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Abstract. A physics-based graphic engine supporting interactive animations of free water surfaces at
real-time is presented. The algorithm is based on a lattice-Boltzmann model of the shallow waters
equations and the interaction between the surface and external objects is achieved by means of source
terms. The engine is capable of produce scenes of ponds whose surface reacts to perturbations
introduced by the user or controlled by the computer, like drizzle or the stirring of a finger.
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INTRODUCTION

An efficient method to improve the realism in a virtual environment is to include algorithms based in
physics laws. Physics will make objects move like they would do in the real world. A physical engine is a
component of a program that computes how physical objects should move and interact with each other.
Physical engines usually involve many research areas and often require high level of knowledge (Millington
2007).

Physics-based animation (PBA) has been recently recognized as one of the most important elements of
computer graphics, largely because of the realism that it offers. Research in the field of PBA in computer
graphics is concerned with finding new methods for the simulation of physical phenomena such as the
dynamics of rigid bodies (e.g., balls, feet, ships), deformable objects (e.g., springs, fabric, skin) or fluid flow
(smoke, clouds, surface waves). Physical engines of particles mechanics, spring-coupled objects, and collisions
of rigid bodies, are increasingly available to the graphic community, for applications in film animation and the
entertainment industry (Angst et al. 2009, Bao et al. 2007, Boeing et al. 2007, Harada et al. 2007 , Majkowska
et al. 2007, Millington 2007, Tang et al. 2008, Thomaszewski et al. 2008, Treuille et al. 2006, Yu et al.
2009). The benefits of PBA should balance the computational cost associated to the number crunching effort
required to transform the physical equations in good renderizations. Evidently the cost escalates with the
number and complexity of objects and interactions in the virtual world, making it extremely challenging to
render complex scenarios in real-time. Fortunately, a large amount of the effort in the simulation of complex
systems is parallelizable, which can be exploited to improve the performance of PBA. It is also important to
note that, in contrast to scientific computation where the main focus is on accuracy, the main issues for PBA
are stability and speed, while keeping the visual appearance. Hence, a key target of the research on PBA is
to come up with specialized methods, tailored to particular needs.

Rigid bodies were the first objects animated with physical engines. Likely, deforming bodies and cloth are
increasingly used in games. On the other hand, fluid effects with physical engines are still rarely encountered.
This is probably due to the computational cost of solving the underlying fluids equations, preventing practical
applications in real-time scenarios. Still, since in our everyday lives water surrounds and constantly interacts
with us, the animation and rendering of water is an important issue in computer graphics. Some of the potential
applications of graphic simulations of fluid behavior are film making, animation design, texture synthesis, flight
simulation, and scientific visualization.

Since the appearance of water is governed by the surface layer, much of the efforts were concentrated in
simulating surface phenomena. Free surface flows are also important for a variety of applications, such as
hydraulic engineering (Krafczyk et al. 2001), foaming (Korner et al. 2002) and bubble formation (Buwa et al.
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2005). Early attempts of the graphics community in simulating water surfaces were not physically based and
mostly focused on reduced model representations ranging from Fourier synthesis methods to parametric
representations of the water surface (Masten et al. 1987, Schachter 1980, Tso and Barsky 1987). Fairly realistic
wave scenery can be developed using these methods including the appearance of breaking waves, but ultimately
they are all constrained by the sinusoidal modeling assumption present in each of them. These models are
unable to deal with complex three-dimensional behaviors such as flow around objects and changing boundaries.

Physics-based model of the surface should capture the essence of water movement with the minimum
computational cost, otherwise the effect is ruined for the viewer because either they are unrealistic or to slow
to renderize in real time. The relevance of fluid simulations has been shown in numerous publications. Kass
and Miller (1990) and Chen and Lobo (1995) were among the first to use computational fluid dynamics to
calculate motions of fluids for computer graphics. Three dimensional simulations were lately combined with
height-field techniques to reduce the computational costs (Irving et al. 2006). Free surface fluids can also be
calculated by smoothed particle hydrodynamics (Muller M. et al. 2003, Yuksel et al. 2007), which does not
require a fixed grid and computes the fluid properties through kernels defined on neighbourhoods of each
particle. In order to track the surface the solver is often combined with appropriate boundary conditions and
a level set (Foster and Fedkiw 2001). A good review of water rendering can be found in Iglesias (2004).

