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Call detail records (CDRs) have recently been used in studying different aspects of human
mobility. While CDRs provide a means of sampling user locations at large population
scales, they may not sample all locations proportionate to the visitation frequency of a user,
owing to sparsity in time and space of voice-calls, thereby introducing a bias. Also, as
the rate of sampling is inherently dependent on the calling frequencies of an individual,
high voice-call activity users are often chosen for conducting a meaningful study. Such a
selection process can, inadvertently, lead to a biased view as high frequency callers may
not always be representative of an entire population. With the advent of 3G technology and
wide adoption of smart-phones, cellular devices have become versatile end-hosts. As the
data accessed on these devices does not always require human initiation, it affords us with
an unprecedented opportunity to validate the utility of CDRs for studying human mobility.
In this work, we investigate various metrics for human mobility studied in literature for
over a million cellular users in the San Francisco bay-area, for over a month. Our findings
reveal that although the voice-call process does well to sample significant locations, such as
home and work, it may in some cases incur biases in capturing the overall spatio-temporal
characteristics of individual human mobility. Additionally, we motivate an “artificially”
imposed sampling process, vis-a-vis the voice-call process with the same average intensity.
We observe that in many cases such an imposed sampling process yields better performance
results based on the usual metrics like entropies and marginal distributions used often in
literature.

I. Introduction

Recent years have seen a surge in the number of
studies related to human mobility patterns (see e.g.,
[1, 7, 17, 18]. For large- scale human mobility
studies, one of the primary data sources is the call
detail records (CDRs) collected by cellular services
providers for billing and troubleshooting purposes. In
recent years, several such CDR databases, appropri-
ately anonymized for privacy, have been used by re-
searchers to explore and quantify the basic laws gov-
erning human mobility at different scales and in vari-
ous contexts [1, 7, 18].
In this work, we take a step back to inquire the lim-

itations of using CDR data for human mobility analy-
sis. Our intuition in doing so is based on two basic rea-
sons. First, most of the datasets analyzed in the liter-
ature are usually voice-call [1, 7, 18], or additionally,
short messaging service (SMS) datasets [2, 10]. Each
time a user makes or receives a voice-call or an SMS
message, the user’s location is recorded in terms of the
position of the cell-tower (basestation) that the user is

communicating with at that time. Thus, the sample
of observed locations for a user, in such datasets, is
largely dependent upon user initiated activity and re-
quires user participation. The number of times a user
is observed in the CDR dataset is determined com-
pletely by the frequency of his/her voice-call and/or
SMS activity. This leads to very sparse representation
for most users as voice-calls have been reported to be
bursty in nature[1]. Secondly, and this is an exten-
sion of the previous argument, most studies in litera-
ture resort to user sampling whereby high-frequency
voice-callers or SMS-users are often selected to study
human mobility patterns. Recently in [5] the authors
observe a linear correlation between the number of
voice-calls made by a user and the number of times
the users change locations in Paris. A natural ques-
tion, therefore, that arises is whether and to what ex-
tent does the selection of high-voice-call activity users
skew the overall statistics for a population?

With rapid growth in mobile data and increasing
adoption of smart phones, user data activities pro-
vide another rich source of information to study hu-



man mobility, in particular, to answer the aforemen-
tioned question. Unlike voice-calls and SMS ac-
tivities, (user) data activities do not always require
user initiation, nor user participation. For example,
a plethora of applications running on 3G enabled cel-
lular devices invoke themselves periodically or spo-
radically. These include push-mail notifications, peri-
odic software updates and weather services, to name a
few. The data access records which record such data
activities by cellular providers, therefore, provide an
unprecedented opportunity to investigate the limita-
tions, if any, of the voice-call and SMS activities with
respect to studies related to human mobility. How-
ever, compared to the number of studies using voice-
calls and SMS CDRs, the number of studies exploit-
ing data-access records are far and few in between,
notable exceptions being [16, 20].

In this paper we utilize the user data-access records
as well as the conventional CDRS (containing both
voice-call and SMS activities) and take a joint
activity-mobility perspective to study human mobility.
In addition to answer the question posed earlier, we
are also interested in studying whether there are dis-
tinct human mobility and activity patterns associated
with different types of cellular activities: data, voice-
call, SMS activities. In the following we summarize
the main findings of our paper.

