
Gustavo Deco- Prof. Dr.
- Pompeu Fabra University
Gustavo Deco
- Prof. Dr.
- Pompeu Fabra University
About
1,015
Publications
189,201
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
35,317
Citations
Introduction
Current institution
Publications
Publications (1,015)
The brain is able to sustain many different states as shown by the daily natural transitions between wakefulness and sleep. Yet, the underlying complex dynamics of these brain states are essentially in nonequilibrium. Here, we develop a thermodynamical formalism based on the off-equilibrium extension of the fluctuation-dissipation theorem (FDT) tog...
The transition towards the brain state induced by psychedelic drugs is frequently neglected in favor of a static description of their acute effects. We use a time-dependent whole-brain model to reproduce large-scale brain dynamics measured with fMRI from 15 volunteers under 20 mg intravenous N,N-Dimethyltryptamine (DMT), a short-acting psychedelic....
Psychedelics can profoundly alter consciousness by reorganising brain connectivity; however, their effects are context-sensitive. To understand how this reorganisation depends on the context, we collected and comprehensively analysed the largest psychedelic neuroimaging dataset to date. Sixty-two adults were scanned with fMRI and EEG during rest an...
Information processing in the human brain can be modeled as a complex dynamical system operating out of equilibrium with multiple regions interacting nonlinearly. Yet, despite extensive study of the global level of nonequilibrium in the brain, quantifying the irreversibility of interactions among brain regions at multiple levels remains an unresolv...
To determine the precise link between anatomical structure and function, brain studies primarily concentrate on the anatomical wiring of the brain and its topological properties. In this work, we investigate the weighted degree and connection length distributions of the KKI-113 and KKI-18 human connectomes, the fruit fly, and the mouse retina. We f...
Brain tumors, particularly meningiomas and gliomas, can profoundly affect neural function, yet their impact on brain dynamics remains incompletely understood. This study investigates alterations in normal brain function among meningioma and glioma patients by assessing dynamical complexity through the Intrinsic Ignition Framework. We analyzed resti...
The discovery of resting state networks shifted the focus from the role of local regions in cognitive tasks to the ongoing spontaneous dynamics in global networks. Recently, efforts have been invested to reduce the complexity of brain activity recordings through the application of nonlinear dimensionality reduction algorithms. Here, we investigate...
Optimal brain function is shaped by a combination of global information integration, facilitated by long-range connections, and local processing, which relies on short-range connections and underlying biological factors. With aging, anatomical connectivity undergoes significant deterioration, which affects the brain’s overall function. Despite the...
The brain needs to perform time-critical computations to ensure survival. A potential solution lies in the nonlocal, distributed computation at the whole-brain level made possible by criticality and amplified by the rare long-range connections found in the brain's unique anatomical structure. This nonlocality can be captured by the mathematical str...
Psychedelics are serotonergic drugs that profoundly alter consciousness, yet their neural mechanisms are not fully understood. A popular theory, RElaxed Beliefs Under pSychedelics (REBUS), posits that psychedelics flatten the hierarchy of information flow in the brain. Here, we investigate hierarchy based on the imbalance between sending and receiv...
A fundamental topological principle is that the container always shapes the content. In neuroscience, this translates into how the brain anatomy shapes brain dynamics. From neuroanatomy, the topology of the mammalian brain can be approximated by local connectivity, accurately described by an exponential distance rule (EDR). The compact, folded geom...
Neural representation can extend beyond localised activity to encompass global patterns, where information is distributed across brain networks in a hierarchical manner. Recent research suggests that the hierarchy of causal influences shaping these patterns can serve as a signature of distinct brain states, with implications for neuropsychiatric di...
Background: Brain network models offer insights into brain dynamics, but the utility of model-derived bifurcation parameters as biomarkers remains underexplored. Objective: This study evaluates bifurcation parameters from a whole-brain network model as biomarkers for distinguishing brain states associated with resting-state and task-based cognitive...