The straightforward method to calculate water surfaces with a physics-based model that can be applied
to dynamic animation environments is the two dimensional approximation of the full 3D Navier-Stokes
equations, called shallow water equations (SWE). Kass and Miller (1990) use a linearized form of the SWE
to obtain a height field representation of the water surface. Chen and Lobo (1995) used a pressure defined
SWE formulation to simulate fluids with moving obstacles. O’Brien and Hodgins (1995) used a height model
combined with a particle system in order to simulate splashing liquids. Thon and Ghazanfarpour (2001) used
a noise function for the vertical velocity in computing the horizontal velocity with SWE. Neyret and Praizelin
(2001) proposed a simpler stream model using a two-dimensional Laplace equation for the bulk flow. A semi-
Lagrangian treatment of the Navier-Stokes equations was introduced to the computer graphics community by
Stam (1999) in order to allow the use of significantly larger time steps without hindering stability. Layton and
Van de Panne (2002) and Thiirey et al. (2007) continues with similar techniques applied to animating water
waves. Foster and Fedkiw (2001) introduced a hybrid liquid volume model combining implicit surfaces and
massless marker particles and the formulation of boundary conditions for moving objects in a liquid. Finally,
Wang et al. (2007) proposes a framework for solving General Shallow Wave Equations (GSWE).

Interactive simulation is an old and important problem in computer graphics, and especially the interaction
with virtual liquids is in great demand for its enormous potential. Unfortunately, the difficulty of physical
simulation of fluids is an obstacle for real-time simulation. Most of the methods described above are simply
not robust or fast enough to be employed in interactive virtual environments. An important step towards
interactivity in graphical fluid dynamics was taken by Stam (1999) with the introduction of an unconditionally
stable algorithm, allowing for long time steps and fast simulations. Subsequent works improved the calculation
speed through hierarchical space decomposition (Losasso et al. 2004) and non-uniform meshes (Klinger et al.
20006), yielding impressively high resolution results, although the high computation cost prevents that method
from being used in real-time contexts. Fourier (Stam 1999) and vortex methods (Park and Kim 2005), in turn,
produce very fast performance in particular cases, but present difficulties handling boundaries and diffusion.
Carlson et al. (2004) proposed a method for the coupling of rigid bodies with a fluid, by treating the rasterized
rigid body velocities as if they were fluid. The latter was also done by Foster and Fedkiw (2001) for modeling
slip boundary conditions.

The method proposed in the present article uses the lattice-Boltzmann method (LBM) (Thiirey 2007,
Thiirey and Riidde 2004, Li et al. 2005). In contrast to solvers that directly compute solutions for the discretized
Navier-Stokes equations, the LBM is a form of cellular automaton with a number of very simple local
operations. When aggregated, these local operations produce an approximation to second order of the
macroscopic fluid dynamics, which is sufficient for visualization purposes. Actually, LBM is a particular
instance of coupled map lattices (CML), which are mappings of continuous dynamic state values to nodes on
a lattice that interact with a set of other nodes in the lattice according to specified rules. CML were proposed
by Kaneko (1993) for the purpose of studying spatio-temporal dynamics and chaos, and have been used
extensively in the simulation of a variety of phenomena, including boiling Yanagita (1992), convection
(Yanagita and Kaneko 1993), chemical reaction-diffusion (Kapral 1991), and sand ripples and dunes (Nishimori
and Ouchi 1993). In the field of computer graphics, CML were introduced by Miyazaki et al. (2001) for the
purpose of cloud animation.
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Although the LBM has become an established method in fluid dynamics research, it is presently not very
popular in animations of free surface flows. Thiirey (2007) produced impressive animations of surface water
using the LBM to solve the 3D Navier-Stokes equations and then tracking the movement of the free surface
with level sets, applying special boundary conditions along the interface to calculate the appropriate values for
velocity and pressure at the interface. However, these animations are not interactive, for the calculation of the
3D lattice is still too slow. Provided that faster implementations can be achieved, the properties of the LBM
can be exploited to perform interactive fluid simulations.

The algorithm presented in this article is based on a lattice-Boltzmann model of the SWE (Zhou 2004).
The equations are analogous to the 2D BGK-LBM scheme for the Navier-Stokes equations, which was
extensively used in many applications (Sukop and Thorne 2006). In this article, an extension of Zhou’s model
is presented, which includes source terms to simulate the interaction of the free surface and the environment,
like falling drops or moving solids.