First and foremost, we observe that the data-activity
provides a more exhaustive sample of a user’s spa-
tial presence in the cellular network than either the
voice-call or the SMS activities. Also, quite remark-
ably, the volume of voice-calls and SMS records are
higher on an average for those users who also have
data-records than those who do not have data-access
on their devices. The number of locations visited by
a user as revealed by the voice-call and SMS datasets,
is often a subset of the total number of locations ac-
counted for by the data-activity. Moreover, the set of
significant locations, that account for over 90% of a
user’s activity in the cellular network, show signifi-
cant variations amongst the three activity types, albeit
the home and work locations are reasonably well in-
ferred by the voice-call and/or SMS datasets. Addi-
tionally, for a significant population of users, there is
a tendency to be localized within a very small area
on working days, given that the home and work loca-
tions either fall within the same zip-code or are within
a short distance (4-6 km) of each other. We also ob-
serve that there can be significant differences in the
spatio-temporal entropies as revealed by the overall
activity of a user compared to that inferred by the
voice-process alone. This is also true for the radius

Figure 1: Territorial expanse of the dataset (SF-bay
area).

of gyration of individual users, although to a lesser
extent. Such differences hint that the voice-call and
SMS activities may lead to a biased view of individ-
ual mobility pattern.
However, the numerical values of these measures,

particularly of the Shannon entropy, does not always
have a good intuitive interpretation. So how do we
quantify and understand the possible bias? We pro-
pose a new paradigm by introducing the concept of
sampling processes. Indeed, from the point of view
of mobility studies, each instance of a voice-call pro-
vides a unique sample of a user’s spatio-temporal
presence. Cast in this light, we compare the voice-call
and SMS sampling processes against an artificially
imposed sampling process (e.g. a Poisson point pro-
cess) with the same rate as the average voice-call rate
for a user to see how well or poorly does the voice-
call process perform against this artificial sampling
process. Through experiments conducted over a mil-
lion user strong dataset with varying rates of activity
and mobility, we demonstrate that such an imposed
sampling process often yields better results of a user’s
spatio-temporal behavior in the cellular network. A
practical use-case for such imposed sampling method-
ology can be a location sensing application running on
the end user’s device. The aim is to efficiently sample
locations without incurring substantial overhead. This
is indeed our principal contribution.

II. Related Work

The analysis of human mobility patterns from empiri-
cal data has been an active area of research. Much of
the early work reported in the literature had focussed
on tracking devices in wireless LANs, in particular
in WiFi university and corporate campuses, both of
which provide a reasonable amount of user data [9].
The analysis of mobility data from wireless LANs de-



livered many significant results, too long to list ex-
haustively here, but which include the spectral analy-
sis of mobility patterns [11], the evaluation of move-
ment prediction schemes [19], the derivation of trace-
based models [12], and the heavy-tail nature of move-
ment and pause times (for example lognormal in [12]).

Other work has focused on measurement data col-
lected on short-range networks, in particular on Blue-
tooth networks, with insightful results derived on the
heavy tailed nature of inter-contact times (for exam-
ple [4]). The recent availability of cheap GPS re-
ceivers led others to fit a few dozen willing partici-
pants with such receivers to obtain high-quality GPS
mobility traces. They revealed walking patterns con-
sistent with Lévy flights and heavy tailed inter-contact
times, in agreement with earlier work (e.g. [3]).

All the references listed above analyze relatively
small amounts of mobility data, typically from a few
dozen to a few thousand users, monitored over periods
ranging from a few weeks to a couple of years. In con-
trast, the call records collected by wireless operators
provide orders of magnitude larger amounts of data.
As the privacy and anonymization issues are being in-
crementally sorted, availability of voice-call data has
become greater in the past few years. Much of the
work on mobile voice-call records has focused on the
structural analysis of the mobile call graph, for data
mining purposes (see [14]), and, to a lesser extent, in
the study of mobility at aggregate population levels
using statistical parameters like radius of gyration [7]
and different kinds of entropies [18]. In such stud-
ies, the sample set of users chosen is usually the fre-
quent voice-callers as only they provide enough sam-
ple points for any meaningful study.

The latest spree of papers that use voice-call CDRs
to study human mobility patterns include [2, 7, 10,
18]. In most of these studies, the CDRs are the pri-
mary source of data used to infer locations of user
populations with emphasis on either significant loca-
tions and/or population-wide statistics.

There are some notable exceptions however [15, 16,
20] in which data from location based services (mo-
bile data records) have been used for mobility related
studies. In particular, the authors in [20] study the
spatio-temporal aspects of application usage patterns
for cellular data users in a metropolitan city while the
authors in [16] use the explicit geo-intent expressed
by the users of a cellular data network to infer the lo-
cation of the cellular infrastructure itself. Such studies
are, however, few and far in between.

III. Preliminaries

In this section we introduce some of the preliminar-
ies of our work. In §III.A, we provide details of our
dataset, followed by a discussion of the activity rates
of data-users versus non-data users in §III.B.

