Gustavo Yepes

Gustavo Yepes
Universidad Autónoma de Madrid | UAM · Department of Theoretical physics

Doctor

About

360
Publications
17,603
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
12,407
Citations
Additional affiliations
May 1994 - present
Universidad Autónoma de Madrid
October 1990 - August 1992
Canadian institute for theoretical astrophysics
Position
  • Canadian institute for theoretica astrophysics

Publications

Publications (360)
Preprint
We develop a machine learning algorithm to infer the 3D cumulative radial profiles of total and gas mass in galaxy clusters from thermal Sunyaev-Zel'dovich effect (SZ) maps. By using 2,522 simulated clusters from the \thethreehundred{} project at redshift $z< 0.12$, we generate more than 73,000 mock images along several lines of sight and train a m...
Preprint
Full-text available
PSZ2 G091.83+26.11 is a galaxy cluster with M500 = 7.43 x 10^14 Msun at z = 0.822 1. This object exhibits a complex morphology with a clear bimodality observed in X-rays. However, it was detected and analysed in the Planck sample as a single, spherical cluster following a universal profile 2. This model can lead to miscalculations of thermodynamica...
Article
Full-text available
Starting from the clusters included in the NIKA sample and in the NIKA2 Sunyaev-Zel’dovich Large Program (LPSZ) we have selected a sample of six common objects with the Cluster Lensing And Supernova survey with Hubble (CLASH) lensing data. For the LPSZ clusters we have at our disposal both high-angular resolution observations of the thermal SZ with...
Article
Full-text available
The simulation database of The Three Hundred Project has been used to pick synthetic clusters of galaxies with properties close to the observational targets of the NIKA2 camera Sunyaev–Zeldovich (SZ) Large Program. Cross–matching of cluster parameters such as mass and redshift of the cluster in the two databases has been implemented to generate the...
Article
Full-text available
PSZ2 G091.83+26.11 is a massive galaxy cluster with M 500 = 7:43 × 10 ¹⁴ M ⊙ at z = 0:822. This object exhibits a complex morphology with a clear bimodality observed in X-rays. However, it was detected and analysed in the Planck sample as a single, spherical cluster following a universal profile [1]. This model can lead to miscalculations of thermo...
Article
Full-text available
Cluster number count is a major cosmological probe for the next generation of cosmological large scale-structure surveys like the one expected from the Euclid satellite mission. Cosmological constraints will be mainly limited by the understanding of the selection function (SF), which characterize the probability of detecting a cluster of a given ma...
Article
Full-text available
We present a multi-probe analysis of the well-known galaxy cluster CL J1226.9+3332 as a proof of concept for multi-wavelength studies within the framework of the NIKA2 Sunyaev-Zel’dovich Large Program (LPSZ). CL J1226.9+3332 is a massive and high redshift (z = 0.888) cluster that has already been observed at several wavelengths. A joint analysis of...
Article
Full-text available
The NIKA2 Guaranteed-Time SZ Large Program (LPSZ) is dedicated to the high-angular resolution SZ mapping of a representative sample of 45 SZ-selected galaxy clusters drawn from the catalogues of the Planck satellite, or of the Atacama Cosmology Telescope. The LPSZ sample spans a mass range from 3 to 11 × 10 ¹⁴ M ⊙ and a redshift range from 0:5 to 0...
Preprint
Full-text available
PSZ2 G091.83+26.11 is a massive galaxy cluster with M500 = 7.43 x 10^14 Msun at z = 0.822. This object exhibits a complex morphology with a clear bimodality observed in X-rays. However, it was detected and analysed in the Planck sample as a single, spherical cluster following a universal profile [1]. This model can lead to miscalculations of thermo...
Preprint
Full-text available
We present a multi-probe analysis of the well-known galaxy cluster CL J1226.9+3332 as a proof of concept for multi-wavelength studies within the framework of the NIKA2 Sunyaev-Zeldovich Large Program (LPSZ). CL J1226.9+3332 is a massive and high redshift (z = 0.888) cluster that has already been observed at several wavelengths. A joint analysis of...
