodes in the horizontal diregti.#x, and the nodes in the vertical directionly; the
maximum volume of the structurg; the seté of possible values for the cross-section areas; the nodésctmns
(free, fixed or simple supported); the external loads.

It was considered that, for all barg; = 69GPa, the Young’s modulus of the aluminium. For each example it is
presented the optimal design, the nodal displacementiyéctand the stress at each membejiven by g, = 'f—iidié.

For the structure safety verification the stress at eachexieoannot exceed the aluminium yielding strength which is
assumed to be 2B80Pa.

Next, results are presented for a«B-truss corresponding to a 4@ x 2000cm grid with v = 14000@n? and
¢ ={0,3,6,9,12 15} (in cn?). The nodes are numbered as shown in the Figure 1. There ifixedenode, node 1,
and one supported node, node 11, with a restriction in thigcaedisplacement. In the ground structume= 26 and
NDoF = 21. There are 6 external vertical loads applied at the sopeoides as represented in Figure 1. The values of
the loads applied at nodes 2 and 12 arkM@nd the values of the loads applied at nodes 4, 6, 8 and 10 8k&l10
Figure 1 represents the optimal solution obtained with trenBh and Bound method, where the objective function is
o.f.= 25767884 and the volume in the final structureris 139094n?. The design is symmetric, as it was expected,
because the topology of the ground structure is symmetnicetias the loading. The thickness of the bars reflects the
values of its cross-section, the majority of the bars hawessesection of 1&r?, five bars have inferior cross-section
(3, 6 or n?), and 3 bars have cross-section zero.

FIGURE 1. Optimal solution by Branch and Bound methadf( = 25767884v = 1390940)



The stress in the members are between MR4 and 200Pa. In the design and safety assessment of this kind
of structures, as in bridges, the deformations are coettali order to guarantee the serviceability limit statese Th
maximum displacement calculated for the example 1 wasnlt structure mid-span, was less than 1% of the span,
which is a value in the order of the magnitude of the limits asgd for these structures.

If we increase the maximum total volume valuevte- 18000@n¥, maintaining se%’, all the bars in the optimal
solution have cross-section area equal to the maximuni,Ser?. For this case, the stress in members are between
-16IMPa and 208 Pa. The largest nodal displacements i83mfor the vertical direction and, for the horizontal
direction is 345cm If we considen = 18000@nT and sets’ = {0,4,8,12 14,18}, the nodal displacements decrease.
The largest nodal displacement is no83min the vertical direction and.85cmfor the horizontal direction. In this
case, the stress in members are betweenMEetand 166/1Pa.

In this paper is proposed a branch and bound algorithm wiitl ireequalities to solve the discrete truss topology
design problentT T D). This formulation has a rich mathematical structure thabées to find an equivalent formula-
tion with less variables. Nevertheless, from the practi@hpoint, this approach leads to designs which shouldeserv
as “reference designs” rather than to readily implemenrtablutions for construction. There are constraints, sgch a
bounds on the nodal displacements and on stresses, thad sfeoconsidered. The inclusion of this constraints leads
to a large-scale problem hardly tractable. In the examplesanted are verified the nodal displacements values as well
as the stress in the members.

ACKNOWLEDGMENTS

Contract grant sponsor: FCT; Contract grant number: PAOSFL--1-152; European Community Fund FEDER/POCI
2010. H. Varum acknowledges the financial support from Fgadaara a Ciéncia e Tecnologia (FCT) through the
sabbatical leave grant SFRH/BSAB/939/2009.

REFERENCES

1. W. Achtziger and M. Stolpe, “Global optimization of truspology with discrete bar areas—Part |: theory of relaxetiems,”
Computational Optimization and Applicatior#, 2, pp. 247—-280 (2008).

2. W. Achtziger and M. Stolpe, “Global optimization of trusgpology with discrete bar areas—Part Il: implementatiod a
numerical results,Computational Optimization and Applicatior!, 2, pp. 315-341 (2009).

3. F. Bastos, A. Cerveira and J. Gromicho, “Using Optim@atio Solve Truss Topology Design Problemisiestigacao
Operacional25, pp. 123-156 (2005).

4. A. Ben-Tal and M. Bendsge, “A New Method for Optimal Trusgpdlogy Design,"SIAM Journal on OptimizatioB, pp.
322-358 (1993).

5. A.Ben-Tal and A. Nemirovski, “Robust Truss Topology Qgsvia Semidefinite Programmindg31AM Journal on Optimization
7, pp. 991-1016 (1997).

6. A.Ben-Tal and A. Nemirovski, “Potential Reduction Paymial Time Method for Truss Topology Desigr§IAM Journal on
Optimizationd, pp. 596—612 (1994).

7. A.Ben-Tal and A. Nemirovski, “Lectures on modern convekimization: analysis, algorithms, and engineering agions,”
Society for Industrial and Applied Mathemati€¥hiladelphia—PA—USA (2001).

8. S. Bollapragada, O. Ghattas and J. Hoocker, “Optimaldvesi Truss Structures by Logic-Based Branch and GDpgrations
Research9, pp. 42-51 (2001).

9. B. Borchers, “CSDP 2.3 User’s Guid&ptimization Methods and Softwaté, pp. 597-611 (1999).

10. “GLPK4.8 (GNU Linear Programming Kit),” 2005. URtttp://www.gnu.org/software/glpk/glpk.html.

11. A. Cerveira, A. Agra, F. Bastos and J. Gromicho, “New Bfaand Bound Approaches for Truss Topology Design with
Discrete Areas,” inRecent Advances in Applied Mathematics, proceedings @fittexican conference on Applied Mathematics
WSEAS press, 2010, pp. 228-233.

12. A. Cerveira and F. Bastos, “Semidefinite relaxationslagthngean duality in truss topology design problermternational
Journal of Mathematics and Statistjae appear, Vol. 9, 2011.

13. U. Kirsch, “Optimum Structural Design: Concepts, Methand Applications,McGraw-Hill, Nova York, 1981.

14. K. Kaparis and A. Letchford, “Local and Global Lifted Gavnequalities for the 0-1 Multidimensional Knapsack Peaf”
European Journal of Operations Research, 186, 91-103, 2008

15. E. de Klerk, C. Roos and T. Terlaky, “Semi-definite praidan truss topology optimizationTech. Report Nr. 95-12&aculty
of Technical Mathematics and Informatics, Delft Univeysif Technology,1995.