III.A. Dataset

Our primary dataset consists of anonymized cellular
voice-call, SMS and data-session (2G and 3G) records
collected from an operational CDMA 1xRTT-EVDO
cellular network. Such records, also referred to as
Per-Call Measurement Data (PCMD), are usually col-
lected by cellular services providers for billing and
trouble-shooting purposes. PCMD contains records
of voice-calls, SMS and data activity of each cellular
user. CDRs, or voice CDRs, mainly used for billing,
are formed based on the PCMD records for voice ses-
sions. Each PCMD record is a per-user-per-session
record and consists of over 100 fields with informa-
tion related to both the mobile device and the cellu-
lar network. In our data set, we use a selected set of
fields from PCMD and among which, the user identi-
fier field is anonymized beforehand. In addition, we
deal with these fields: the beginning and end times-
tamps for each call, the basestations (cell-tower) asso-
ciated with the beginning and end of each call, and
the call-type that recognizes whether the session in
progress is a voice-call, an SMS message or a data-
session (2G and 3G). Note, that the location of the
basestations is known a priori and these are used as
proxies for users location. Spatially, our dataset cov-
ers a 7,000 sq. mile wide territory in the San Francisco
bay area, for over a million mobile users studied over
a month long period (July, 2011).

III.B. Activity Volumes and Data Users

A user’s activity rate in the cellular network often de-
termines whether or not he is selected for a study.
Studies which use only voice-call CDRs sometimes
set the threshold as high as 0.5 calls per hour on an av-
erage [18], to ensure temporal completeness 1. Figs.
2(a) and (b), respectively show the cumulative distri-
bution frequency (CDF) of the number of records and
number of hours of activity per user for each of the
three activity types. Note that the voice-call activity
contributes the least in terms of volume as well as the
number of active hours, while the data-access activity

1We also discretize the activity of users into 15 minute long
time-slots thereby preventing over count bias at a location due to
bursty activity.



contributes the most. Such high volumes and tempo-
ral spread for the data activity can be attributed in part
to automated applications such as push-mail notifica-
tions and software updates, that usually occur in the
background without the user’s active participation. In
contrast, voice-calls and SMS activity are largely user
initiated, either by the user herself, or by the party at
the other end of the communication. Data activity,
therefore, potentially helps make the overall record of
a user more complete in time, imperative for our study.
Thus, we divide the users into two types: users who

have data-activity records (henceforth called data-
users), and those who do not (non-data-users). We
now show that selecting data-users for this study will
in itself introduce no selection bias. The average
voice-call and SMS activity volumes for data-users is
in fact higher than that of non-data-users (Fig. 2(c))
which has two important implications: first, the adop-
tion of data plans by users does not seem to deter their
voice-call and SMS activity volumes. Second, by us-
ing data-users as representatives of the overall pop-
ulation, we do not discriminate against the high fre-
quency voice-callers or SMS users at all. They are as
well represented in the set of data-users as they are in
the set of non-data-users.
In the remainder of this study, unless otherwise

mentioned, we focus on the data-user set which con-
tains over 500 K users in it.

IV. Is There a Possible Bias In Voice-
Call Based Studies?

In this section we explore the question as to whether
there is indeed a possibility of bias if voice-calls are
used to study human mobility — individual or of pop-
ulations. In §IV.A, we look at the location profile of
a user’s spatial footprint — observed and significant
locations — with particular emphasis on home and
work locations. Next we explore the spatio-temporal
aspects of mobility — entropy and radius of gyration
— in §IV.B and §IV.C.

IV.A. Locations in a Cellular Network

We first analyze the number of distinct locations (N)
visited by a user during the observation period which
provides some insight into the diversity of a users spa-
tial footprint. Fig. 3(a) shows the CDF for the number
of locations visited by each data-user (500K in num-
ber) as revealed by their voice-call, SMS and data ac-
tivities respectively. We also plot the combined count
for comparison. Note that the number of distinct lo-
cations revealed by the data-activity is clearly higher

than those revealed by the voice-call and SMS activ-
ities. Interestingly, the SMS activity, despite being
higher than the voice-call activity in terms of volume,
fares no better than the voice-call activity in account-
ing for the diversity of a user’s spatial footprint. Thus,
for an individual user the voice-call and the SMS ac-
tivities only partially account for, or equivalently un-
derestimate, the set of locations where a user can pos-
sibly be found at random.