Preprint
Full-text available
Starting from the clusters included in the NIKA sample and in the NIKA2 Sunyaev-Zel'dovich Large Program (LPSZ) we have selected a sample of six common objects with the Cluster Lensing And Supernova survey with Hubble (CLASH) lensing data. For the LPSZ clusters we have at our disposal both high-angular resolution observations of the thermal SZ with...
Preprint
Full-text available
The NIKA2 Guaranteed-Time SZ Large Program (LPSZ) is dedicated to the high-angular resolution SZ mapping of a representative sample of 45 SZ-selected galaxy clusters drawn from the catalogues of the Planck satellite, or of the Atacama Cosmology Telescope. The LPSZ sample spans a mass range from $3$ to $11 \times 10^{14} M_{\odot}$ and a redshift ra...
Preprint
We investigate how large-scale cosmic filaments impact the quenching of galaxies within one virial radius of 324 simulated clusters from The Three Hundred project. We track cosmic filaments with the versatile, observation-friendly program DisPerSE and identify halos hosting galaxies with VELOCIRaptor. We find that cluster galaxies close to filament...
Article
Full-text available
Context. Diffuse radio emission has been found in many galaxy clusters, predominantly in massive systems which are in the state of merging. The radio emission can usually be classified as relic or halo emission, which are believed to be related to merger shocks or volume-filling turbulence, respectively. Recent observations have revealed radio brid...
Article
Full-text available
The Cluster HEritage project with XMM-Newton – Mass Assembly and Thermodynamics at the Endpoint of structure formation (CHEX-MATE) is a three-mega-second Multi-Year Heritage Programme to obtain X-ray observations of a minimally-biased, signal-to-noise-limited sample of 118 galaxy clusters detected by Planck through the Sunyaev–Zeldovich effect. The...
Article
Using 324 numerically modelled galaxy clusters as provided by T HE T HREE H UNDRED project, we study the evolution of the kinematic properties of the stellar component of haloes on first infall. We selected objects with M star > 5 × 10 ¹⁰ h ⁻¹ M ⊙ within 3 R 200 of the main cluster halo at z = 0 and followed their progenitors. We find that although...
Article
Next generation telescopes such as the James Webb Space Telescope (JWST) and the Nancy Grace Roman Space Telescope (NGRST) will enable us to study the first billion years of our Universe in unprecedented detail. In this work we use the Astraeus (semi-numerical rAdiative tranSfer coupling of galaxy formaTion and Reionization in N-body dArk mattEr si...
Article
Full-text available
In this work, we use the astraeus (seminumerical rAdiative tranSfer coupling of galaxy formaTion and Reionization in N-body dArk mattEr simUlationS) framework which couples galaxy formation and reionization in the first billion years. Exploring a number of models for reionization feedback and the escape fraction of ionizing radiation from the galac...
Article
At ∼16–17 Mpc from us, the Virgo cluster is a formidable source of information to study cluster formation and galaxy evolution in rich environments. Several observationally driven formation scenarios arose within the past decade to explain the properties of galaxies that entered the cluster recently and the nature of the last significant merger tha...
Preprint
Using 324 numerically modelled galaxy clusters as provided by THE THREE HUNDRED project, we study the evolution of the kinematic properties of the stellar component of haloes on first infall. We select objects with M$_{\textrm{star}}>5\times10^{10} h^{-1}M_{\odot}$ within $3R_{200}$ of the main cluster halo at $z=0$ and follow their progenitors. We...
Preprint
At ~16-17Mpc from us, the Virgo cluster is a formidable source of information to study cluster formation and galaxy evolution in rich environments. Several observationally-driven formation scenarios arose within the past decade to explain the properties of galaxies that entered the cluster recently and the nature of the last significant merger that...