It has been proposed that psychedelics induce profound functional changes to the hierarchical organisation of the human brain. Yet the term hierarchy is currently not well defined in neuroscience. Here, we use a precise definition of hierarchy, grounded in the theory of thermodynamics, which allows the quantification of temporal asymmetry in the di...
Cortical neurons exhibit a hierarchy of timescales across brain regions in response to input stimuli, which is thought to be crucial for information processing of different temporal scales. Modeling studies suggest that both intra-regional circuit dynamics as well as cross-regional connectome may contribute to this timescale diversity. Equally impo...
Healthy brain function depends on balancing stable integration between brain areas for effective coordinated functioning, with coexisting segregation that allows subsystems to express their functional specialization. Metastability, a concept from the dynamical systems literature, has been proposed as a key signature that characterizes this balance....
Multiple sclerosis (MS) is a neurodegenerative disease that affects the central nervous system. Structures affected in MS include the corpus callosum, connecting the hemispheres. Studies have shown that in mammalian brains, structural connectivity is organized according to a conservation principle, an inverse relationship between intra- and interhe...
Different whole-brain computational models have been recently developed to investigate hypotheses related to brain mechanisms. Among these, the Dynamic Mean Field (DMF) model is particularly attractive, combining a biophysically realistic model that is scaled up via a mean-field approach and multimodal imaging data. However, an important barrier to...
Assessing the level of consciousness someone is in, is not a trivial question and physicians have to rely on behavioural evaluations instead of quantifiable metrics. Many studies have empirically investigated measures related to the complexity elicited after the brain is stimulated to quantify and assess the level of consciousness across different...
Food addiction contributes to the obesity pandemic, but the connection between how the gut microbiome is linked to food addiction remains largely unclear. Here we show that Microviridae bacteriophages, particularly Gokushovirus WZ-2015a, are associated with food addiction and obesity across multiple human cohorts. Further analyses reveal that food...
Severely brain-injured patients may enter a spectrum of conditions collectively known as disorders of consciousness (DoC). This spectrum includes clinical categories such as unresponsive wakefulness syndrome or minimally conscious state, where the behavioral assessment of consciousness can often be deceptive.
To bridge this dissociation, neuroimagi...
Psilocybin has been shown to induce fast and sustained improvements in mental well-being across various populations, yet its long-term mechanisms of action are not fully understood. Initial evidence suggests that longitudinal functional and structural brain changes implicate fronto-striatal-thalamic (FST) circuitry, a broad system involved in goal-...
Meditation is a family of ancient and contemporary contemplative mind-body practices that can modulate psychological processes, awareness, and mental states. Over the last 40 years, clinical science has manualised meditation practices and designed various meditation interventions (MIs), that have shown therapeutic efficacy for disorders including d...
Coma and disorders of consciousness (DoC) are common manifestations of acute severe brain injuries. Research into their neuroanatomical basis can be traced from Hippocrates to the present day. Lesions causing DoC have traditionally been conceptualized as decreasing "alertness" from damage to the ascending arousal system, and/or, reducing level of "...
This study examined the dynamic properties of brain regions involved in the genesis and spread of seizures in 10 individuals diagnosed with pharmacoresistant focal epilepsy. The patients and 30 healthy controls underwent resting-state functional magnetic resonance imaging scans and the brain’s functional network dynamics were analyzed using the int...
Different cortical systems to the hippocampus were activated using fMRI during different types of episodic memory task. For object with scene location episodic memory, the activations were high in cortical systems involved in spatial processing, including the ventromedial visual and medial parahippocampal system. These activations for the medial pa...
Adaptive cognition relies on cooperation across anatomically distributed brain circuits. However, specialised neural systems are also in constant competition for limited processing resources. How does the brain's network architecture enable it to balance these cooperative and competitive tendencies? Here we use computational whole-brain modelling t...