IV.A.1. Significant Locations

However, not all locations are equal. Most users dis-
play a great degree of loyalty to certain locations (such
as home, school and work) as compared to other infre-
quently visited ones, for example say a cinema theater.
The set of significant locations [10] for a user is de-
fined as the subset of all locations visited by a user
that account for over 90% of his/her observed activ-
ity in the cellular network. In other words, a user is
more likely to be found in one of these significant lo-
cations at a random point in time than the remaining
10% peripheral or not-so-significant locations. Indeed
we find that the number of such significant locations
as revealed by the voice-call and SMS activities, is 10
or fewer for over 80% individuals in our dataset (see
Fig. 3(b)). In contrast, the significant location sets are
relatively larger for the same population as revealed
by the data-activity with the 80th percentile at 18 lo-
cations per user 2. Let V be the set of significant loca-
tions revealed by the voice-call activity (and similarly
S: SMS and D: data respectively). We now compute
the Jaccard-similiarity between these sets as follows:

J(A,B) =
|A ∩ B|

|A ∪ B|
(1)

Fig. 3(c) shows the probability distribution function
for the Jaccard similarities of the voice-call and SMS
activities with respect to the data activity for individ-
ual users. Note that the peaks of the Jaccard similarity
are attained at as low as X = 0.1 accounting for 30%
users when comparing the voice-calls and data activ-
ities. In other words, for 30% data-users, the overlap
between the set of significant locations as revealed by
their voice-call and data activities is as low as 10%.
Similarly, the value for X = 0.1 is 50% when we
compare the significant location sets for the SMS and
data activities. This observation clearly suggests that
for a significant portion of the user-base, the set of
significant locations may differ significantly (no pun

2Note that this difference may be also be due to the geographic
expanse of the San Francisco bay area which is, in some sense, an
extended metropolitan area.












      


















  












 






 









   

(a) # records (b) # active-hours (c) Voice: data vs. non-data users

Figure 2: User activity: Overall volume, active-hours and data vs. non-data users.













     












































 







(a) Distinct locations per user (b) Significant loc. (c) Overlap in significant loc.

Figure 3: Spatio-temporal footprints for individual users.

intended). To what extent this difference matters is
what we explore next.

IV.A.2. Home and work

Of all the significant locations of a user, home and
work locations are intuitively the most significant. We
first select all users whose overall activity (combina-
tion of voice-calls, SMS and data-records) is spread
across 250 or more hours out of the 744 hours in the
observation period and who have at least three signifi-
cant locations. Our dataset contains about 300 K users
who fulfill this criteria, who will be used henceforth
throughout this study for empirical analysis.
Next for each of these users, we consider the 20

working days from the month long period (excluding
weekends and July 4), and divide the day into working
hours (9:00 am to 6:00 pm) and non-working hours
(the rest). We now compute the work and home lo-
cations of each user by using Hartigan’s leader se-
lection algorithm [8, 10] over the working-hours and
non-working hours respectively. The work and home
locations revealed by all three processes, voice-calls,
SMS and data-sessions, quite remarkably, do not vary
across the three processes for over 95% (nearly all)
users. Also, we observe that number of time-slots in
which the user is not at either his home or work loca-
tions on weekdays is less than 10% for over 80% users
while on holidays it is a close match (see Fig. 4).
The difference in the set of significant locations as

described in the previous subsection must then be ac-
counted for by transient locations for example the lo-




















Figure 4: Fraction of time spent away from home and
work locations.

cations between home-work commute. Next we look
at the length of this commute. For over 57% users out
of the 300 K users, the home and work locations are
either the same or fall within the same zip-code. Fig.
5 shows the histogram of the home-work distances of
users whose home and work locations are not within
the same zip-code. We observe that the peak of the
distribution lies between 4 − 8 km, while 50th and
75th percentiles lie at 10 km and 21 km respectively.
Next we explore the implications of these observa-

tions over the observed spatio-temporal footprint of
users.

IV.B. Spatio-temporal Footprint

We now describe two metrics from literature [7, 18] to
analyze the spatio-temporal characteristics of individ-
ual users as well as populations.



 




















  

Figure 5: Distance(km) from home to work zip-codes.

IV.B.1. The Shannon entropy

Like the random entropy SR, another entropy measure
that is commonly used in literature is the Shannon en-
tropy (also referred to as the temporally uncorrelated
entropy SU in [18]). Precisely,

SU = −
N

∑

i=1

Pi log2Pi (2)

where Pi is the probability that an activity was ob-
served at location i from the set of N locations that a
user visits. SU is, therefore, a measure of the spread
of a user’s activity over his/her spatial footprint (loca-
tions).

IV.B.2. The radius of gyration

To quantify the range of a user’s trajectory[7, 18] the
so called the radius of gyration (RG) is often user. Let
−→
Ri denote the position of the user at time i (say time-
slot i if the observation period is discretized). Then
the radius of gyration of the user is given by:

RG =

√

√

√

√

1

L

L
∑

i=1

(
−→
Ri −

−−→
Rcm)2 (3)

where −−→Rcm is the center of mass for all the temporally
recorded locations for the user (L in total).