Preprint
New surveys such as ESA's Euclid mission and NASA's Nancy Grace Roman Space Telescope are planned to map with unprecedented precision the large-scale structure of the Universe by measuring the 3D positions of tens of millions of galaxies. It is necessary to develop theoretically modelled galaxy catalogues to estimate the expected performance and to...
Preprint
We present measurements of the linear galaxy bias of H$\alpha$ and [OIII] emission line galaxies (ELGs) for the High Latitude Spectroscopic Survey (HLSS) of Nancy Grace Roman Space Telescope, using galaxy mocks constructed using semi-analytical model for galaxy formation, {\it Galacticus}, with a large cosmic volume and redshift coverage. We comput...
Article
Full-text available
We introduce a new self-consistent model of galaxy evolution and reionization, astraeus (semi-numerical rAdiative tranSfer coupling of galaxy formaTion and Reionization in N-body dArk mattEr simUlationS), which couples a state-of-the-art N-body simulation with the semi-analytical galaxy evolution delphi and the semi-numerical reionization scheme ci...
Article
Full-text available
Inferring line-of-sight distances from redshifts in and around galaxy clusters is complicated by peculiar velocities, a phenomenon known as the ”Fingers of God” (FoG). This presents a significant challenge for finding filaments in large observational data sets as these artificial elongations can be wrongly identified as cosmic web filaments by extr...
Preprint
Inferring line-of-sight distances from redshifts in and around galaxy clusters is complicated by peculiar velocities, a phenomenon known as the "Fingers of God" (FoG). This presents a significant challenge for finding filaments in large observational data sets as these artificial elongations can be wrongly identified as cosmic web filaments by extr...
Article
We report the non-thermal pressure fraction (P_(nt)/Pt_(ot)) obtained from a three-dimensional triaxial analysis of 16 galaxy clusters in the CLASH sample using gravitational lensing (GL) data primarily from Subaru and HST, X-ray spectroscopic imaging from Chandra, and Sunyaev-Zel'dovich effect (SZE) data from Planck and Bolocam. Our results span t...
Preprint
We report the non-thermal pressure fraction (Pnt/Ptot) obtained from a three-dimensional triaxial analysis of 16 galaxy clusters in the CLASH sample using gravitational lensing (GL) data primarily from Subaru and HST, X-ray spectroscopic imaging from Chandra, and Sunyaev-Zel'dovich effect (SZE) data from Planck and Bolocam. Our results span the app...
Article
Clusters of galaxies are useful tools to constrain cosmological parameters, only if their masses can be correctly inferred from observations. In particular, X-ray and Sunyaev-Zeldovich (SZ) effect observations can be used to derive masses within the framework of the hydrostatic equilibrium. Therefore, it is crucial to have a good control of the pos...
Article
Full-text available
Dark matter-only simulations are able to produce the cosmic structure of a Lambda cold dark matter universe, at a much lower computational cost than more physically motivated hydrodynamical simulations. However, it is not clear how well smaller substructure is reproduced by dark matter-only simulations. To investigate this, we directly compare the...
Preprint
Dark matter-only simulations are able to produce the cosmic structure of a $\Lambda$CDM universe, at a much lower computational cost than more physically motivated hydrodynamical simulations. However, it is not clear how well smaller substructure is reproduced by dark matter-only simulations. To investigate this, we directly compare the substructur...
Article
We analyse the gas content evolution of infalling haloes in cluster environments from The Three Hundred project, a collection of 324 numerically modelled galaxy clusters. The haloes in our sample were selected within 5R200 of the main cluster halo at z = 0 and have total halo mass M200 ≥ 1011h−1M⊙. We track their main progenitors and study their ga...
Preprint
We analyse the gas content evolution of infalling haloes in cluster environments from THE THREE HUNDRED project, a collection of 324 numerically modelled galaxy clusters. The haloes in our sample were selected within $5R_{200}$ of the main cluster halo at $z=0$ and have total halo mass $M_{200}\geq10^{11} h^{-1} M_{\odot}$. We track their main prog...