The brain is a complex non-equilibrium system capable of expressing many different dynamics as well as the transitions between them. We hypothesized that the level of non-equilibrium can serve as a signature of a given brain state, which was quantified using the arrow of time (the level of irreversibility). Using this thermodynamic framework, the i...
Experimental and clinical studies of consciousness identify brain states (i.e. quasi-stable functional cerebral organization) in a non-systematic manner and largely independent of the research into brain state modulation. In this narrative review, we synthesize advances in the identification of brain states associated with consciousness in animal m...
The structure of a complex network plays a crucial role in determining its dynamical properties. In this paper , we show that the the degree to which a network is directed and hierarchically organized is closely associated with the degree to which its dynamics break detailed balance and produce entropy. We consider a range of dynamical processes an...
INTRODUCTION
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline. Although traditional methods have provided insights into brain dynamics in AD, they have limitations in capturing non-equilibrium dynamics across disease stages. Recent studies suggest that dynamic functional connectivity in resting...
Depression is a multifactorial clinical syndrome with a low pharmacological treatment response rate. Therefore, identifying predictors of treatment response capable of providing the basis for future developments of individualized therapies is crucial. Here, we applied model-free and model-based measures of whole-brain turbulent dynamics in resting-...
The study of disorders of consciousness (DoC) is very complex because patients are suffering from a wide variety of lesions, affected brain mechanisms, different symptom severity and are unable to communicate. Combining neuroimaging data and mathematical modeling can help us quantify and better describe some of these alterations. This study's goal...
The multidimensional nature of schizophrenia requires a comprehensive exploration of the functional and structural brain networks. While prior research has provided valuable insights into these aspects, our study goes a step further to investigate the reconfiguration of the hierarchy of brain dynamics, which can help understand how brain regions in...
The primate including the human hippocampus implicated in episodic memory and navigation represents a spatial view, very different from the place representations in rodents. To understand this system in humans, and the computations performed, the pathway for this spatial view information to reach the hippocampus was analysed in humans. Whole-brain...
By connecting old and recent notions, different spatial scales, and research domains, we introduce a novel framework on the consequences of brain injury focusing on a key role of slow waves. We argue that the long-standing finding of EEG slow waves after brain injury reflects the intrusion of sleep-like cortical dynamics during wakefulness; we illu...
Disorders of consciousness (DoC), including the unresponsive wakefulness syndrome (UWS) and the minimally conscious state (MCS), have limited treatment options. Recent research suggests that psychedelic drugs, known for their complexity-enhancing properties, could be promising treatments for DoC. This study uses whole-brain computational models to...
Effective interventions for neuropsychiatric disorders may work by rebalancing the brain’s functional hierarchical organization. Here we directly investigated the effects of two different serotonergic pharmacological interventions on functional brain hierarchy in major depressive disorder in a two-arm double-blind phase II randomized controlled tri...
Music is a non-verbal human language, built on logical, hierarchical structures, that offers excellent opportunities to explore how the brain processes complex spatiotemporal auditory sequences. Using the high temporal resolution of magnetoencephalography, we investigated the unfolding brain dynamics of 70 participants during the recognition of pre...
The modular and hierarchical organization of the brain is believed to support the coexistence of segregated (specialization) and integrated (binding) information processes. A relevant question is yet to understand how such architecture naturally emerges and is sustained over time, given the plastic nature of the brain’s wiring. Following evidences...
The modular and hierarchical organization of the brain is believed to support the coexistence of segregated (specialization) and integrated (binding) information processes. A relevant question is yet to understand how such architecture naturally emerges and is sustained over time, given the plastic nature of the brain's wiring. Following evidences...
Computational whole-brain models describe the resting activity of each brain region based on a local model, inter-regional functional interactions, and a structural connectome that specifies the strength of inter-regional connections. Strokes damage the healthy structural connectome that forms the backbone of these models and produce large alterati...