IV.C. Looking for Possible Biases

We now look at the following two questions: (i) does
using voice-calls CDRs to study individual mobility
patterns potentially introduce a bias in the observed
properties? And (ii) does selecting high-frequency
voice-callers to study the mobility characteristics of
the population potentially introduce a bias?

IV.C.1. For an individual user

We now compute the SU andRG values for each indi-
vidual using first only the voice-call records and then

Table 1: Quartile-wise break-down of number of
voice calls made by high-activity users.

Percentile 25th 50th 75th

# Voice-calls 246 437 695

the overall record. Figs. 7(a) and (b) respectively
show the CDF distributions of absolute errors incurred
in the computation of SU and RG respectively for in-
dividual users. We observe that for over 50% users
SU incurs an absolute error of around 0.25 and above.
In contrast, the RG values are estimated to within a 1
km error range by the voice-call process for over 80%
users. Therefore, the only possible bias voice-call pro-
cess seems to incur is in terms of the entropy, which
we shall look at greater detail in a subsequent section.

IV.C.2. User-classes by voice-call
frequency

Next we explore the question of whether (and to what
extent) high-frequency voice-callers are representa-
tives of the population on a whole? To do so, we parti-
tion the set of 300 K users cited above into four quar-
tiles each of 75 K users, by the number of voice-calls
made by them (see table 1).Thus we have the low-
frequency voice-callers with fewer than 246 voice-
calls in a month (the first quartile) to compare against
those in the other three quartiles. Figs. 6(a) and (b),
respectively show the probability distribution of SU

for first and the fourth quartile users. Note that SU

is computed using the overall activity record for the
user and not just the voice-call activity. We observe
that the peak of the probability distribution shifts from
around 3.00 for the first quartile users to around 4.00
for the fourth quartile (in fact this increase is consis-
tent across the quartiles). Thus, as far as the popula-
tion is concerned, the uncorrelated entropy measure
might be overestimated if we select high-frequency
voice-callers as representatives of the population.
Finally, we look at the distribution of the radii of

gyration for the users of the four classes by voice-
call frequency. Fig. 7(c), shows the log-log dis-
tribution of RG of the first and the fourth quartile
users. We observe that the distributions nearly overlap
suggesting a lack of variance across user classes by
voice-call frequency (the same is true for the second
and third quartile users). RG distribution of a pop-
ulation is often characterized in terms of a truncated
power-law [7]. We observe that the exponents for the
power-law fit across the four classes are in the range












   













   













   









(a) Lowest frequency users (b) Highest frequency users (c) Overall

Figure 6: Shannon entropy (SU ) comparison across voice-caller classes based on frequency.

β = [1.76 − 1.79], consistent with that in [7].
To summarize therefore, using high-frequency

voice-callers to study aggregate mobility of user pop-
ulations can incur possible biases for the uncorrelated
entropy but the radius of gyration distributions seem
to be immune to such selection. But Shannon en-
tropy is only a number, and thus although it provides a
hint into possible differences, we need better means to
characterize these differences. In what follows, there-
fore, we motivate mobility studies in the form of a
sampling problem to understand as to why and under
what conditions the entropy of a user differs across the
activities and how, if possible, to rectify for it.

V. A Sampling Problem

In this section we look at the nuances of the spatio-
temporal footprint of individual users and the under-
lying biases in terms of a sampling problem. In §V.A
we provide a case-study to show that preferential lo-
cations for different activity types may indeed lead in
an over-counting bias. Then, in §V.B, we formally
state the sampling problem as well as motivate an im-
posed sampling process to compare the voice-call pro-
cess against.

V.A. An Illustrative Example

We now present a case study of a frequent voice-caller
to put into perspective the sampling problem. Our
example user, has 510 voice-call records spread over
218 hours in the observation period. This is higher
than the 90th percentile of the number of voice-calls
per user. The user also has over 780 SMS records
and 7, 300 data-records amounting to nearly 8, 500
activity-records in total (voice-calls, SMS and data)
spread over 466 hours. Moreover, the spatial-footprint
of the user encompasses 47 distinct locations in the
San Francisco bay area, which is close to the mean
number of locations visited by the users in our dataset.
Out of these, the number of locations accounted for by
the voice-call activity alone is 24, once again higher

than the mean number of locations accounted for by
voice-calls for the user-base. In short, this user is
likely to be sampled for a mobility study of individ-
uals, with high probability, based on either selection
criteria: activity as well as mobility, irrespective of
the kind of activity under consideration.
Next we compute the probability for this user to

make a voice-call over the set of overall locations vis-
ited by the user (see Fig. 8(a)). Two observations
stand out: the voice-call activity misses some signifi-
cant locations, and location 44 alone accounts for al-
most 50% of the marginal distribution for the voice-
call activity. On further inspection, we discovered that
the user is mostly present at location 44 during the
evening hours (see Figs. 8(b) and (c)) i.e. his home
locations. Thus, we observe that this is a preferential
location for the voice-call activity for this user. In con-
trast, the data activity (and consequently the overall
activity) is more evenly spread over the hour-of-day.
Such preferential behavior for voice-activity clearly

may lead to biased estimates of both Shannon entropy
(an absolute error of 0.34 in this case) as well as the
radius of gyration (0.25 km). Whereas the absolute
error inRG is intuitive to understand, we need a better
insight into the Shannon entropy error and if possible
make an attempt to correct for it. This we do in the
next subsection.