Article
The knowledge of the dynamical state of galaxy clusters allows to alleviate systematics when observational data from these objects are applied in cosmological studies. Evidence of correlation between the state and the morphology of the clusters is well studied. The morphology can be inferred by images of the surface brightness in the X-ray band and...
Article
We present COSMIC BIRTH: COSMological Initial Conditions from Bayesian Inference Reconstructions with THeoretical models: an algorithm to reconstruct the primordial and evolved cosmic density fields from galaxy surveys on the light-cone. The displacement and peculiar velocity fields are obtained from forward modelling at different redshift snapshot...
Article
Galaxy cluster outskirts are described by complex velocity fields induced by diffuse material collapsing towards filaments, gas and galaxies falling into clusters, and gas shock processes triggered by substructures. A simple scenario that describes the large-scale tidal fields of the cosmic web is not able to fully account for this variety, nor for...
Preprint
Galaxy cluster outskirts are described by complex velocity fields induced by diffuse material collapsing towards filaments, gas and galaxies falling into clusters, and gas shock processes triggered by substructures. A simple scenario that describes the large-scale tidal fields of the cosmic web is not able to fully account for this variety, nor for...
Preprint
Full-text available
We study the connection between morphology and dynamical state of simulated clusters in $z\in[0,1.031]$ from THE THREE HUNDRED Project cluster sample. We evaluate the dynamical state using a combination of dynamical parameters -- $\chi$ from theoretical measures and compare the results with other two relaxation criteria that come from observation m...
Article
We compare the statistics and morphology of giant arcs in galaxy clusters using N-body and non-radiative SPH simulations within the standard cold dark matter (CDM) model and simulations where dark matter (DM) has a non-negligible probability of interaction (parametrized by its cross-section), i.e self-interacting dark matter (SIDM). We use a ray-tr...
Article
Associations of dwarf galaxies are loose systems composed exclusively of dwarf galaxies. These systems were identified in the Local Volume for the first time more than 30 yr ago. We study these systems in the cosmological framework of the Λ cold dark matter (ΛCDM) model. We consider the Small MultiDark Planck simulation and populate its dark matter...
Article
The James Webb Space Telescope (JWST) is expected to observe galaxies at z > 10 that are presently inaccessible. Here, we use a self-consistent empirical model, the universemachine, to generate mock galaxy catalogues and light-cones over the redshift range z = 0−15. These data include realistic galaxy properties (stellar masses, star formation rate...
Article
Primordial black holes (PBH) with masses of order $10\!-\!30 \, \mathrm{M}_\odot$ have been proposed as a possible explanation of the gravitational waves emission events recently discovered by the Laser Interferometer Gravitational-Wave Observatory (LIGO). If true, then PBHs would constitute a sizeable fraction of the dark matter component in the U...
Preprint
Associations of dwarf galaxies are loose systems composed exclusively of dwarf galaxies. These systems were identified in the Local Volume for the first time more than thirty years ago. We study these systems in the cosmological framework of the $\Lambda$ Cold Dark Matter ($\Lambda$CDM) model. We consider the Small MultiDark Planck simulation and p...
Preprint
Clusters of galaxies are useful tools to constrain cosmological parameters, only if their masses can be correctly inferred from observations. In particular, X-ray and Sunyaev-Zeldovich (SZ) effect observations can be used to derive masses within the framework of the hydrostatic equilibrium. Therefore, it is crucial to have a good control of the pos...
Article
Protoclusters, which will yield galaxy clusters at lower redshift, can provide valuable information on the formation of galaxy clusters. However, identifying progenitors of galaxy clusters in observations is not an easy task, especially at high redshift. Different priors have been used to estimate the overdense regions that are thought to mark the...
Article
We present the hestia simulation suite: High-resolutions Environmental Simulations of The Immediate Area, a set of cosmological simulations of the Local Group. Initial conditions constrained by the observed peculiar velocity of nearby galaxies are employed to accurately simulate the local cosmography. Halo pairs that resemble the Local Group are fo...