Il. The Lattice Boltzmann Model:

LBM is a class of algorithms that produce fast running simulations of fluid flows (Sukop and Thorne
2006). LBM operates on a regular grid usually designated by an identifier in the form DdQq, d being the
number of dimensions of the lattice and g the number of velocity vectors that are used in a hidden mesoscopic
representation of the fluid. Let us consider a regular lattice L defined in a d-dimensional space, composed by
a set of nodes L, and a set L, of links between two nodes (parameterized by a space step Ax ). Given a node
X, there exists a set N(X) of neighbouring nodes, including the node x itself. For the particular case D2Q9
(Sukop and Thorne 2006) the set N(x) is given by the neighbourhood:

N(x)=1{Z+¥,A1,0 2 > 8} (M

and the following vector set (see fig. 1):
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where V =—— is a characteristic velocity given by the ratio between the space and the time steps associated

to each state change of the system.
LBM proposes that the mentioned discrete geometry is populated by mesoscopic “particles” whose state

is given by a particle density function f o (;,t) (not directly observable), representing the number of
particles in the node i at time t moving with velocity va (which is treated as an internal variable). The
function f o (;, t) changes its value according to predetermined rulessimulating the mechanisms of transport,
collision and sources of the particles. The physical “observables” are macroscopic variables generated by

—_

moments of f a(X,t) respect to the internal variable Vg , namely:
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Fig. 1: Diagram of discrete velocities of Lattice Boltzmann in 2D
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The state of each cell change according to a scheme of explicit rules, that is (Chen and Doolen 1998):

FUE+T AL+ A = £ (FD) -~ [f. R - f2ED]+ S, (5)
T

where 1 is a relaxation time that is related with the viscosity v (Chen and Doolen 1998).
The equilibrium density function f ; d (X,t) plays the roll of a local velocity redistribution of the fluid

particles due to collisions, and it is calculated in terms of the macroscopic variables. This function is the key
to the dynamics of the LBM model since its form determines the equations of motion that the macroscopic
quantities will follow. To simulate free surfaces in small scenarios like ponds or rivers, the differential limit
should be the shallow-waters equations:
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where h is the water height and g is the gravity acceleration. Zhou (2004) derived the following set of D2Q9
collision rules for shallow waters:
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where U is the modulus of the mean velocity, and:
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In order to complete the lattice rules, boundary conditions should be defined at the edges of the lattice.
In the present case bounce-back conditions were applied. Hence, for each boundary cell, instead of copying
the neighboring particle distribution function from a boundary cell during streaming, its own opposing
distribution function is taken. This procedure enforces zero mean velocity at the boundary.

The interaction of the fluid with the user and the effect of rain drops are simulated by imposing pulsed

—

localized sinks or sources of particles. Accordingly, for example, a rain drop falling at position X at time

to will correspond to the addition of a constant quantity to every f, at (XO,tO) , that is:

D, if (x.1)=(%,.1,)

S (x.t)=41 7
Lx1)= olse (10)

L
The larger the source D,, the larger the drop. Moreover, since Do is uniform for all velocities, no
momentum force is introduced by the drop, that is:

Ait = ZS‘QGQ =0 (11)
& -
Analogously, the introduction of a solid object of immersed height H (X,t) inside the water surface is
simulated by the subtraction of H (;(,t) to every f, at (;,t) , that is:
S, (%,1)=-H(%.7) (12)

These simple artifacts are fast enough for an interactive simulation, although in the case of the solid-fluid
interaction cannot represent drag forces, hence being limited to slow movements.

I11. Implementation:

The essence of LBM is simply a scheme of collision and transport. The junctions between cells correspond
to a finite set of discrete velocities and the dynamic variables are the corresponding populations. The data
structure used to represent the model is a regular grid of N x M cells, each containing the values f a(X,t)
This data structure is encapsulated in a class that provides the methods to access the macroscopic variables
of each cell, namely f o (X,t) and U(X,t) , and additionally contains the methods to define properties,
initial and boundary conditions.

The following methods implement the steps of the LBM described in section II:
* Collide_stream(): Calculate and combine the advection and relaxation steps.
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» ApplyBounds(): Implement boundary conditions.
* CalculateHU: Calculate the macroscopic variables.
» ComputeFeq: Calculate the equilibrium function.

This object is created and called by a layer that controls the temporal evolution and interact with the user
(Fig. 2). Following the common practice in physical engines (Seuglin and Rolin 2006, Boeing and Briunl
2007) the implementation was structured as a Dynamic Link Library (DLL), providing easy access and
interaction with computer graphic applications, independently of the programming language. The DLL contains
a minimum set of basic operations preventing overloading the user interface and keeping flexible maintenance.
Basically it provides the following self-described methods to actualize the data structure and to obtain the
macroscopic data:

« Initialize(tau, width, height, initValue)
« setBoundaryConditions(boundMode);
addEvent(xHome,yHome xEnd,yEnd,newValue)

* update(deltaT)

* getU(i,j)

* getH(i,j)
DLL
Initialize

Collide_stream
Applyﬁounds“ : : setBoundary Conditions

CalculateHU ) addEvent
- ComputeF eq() update
getl
getH

i

Application
Fig. 2: Architecture of the LBM physical engine.