V.B. Mobility as a Sampling Problem

A user’s activity-profile (say the voice-call activity),
is in fact a segmentation of the observation period
whereby events (such as voice-calls) occur at certain
times, interspersed with periods of inactivity of vary-
ing lengths. Our view of a user in the cellular network
is entirely dependent on this event-pause sequence.
We observe a user and his location if an only if there
is an event and not during the pauses. The observed
mobility can therefore be posed as a sampling prob-
lem in the following way. Given an observation pe-
riod of T hours, define a discretized partitioning of T
in terms of time-windows of length M minutes each.




















    






   






































     

(a) Shannon entropy (SU ) (b) Radius of gyration (RG) (c) Radius of gyration across classes

Figure 7: Comparing relative errors: voice vs. overall.












         









 











 





    











   









(a) Prob. of observation per location (b) Hour of day (Voice-calls) (c) Hour of day (Data-records)

Figure 8: Example user: a case study.

The number of maximum observations is given by
W = (T ∗ 60)/M . By abuse of notation, we will
use W to represent the set of time-slots as well. A
sampling process S(W ) is then defined over the set
W of time-slots, that samples a user’s location at dis-
crete time intervals determined by a rate function ρ.
The output of the sampling function S(W ) is a sub-
set W ⊂ W , of the overall set of time-slots, where
the number of sampled windows is determined by the
rate function ρ. From the point of view of mobility,
if L be the set of all locations visited by a user, this
hypothetical sampling function S(W ) only records a
subset of locations L ⊂ L, which the user visits dur-
ing the time-windows of the setW .
The goodness of the sampling process S(W ) can

then be determined in the following way. Let PS ∈
(N be the marginal probability distribution of the
sampling process S(W ), over the set of all locations
that constitute the spatial footprint of the user. The
entry pi ∈ PS , is probability of sampling location i.
Similarly, let PO be the marginal probability of the
overall activity distributed over the set of locations.
Then the marginal distributions can now be compared
in terms of the Jensen-Shannon divergence [6] be-
tween the two distributions as follows:

JSD(PS ||PO) =
1

2
(D(PS ||PM ) + D(PO||PM ))

(4)
where PM = PS+PO

2
andD(PS , PM ) is the Kullback-

Leibler divergence between PS and PM
3. In informa-

3We choose the Jensen-Shannon divergence for these com-

tion theory, Jensen-Shannon divergence is often used
as a measure of mutual information between two prob-
ability distributions (lower the Jensen-Shannon diver-
gence, more similar the two probability distributions
are). Additionally, we can also compare one or more
of the popular metrics in literature (discussed earlier)
such as the set of locations visited by a user, the Shan-
non entropy and/or the radius of gyration. We there-
fore have several ways of quantifying the bias incurred
by a sampling process as compared to the overall ob-
served activity-mobility profile (which in itself is a
sampling over the true mobility of a user).
In view of the above, it is easy to see that the voice-

call activity (or for that matter SMS, data-activity and
the overall activity) clearly fits the description of a
sampling process. And we have a measure, namely
the Jensen-Shannon divergence of the voice-call pro-
cess against the overall activity process, to quantify
the bias. However, the Jensen-Shannon divergence is
only a relative measure of difference. In order to make
sense of the difference, we need at least one other pro-
cess to compare against, and we choose an artificially
imposed one. Can a sampling process defined with
the same average rate as that of the voice-call activity
perhaps perform better? This is the question that we
now deal with in detail.
We now formalize the problem of assessing the

suitability/goodness of the voice-call activity as a

parisons purely because it is bounded in the interval [0,1] [13]
and also measures mutual information between the two marginal
probability distributions.



sampling process. For a given user, let SV (W ) be the
sampling process representing the user’s voice-call ac-
tivity. If the number of voice-calls made by the user
during the observation period be V , then the average
rate-function is simply ρ = V/|∆T | i.e. the number
of calls made by the user between the first and final
hour during which there is a voice-call record associ-
ated with him/her. We define the imposed sampling
process SI(W ), as an instance of the set of all sam-
pling processes with the same average rate ρ as ex-
hibited by the voice-call activity of the cellular user.
For convenience we choose a Poisson process with the
same intensity function as the average voice-call rate
as our imposed sampling function. The reason for this
choice is simple: a Poisson process is the most evenly
spread out random process with a given rate function.
The average call rates of users are easy to estimate and
this is the only parameter required to define the Pois-
son process, thus making the choice quite obvious.
A second imposed sampling process that we study

is one with varying fractions of the overall activity-
rate for a user. Our aim, in doing so, is to determine
the sampling rate at which an imposed activity sam-
pling process provides a good sample of the user’s ob-
served mobility behavior.