Preprint
Primordial Black Holes (PBH) with masses of order $10-30 M_\odot$ have been proposed as a possible explanation of the gravitational waves emission events recently discovered by the LIGO observatory. If true, then PBHs would constitute a sizeable fraction of the dark matter component in the Universe. Using a series of cosmological N-body simulations...
Preprint
The knowledge of the dynamical state of galaxy clusters allows to alleviate systematics when observational data from these objects are applied in cosmological studies. Evidence of correlation between the state and the morphology of the clusters is well studied. The morphology can be inferred by images of the surface brightness in the X-ray band and...
Preprint
In this work, we use the ASTRAEUS (semi-numerical rAdiative tranSfer coupling of galaxy formaTion and Reionization in N-body dArk mattEr simUlationS) framework which couples galaxy formation and reionization in the first billion years. Exploring a number of models for reionization feedback and the escape fraction of ionizing radiation from the gala...
Article
We present a realistic 2000 deg² Hα galaxy mock catalog with 1 < z < 2 for the Nancy Grace Roman Space Telescope galaxy redshift survey, the High Latitude Spectroscopic Survey (HLSS), created using Galacticus, a semi-analytical galaxy formation model, and high resolution cosmological N-body simulations. Galaxy clustering can probe dark energy and t...
Article
Galaxy clusters can play a key role in modern cosmology, provided their evolution is properly understood. However, observed clusters give us only a single timeframe of their dynamical state. Therefore, finding present observable data of clusters that are well correlated to their assembly history constitutes an inestimable tool for cosmology. Former...
Preprint
We present a realistic 2000 deg$^{2}$ H$\alpha$ galaxy mock catalog with $1<z<2$ for the Nancy Grace Roman Space Telescope galaxy redshift survey, the High Latitude Spectroscopic Survey (HLSS), created using Galacticus, a semi-analytical galaxy formation model, and high resolution cosmological N-body simulations. Galaxy clustering can probe dark en...
Article
Cosmic Dawn II yields the first statistically meaningful determination of the relative contribution to reionization by galaxies of different halo mass, from a fully coupled radiation-hydrodynamics simulation of the epoch of reionization large enough (∼100 Mpc) to model global reionization while resolving the formation of all galactic haloes above $...
Article
Cosmic Dawn II (CoDa II) is a new, fully coupled radiation-hydrodynamics simulation of cosmic reionization and galaxy formation and their mutual impact, to redshift z < 6. With 40963 particles and cells in a 94 Mpc box, it is large enough to model global reionization and its feedback on galaxy formation while resolving all haloes above 108 M⊙. Usin...
Preprint
The eROSITA X-ray telescope on board the Spectrum-Roentgen-Gamma (SRG) mission will measure the position and properties of about 100,000 clusters of galaxies and 3 million active galactic nuclei over the full sky. To study the statistical properties of this ongoing survey, it is key to estimate the selection function accurately. We create a set of...
Preprint
The connection between star formation rate (SFR) and dark matter (DM) is of paramount importance to extract cosmological information from next generation spectroscopic surveys like DESI, Euclid and Roman-space telescope, that will target emission line galaxies. We use a set of publicly available mock galaxy catalogs obtained by applying different s...
Preprint
We present the Hestia simulation suite: High-resolutions Environmental Simulations of The Immediate Area, a set of cosmological simulations of the Local Group. Initial conditions constrained by the observed peculiar velocity of nearby galaxies are employed to accurately simulate the local cosmography. Halo pairs that resemble the Local Group are fo...
Preprint
Protoclusters, which will yield galaxy clusters at lower redshift, can provide valuable information on the formation of galaxy clusters. However, identifying progenitors of galaxy clusters in observations is not an easy task, especially at high redshift. Different priors have been used to estimate the overdense regions that are thought to mark the...
Preprint
The James Webb Space Telescope (JWST) is expected to observe galaxies at $z>10$ that are presently inaccessible. Here, we use a self-consistent empirical model, the UniverseMachine, to generate mock galaxy catalogues and lightcones over the redshift range $z=0-15$. These data include realistic galaxy properties (stellar masses, star formation rates...