Contemplative neuroscience has increasingly explored meditation using neuroimaging. However, the brain mechanisms underlying meditation remain elusive. Here, we implemented a mechanistic framework to explore the spatiotemporal dynamics of expert meditators during meditation and rest, and controls during rest. We first applied a model-free approach...
The brain needs to perform time-critical computations to ensure survival. A potential solution lies in the non-local, distributed computation at the whole-brain level made possible by criticality and amplified by the rare long-range connections found in the brain's unique anatomical structure. This non-locality can be captured by the mathematical s...
A balanced excitation-inhibition ratio (E/I ratio) is critical for healthy brain function. Normative development of cortex-wide E/I ratio remains unknown. Here, we noninvasively estimate a putative marker of whole-cortex E/I ratio by fitting a large-scale biophysically plausible circuit model to resting-state functional MRI (fMRI) data. We first co...
Exploring the intricate relationship between brain's structure and function, and how this affects subjective experience is a fundamental pursuit in neuroscience. Psychedelic substances offer a unique insight into the influences of specific neurotransmitter systems on perception, cognition and consciousness. Specifically, their impact on brain funct...
This paper introduces TVB C++, a streamlined and fast C++ Back-End for The Virtual Brain (TVB), a renowned platform and a benchmark tool for full-brain simulation. TVB C++ is engineered with speed as a primary focus while retaining the flexibility and ease of use characteristic of the original TVB platform. Positioned as a complementary tool, TVB s...
Information processing in the human brain can be modelled as a complex dynamical system operating out of equilibrium with multiple regions interacting nonlinearly. Yet, despite extensive study of non-equilibrium at the global level of the brain, quantifying the irreversibility of interactions among brain regions at multiple levels remains an unreso...
A fundamental challenge in neuroscience is accurately defining brain states and predicting how and where to perturb the brain to force a transition. Here, we investigated resting-state fMRI data of patients suffering from disorders of consciousness (DoC) after coma (minimally conscious and unresponsive wakefulness states) and healthy controls. We a...
The brain is organized hierarchically to process sensory signals. But, how do functional connections within and across areas contribute to this hierarchical order? We addressed this problem in the thalamocortical network, while monkeys detected vibrotactile stimulus. During this task, we quantified neural variability and directed functional connect...
Psychedelics are serotonergic drugs that profoundly alter consciousness, yet their neural mechanisms are not fully understood. A popular theory, RElaxed Beliefs Under pSychedelics (REBUS), posits that psychedelics flatten the hierarchy of information flow in the brain. Here, we investigate hierarchy based on the imbalance between sending and receiv...
In recent years, brain research has indisputably entered a new epoch, driven by substantial methodological advances and digitally enabled data integration and modelling at multiple scales—from molecules to the whole brain. Major advances are emerging at the intersection of neuroscience with technology and computing. This new science of the brain co...
Background
The hypothesis of decreased neural inhibition in dementia has been sparsely studied in functional magnetic resonance imaging (fMRI) data across patients with different dementia subtypes, and the role of social and demographic heterogeneities on this hypothesis remains to be addressed.
Methods
We inferred regional inhibition by fitting a...
A fundamental topological principle is that the container always shapes the content. In neuroscience, this translates into how the brain anatomy shapes brain dynamics. From neuroanatomy, the topology of the mammalian brain can be approximated by local connectivity, accurately described by an exponential distance rule (EDR). The compact, folded geom...
The brain is able to sustain many different states as shown by the daily natural transitions between wakefulness and sleep. Yet, the underlying complex dynamics of these brain states are essentially in non-equilibrium. Here, we develop a thermodynamical formalism based on the off-equilibrium extension of the fluctuation-dissipation theorem (FDT) to...
Meditation is a family of ancient and contemporary contemplative mind-body practices that can modulate psychological processes, awareness, and mental states. Over the last 40 years, clinical science has manualised meditation practices and designed various meditation interventions (MIs), that have shown therapeutic efficacy for disorders including d...