VI. Experiments

In this section, we describe the experimental results
for the various sampling processes described previ-
ously. In §VI.A we compare the voice-call process
against the imposed Poisson sampling process with
the same intensity followed by a study of varying rate
of sampling with fractions of overall activity rates in
§VI.B.

VI.A. Voice-call Sampling vs. an
Imposed Poisson Process

We now compare the voice-call based sampling for
individual users vis-a-vis a Poisson process with the
same intensity as the average number of voice-calls
per active hour for the user. However, before doing so,
we first need to pick a relevant sample of users from
the dataset with enough number of voice-calls to make
any sensible comparisons. As observed previously,
for data-users the 25th percentile for the number of
voice-calls is 68, the 50th percentile is at 153 while
the 75th percentile lies at 315. We now classify the
data-users for this comparative study into low-activity
(68 to 153 calls), medium-activity (153 to 315 calls)
and high-activity (315 calls and above), based on the
quartile margins. Note that our high activity group is

quite similar to the one picked in [18] where the se-
lection criteria is 0.5 calls per hour which is roughly
372 calls in our case.
Similarly, we also divide each of the three activ-

ity classes described above into three mobility-classes
based on the number of locations that constitute the
set of significant locations for each user (as accounted
for by his/her overall activity). Recall that despite a
remarkable difference in the number of locations ob-
served by the data process, the set of significant lo-
cations is 15 or fewer for over 75% of the data users.
Once again, we define as low, medium and high mo-
bility classes for users whose significant location sets
contain 3 − 8, 8 − 15 and 15 and above locations.
Note that although considering significant locations
reduces the impact of extremely low probability lo-
cations, there is always a caveat that not all significant
locations are equally or competitively significant. We
defer the details to a latter paragraph.
Given user i whose number of voice-calls in the en-

tire duration is at least above the 25th percentile, de-
noted by Vi. We also note the overall activity span of
user i i.e. the difference in between the times at which
user imakes the first and the last voice-calls, (say∆Ti

in terms of the number of 15 minute intervals separat-
ing the first and last voice-calls). This yields the rate
ρ = Vi/∆Ti for the Poisson (and periodic) sampling
processes that we will impose to sample the locations
at which user i is active (voice-SMS-data). Note that
the aim is to sample (approx.) the same number of
these discrete time windows as the number of voice-
calls made by user i. We also require that the active
interval ∆Ti represent at least a two-week long (14
days) period in order to avoid random visitors in our
population. Also, for the Poisson and periodic sam-
pling process, we generate 10 different random start-
ing points (determined by overall activity and not just
the voice-activity) for sampling and then take the av-
erage of the 10 instances to avoid temporary void pe-
riods.

VI.A.1. Marginal distributions

We now present the results of this comparative anal-
ysis using the Jensen-Shannon divergence for the
marginal probability distributions (see Fig. 9). Ob-
serve that all the four processes are competitive when
the voice-call activity is high, for a large fraction of
the users. The Poisson and the voice-cum-SMS sam-
pling processes perform ever so slightly better than
voice and periodic processes in the high activity cat-
egory. This is not surprising as a significant popula-
tion of data-users with high voice-call rates also have
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Figure 9: CDF: Inter-class comparisons mobility and activity; numbers in brackets indicate users per class.

higher data activity rates. Therefore, the overall activ-
ity (voice-SMS-data) only improves on the temporal
spread of the voice-activity in the average case, that is
subsequently reflected in higher hit-rates for the im-
posed Poisson and periodic processes (see Fig. 9).
Moreover, we observe that the divergences increase
for each of the four processes, on an average, when
we move from low to high mobility classes. However,
the Poisson process continues to perform better, again
ever so slightly, than the other three. Particularly, for
the high-activity-high-mobility class, we observe that
the difference between the Poisson and the other pro-
cesses is more pronounced. This clearly indicates that
for users whose observed spatial diversity is higher,
and spread over a number of locations, the voice and
SMS processes tend to have selective bias towards cer-
tain specific locations (as shown for the example user
in the previous section). This is important to note as
in most previous studies the high-activity class is the
only one that is studied.