Preprint
Galaxy clusters can play a key role in modern cosmology provided their evolution is properly understood. However, observed clusters give us only a single timeframe of their dynamical state. Therefore, finding present observable data of clusters that are well correlated to their assembly history constitutes an inestimable tool for cosmology. Former...
Article
Using the catalogues of galaxy clusters from The Three Hundred project, modelled with both hydrodynamic simulations (gadget-x and gadget-music), and semi-analytical models (SAMs), we study the scatter and self-similarity of the profiles and distributions of the baryonic components of the clusters: the stellar and gas mass, metallicity, the stellar...
Preprint
We compare the statistics and morphology of giant arcs in galaxy clusters using N-body simulations within the standard cold dark matter model and simulations where dark matter has a non-negligible probability of interaction (parametrized by its cross section), i.e self-interacting dark matter (SIDM). We use a ray-tracing technique to produce a stat...
Article
Full-text available
Upcoming wide-field surveys are well suited to studying the growth of galaxy clusters by tracing galaxy and gas accretion along cosmic filaments. We use hydrodynamic simulations of volumes surrounding 324 clusters from The ThreeHundred project to develop a framework for identifying and characterizing these filamentary structures and associating gal...
Preprint
Using the catalogues of galaxy clusters from The Three Hundred project, modelled with both hydrodynamic simulations, (Gadget-X and Gadget-MUSIC), and semi-analytic models (SAMs), we study the scatter and self-similarity of the profiles and distributions of the baryonic components of the clusters: the stellar and gas mass, metallicity, the stellar a...
Preprint
The decline in abundance of Lyman-$\alpha$ (Ly$\alpha$) emitting galaxies at $z \gtrsim 6$ is a powerful and commonly used probe to constrain the progress of cosmic reionization. We use the CoDaII simulation, which is a radiation hydrodynamic simulation featuring a box of $\sim 94$ comoving Mpc side length, to compute the Ly$\alpha$ transmission pr...
Preprint
Next generation telescopes such as the James Webb Space Telescope (JWST) and the Wide Field Infrared Survey Telescope (WFIRST) will enable us to study the first billion years of our Universe in unprecedented detail. In this work we use the ASTRAEUS (semi-numerical rAdiative tranSfer coupling of galaxy formaTion and Reionization in N-body dArk mattE...
Preprint
We introduce a new self-consistent model of galaxy evolution and reionization, ASTRAEUS (semi-numerical rAdiative tranSfer coupling of galaxy formaTion and Reionization in N-body dArk mattEr simUlationS), which couples a state-of-the-art N-body simulation with the semi-analytical galaxy evolution DELPHI and the semi-numerical reionization scheme CI...
Preprint
Full-text available
Upcoming wide-field surveys are well-suited to studying the growth of galaxy clusters by tracing galaxy and gas accretion along cosmic filaments. We use hydrodynamic simulations of volumes surrounding 324 clusters from \textsc{The ThreeHundred} project to develop a framework for identifying and characterising these filamentary structures, and assoc...
Article
We present a comparison between approximated methods for the construction of mock catalogues based on the halo-bias mapping technique. To this end, we use as reference a high-resolution N-body simulation of 38403 dark matter particles on a 400 h−1 Mpc cube box from the Multidark suite. In particular, we explore parametric versus non-parametric bias...
Article
Galaxy clustering measurements can be used to constrain many aspects of galaxy evolution, including galaxy host halo masses, satellite quenching efficiencies, and merger rates. We simulate JWST galaxy clustering measurements at z ∼ 4–10 by utilizing mock galaxy samples produced by an empirical model, the universemachine. We also adopt the survey fo...
Article
In the outer regions of a galaxy cluster, galaxies either may be falling into the cluster for the first time or have already passed through the cluster centre at some point in their past. To investigate these two distinct populations, we utilize TheThreeHundred project, a suite of 324 hydrodynamical resimulations of galaxy clusters. In particular,...