The human brain is a complex system, whose activity exhibits flexible and continuous reorganisation across space and time. The decomposition of whole-brain recordings into harmonic modes has revealed a repertoire of gradient-like activity patterns associated with distinct brain functions. However, the way these activity patterns are expressed over...
It has been previously shown that traumatic brain injury (TBI) is associated with reductions in metastability in large-scale networks in resting-state fMRI (rsfMRI). However, little is known about how TBI affects the local level of synchronization and how this evolves during the recovery trajectory. Here, we applied a novel turbulent dynamics frame...
Recent neuroimaging research suggests that female sex hormone fluctuations modulate brain activity. Nevertheless, how brain network dynamics change across the female menstrual cycle remains largely unknown. Here, we investigated the dynamical complexity underlying three menstrual cycle phases (i.e., early follicular, pre-ovulatory, and mid-luteal)...
Traumatic Brain Injury (TBI) is a prevalent disorder mostly characterized by persistent impairments in cognitive function that poses a substantial burden on caregivers and the healthcare system worldwide. Crucially, severity classification is primarily based on clinical evaluations, which are non-specific and poorly predictive of long-term disabili...
Adolescence is a timed process with an onset, tempo, and duration. Nevertheless, the temporal dimension, especially the pace of maturation, remains an insufficiently studied aspect of developmental progression. The primary objective is to estimate the precise influence of pubertal maturational tempo on the configuration of associative brain regions...
The evolution from disturbed brain activity to physiological brain rhythms can precede recovery in patients with disorders of consciousness (DoC). Accordingly, intriguing questions arise: What are the pathophysiological factors responsible for disrupted brain rhythms in patients with DoC, and are there potential pathways for individual patients wit...
Psilocybin therapy for depression has started to show promise, yet the underlying causal mechanisms are not currently known. Here we leveraged the differential outcome in responders and non-responders to psilocybin (10mg and 25mg, 7 days apart) therapy for depression - to gain new insights into regions and networks implicated in the restoration of...
Brain dynamic functional connectivity characterises transient connections between brain regions. Features of brain dynamics have been linked to emotion and cognition in adult individuals, and atypical patterns have been associated with neurodevelopmental conditions such as autism. Although reliable functional brain networks have been consistently i...
Whole-brain models have proven to be useful to understand the emergence of collective activity among neural populations or brain regions. These models combine connectivity matrices, or connectomes, with local node dynamics, noise, and, eventually, transmission delays. Multiple choices for the local dynamics have been proposed. Among them, nonlinear...
The transition towards the brain state induced by psychedelic drugs is frequently neglected in favor of a static description of their acute effects. We used a time-dependent whole-brain model to reproduce large-scale brain dynamics measured with fMRI from 15 volunteers under 20 mg of bolus intravenous N,N-Dimethyltryptamine (DMT), a short-lasting p...
Despite significant improvements in our understanding of brain diseases, many barriers remain. Cognitive neuroscience faces four major challenges: complex structure–function associations; disease phenotype heterogeneity; the lack of transdiagnostic models; and oversimplified cognitive approaches restricted to the laboratory. Here, we propose a syne...
Brain signal irreversibility has been shown to be a promising approach to study neural dynamics. Nevertheless, the relation with cortical hierarchy and the influence of different electrophysiological features is not completely understood. In this study, we recorded local field potentials (LFPs) during spontaneous behavior, including awake and sleep...
Computational whole-brain models describe the resting activity of each brain region based on a local model, inter-regional functional interactions, and a structural connectome that specifies the strength of inter-regional connections. Strokes damage the healthy structural connectome that forms the backbone of these models and produce large alterati...
Disorders of consciousness (DoC) are a challenging and complex group of neurological conditions characterised by absent or impaired awareness. The current range of therapeutic options for DoC patients is limited, offering few non-invasive pharmacological alternatives. This situation has sprung a growing interest in the development of novel treatmen...