For the medium activity group, we observe that
the Poisson and voice-cum-SMS processes combined
tend to perform better than the voice process with
increasing mobility. Predictably as the number of
sample points decrease and the location diversity in-
creases, the performance of the imposed sampling
processes decreases due to lower hit-rates. Yet, over-
all we observe that the Poisson and voice-cum-SMS
processes perform better. This may be a result of the

fact that the SMS process augments the voice process
at locations where the users tend to make fewer voice-
calls.
We observe similar trends in the low activity group

barring the low-activity-low-mobility users for whom
the obvious handicap is the extreme sparsity of data.
Therefore, despite several competing factors, we

observe that the Poisson and the voice-cum-SMS pro-
cesses perform better on an average than the voice
process, particularly as the number of significant lo-
cations increases.

VI.A.2. Other mobility parameters

We now look at the relative error incurred in comput-
ing the radius of gyration and Shannon entropies of
users by the various sampling process in Figs. 10(a)
and (b). Notice once again, that the relative errors
incurred by the Poisson process are comparatively
lower than that incurred by the others (even if ever
so slightly).

VI.B. Imposed Sampling Processes with
Varying Intensities

We now explore the imposed Poisson sampling pro-
cess from another perspective. This time we take into
consideration the overall activity rate for individual
users (instead of their voice-call activity) to determine
the intensity function for the imposed Poisson sam-
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Figure 10: CDF: Relative errors in radius of gyration and uncorrelated entropies of data users.

 














 

 

 

        

Figure 11: CDF: Jensen-Shannon divergence between
marginal distributions for Imposed Poisson processes
with varying intensities(10 K Data-users).

pling process. We study the performance of this im-
posed Poisson sampling process for decreasing rates
of the intensity function ρ. We decrease ρ in succes-
sive integral steps of the average activity rate for the
user through a decay coefficient κ = {2, 4, 8, 16, ...}.
Our aim in doing so is to determine the least rate of
sampling (or equivalently the highest value of κ) at
which the imposed Poisson process incurs a Jensen-
Shannon divergence below a certain threshold ε ( <
0.1 say). However, before we elaborate on the results,
we need to select our sample user set carefully. The
75th percentile for the number of records (voice-SMS-
data combined) per hour lies at 21 records per hour, or
equivalently one record every three minutes on an av-
erage. As, we need users for whom we can explore
a wide range of κ values, it is reasonable to select
only those users who have high activity rates to be-
gin with (or else we might end up with the same issue
as demonstrated in the previous subsection). There-
fore, for the purposes of this experiment, we first con-
centrate on the high-activity-high-mobility group of
users, imposing the same restriction that the user’s
first and final activity must span a period of two weeks
at the very least.
Fig. 11 shows the Jensen-Shannon divergence of

the imposed Poisson sampling processes vs. the ob-

served marginal distribution. We observe that as the
rate of the sampling process decreases, the Jensen-
Shannon divergence increases with regularity, which
in itself is not surprising. However, notice that the di-
vergence becomes greater than 0.1 for 90% of users
only at κ = 32 i.e. when the intensity function for
the imposed Poisson sampling is 1/32 of the aver-
age activity rate for these users. Therefore, we con-
clude, from the evidence at hand, that an imposed
Poisson sampling process with an intensity function
much lower than the overall activity rate for users, per-
forms well as a sampling process for most users.

VII. Conclusion and Future Work

In this work, we discussed the possible caveats of us-
ing voice-call detail records (CDRs) for studying in-
dividual human mobility patterns. While CDRs pro-
vide an unprecedented source for user locations at
large population scales, there are some obvious lim-
itations on them, largely due to the underlying nature
of the voice-call process, which being human initiated
depends on the calling frequencies of an individual.
This may lead to a skewed view of the spatio-temporal
distribution of an individual over the set of all loca-
tions visited. Using the dataset of over a million cel-
lular users from the San Francisco bay area, cover-
ing several thousands of square miles, for a month
long period, we demonstrated that the voice-call ac-
tivity does well in inferring significant locations like
home and work, even though it may fail to capture the
nuances. When compared with a Poisson sampling
process with the same intensity, the voice-call pro-
cess compares reasonably well for high call-activity
users, but the Poisson process certainly improves on
the performance, particularly as the activity rates vary.
Thus when designing location-sensing applications on
a mobile device to sample users’ locations a similar
imposed process might come handy. From the point
of view of populations, we observe that while the ra-



dius of gyration does not show variation across differ-
ent classes of users by activity, the Shannon entropy
values may in fact be over-estimated. Therefore, the
use of voice-calls for human mobility patterns should
be taken with advised caution depending upon the na-
ture and objectives of the study.
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