The brain is a nonequilibrium system whose dynamics change in different brain states, such as wakefulness and deep sleep. Thermodynamics provides the tools for revealing these nonequilibrium dynamics. We used violations of the fluctuation-dissipation theorem to describe the hierarchy of nonequilibrium dynamics associated with different brain states...
Background
Alzheimer’s disease is a neurodegenerative condition associated with the accumulation of two misfolded proteins, amyloid-beta (A $$\beta$$ β ) and tau. We study their effect on neuronal activity, with the aim of assessing their individual and combined impact.
Methods
We use a whole-brain dynamic model to find the optimal parameters that...
Background
Alterations in brain connectivity occur early during psychosis and underlie the clinical manifestations of the illness as well as patient functioning and outcome. After a first episode of psychosis (FEP), different trajectories are possible and best described by the clinical-staging model that places the patient along a continuum of cond...
Background
Intracranial EEG biomarkers are under investigation to help localize the seizure onset zone (SOZ) using ictal activity.
Existing methods
Biomarkers developed to date can be classified depending on whether they target abnormalities in signal power or the functional connectivity between signals, and they may be optimized depending on the...
The revolutionary discovery of resting state networks radically shifted the focus from the role of local regions in cognitive tasks to the ongoing spontaneous dynamics in global networks. Yet, there is a growing realisation that these resting state networks could be a bit like the shadow tracings in Plato's famous cave, perhaps mere epiphenomena of...
The frontal pole is implicated in humans in whether to exploit resources versus explore alternatives. Effective connectivity, functional connectivity, and tractography were measured between six human frontal pole regions and for comparison 13 dorsolateral and dorsal prefrontal cortex regions, and the 360 cortical regions in the Human Connectome Pro...
Meditation is an ancient practice that is shown to yield benefits for cognition, emotion regulation and human flourishing. In the last two decades, there has been a surge of interest in extracting the neural correlates of meditation, in particular of mindfulness meditation. Yet, these efforts have been mostly limited to the analysis of certain regi...
Adapting to a constantly changing environment requires the human brain to flexibly switch among many demanding cognitive tasks, processing both specialized and integrated information associated with the activity in functional networks over time. In this study, we investigated the nature of the temporal alternation between segregated and integrated...
Objective
Placebo effect has been found to be a significant contributor to the outcomes of antidepressant treatment, leading to questions about its overall efficacy. Previous research has shown that global societal trends and events such as economic recessions and pandemics, significantly affect people's mental health. The relationship between the...
A promising idea in human cognitive neuroscience is that the default mode network (DMN) is responsible for coordinating the recruitment and scheduling of networks for computing and solving task-specific cognitive problems. This is supported by evidence showing that the physical and functional distance of DMN regions is maximally removed from sensor...
Significant advances in the scientific investigation of the neurobiology of consciousness have been slow to be translated into clinical settings, limited by factors of conceptual (e.g., what is consciousness?), methodological (e.g., how to identify reliable indicators of consciousness?), and technical (e.g., how to improve sensitivity and specifici...
Large-scale brain networks reveal structural connections as well as functional synchronization between distinct regions of the brain. The latter, referred to as functional connectivity (FC), can be derived from neuroimaging techniques such as functional magnetic resonance imaging (fMRI). FC studies have shown that brain networks are severely disrup...
Whole-brain models have proven to be useful to understand the emergence of collective activity among neural populations or brain regions. These models combine connectivity matrices, or connectomes , with local node dynamics, noise, and, eventually, transmission delays. Multiple choices for the local dynamics have been proposed. Among them, nonlinea...
We investigate how brain activity can be supported by a turbulent regime based on the deviations of a self-similar scaling of high-order structure functions within the phenomenological Kolmogorov's theory. By analyzing a large neuroimaging data set, we establish the relationship between scaling exponents and their order, showing that brain activity...