IV. Results:

The interactive LBM engine for shallow-water was tested in a square grid simulating the free surface of
a small pond. Fig. 3 shows a sequence of the circular surface wave produced by the fall of a drop. The grid
movement can be seen in the lower sequence of snaps and the complete animation with visual effects in the
upper sequence. These 3D scenes, as all the ones presented in the article, were constructed with an application
implemented over the graphic engine Impromptu (Garcia et al. 2008). The effects of reflection and refraction
on the renderization of the water heights are constructed by means of a cubemap. The reflection and refraction
vectors are calculated according to the position of the observer, and the final colors according to the Fresnel
equations. Moreover, different shaders can be used in order to simulate the appearance of special liquids. The
simulation was performed over a 100x100 grid, using a relaxation parameter (Eq. 5) t = 0.77. The velocity

of the surface wave is around 4/ gh, which is the analytical limit for shallow waters. As can be seen in Fig.

4 this limit is approached as the number of cells increases. The height of the waves is attenuated as they
r

propagate following an exponential decay law h,, ~ exp(—a —j , where r is the propagation distance.

AX

Fig. 5 shows the variation of the attenuation coefficient o with t for different grid sizes. As expected, the
attenuation increases with the relaxation parameter (i.e. with viscosity), and the reduction of the number of cells
introduces numerical viscosity. Figure 6 shows a sequence of snaps of a rain simulation in a pond. The

simulation proceeds introducing a series of random drops Di at random points and times (Xi ,ti) . Different
visual effects can be obtained varying the dropping rate and the relaxation parameter .
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Fig. 3: Animation of the circular surface wave produced by the fall of a drop on a pond

1.00 T T T T T T
'-'_3/_\0_95_ r=12 //—"_ H
= 1
% /
0.7
0.90 - 4
. ] 70 80 90 100 110 120 130
Fig. 4: Surface wave velocity. N
0.15 ¢ 80 .
100
010 .
a /// N=120
0.05+ E
0.00 . - ;
0.6 0.8 1.0 1.2 1.4

Fig. 5: Dependence of the waves attenuation on the relaxatién parameter.

Fig. 6: Simulation of rain falling on a pond.

It should be stressed that the LBM-shallow-waters algorithm is not unconditionally stable (Zhou 2004).
In the continuous limit, the relaxation parameter t should not be lower than 0.5, which corresponds to infinite
Reynolds number. In finite grids this bound depends on the resolution and the amplitude of the perturbation.
Fig. 7 shows the stability map in the plane (tr, N). The map was constructed for a case of a single drop on
the center of a pond, with amplitude twice the stagnation level. It can be seen that the scheme is more stable
as the resolution of the grid increases, which is reasonable since smaller cells can dissipate energy at higher
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frequencies. Another interesting effect can be produced by letting the user interact with the virtual fluid by

means of an externally controlled source simulating a local perturbation of size 8 describing a path Xo (t),
that is, at every time t:

_H if|i-x@0)|<s
S.(7.1)= i 7%, < (13)

0 elsewhere

Figure 8 shows a sequence of snaps of a zigzag passage performed with the mouse on the virtual pond.
Furthermore, using simple communications the application can be made completely interactive by enabling the
introduction of the external events through touchscreen. In such case the projection perspective of the touch
position should be obtained (e.g. using the OpenGL command “glUnproject”) in order to initiate the associated
perturbation event. Figure 9 shows the touchscreen application in action on a Tablet PC HP TX2500. The
visual effect of interaction of objects with water surfaces were implemented following the two-path scheme
described by Souza (2005). Finally, among the numerous applications that can be developed based in the
interactive LBM, a special effect suitable for science-fiction features is the imprint of a transient footprint of
an invisible object. Fig. 10 shows an example of a sequence of snaps of the trace left by an invisible hand
in viscous water.

Fig. 8: Surface stirring of a virtual pond with the mouse.

In order to study the performance and scalability of the present interactive LBM algorithm, a series of
simulations with different grid sizes were running on a standard PC with a 2.26 GHz Core2 processor and
GeForce 8800 GT graphics card. Table 1 details the time consumed by the numerical calculation, grid updating
and rendering. The total time is proportional to the number of cells. It can be seen that the numerics takes
about 70% of the computing time, evidencing the importance of continuing the research and development of
faster physics-based algorithms. Actually, the LB algorithm as was described in section II can be easily
implemented on the hardware of the graphic card, which would surely improve the performance to permit
simulations in larger grids (Li et al. 2003). Our preliminary tests in this direction showed reductions of an
order of magnitude of the execution time. Nevertheless, since the quality of the images obtained on 100%100
grids is good, larger grids are not required from the visual point of view.
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Fig. 10: Special effect of the print left by an invisible hand in the surface of a viscous transparent liquid.

Table 1: Performance Test (time in ms).

GridSize (NxN) 50 80 100 120 150 180 200
LBM calculation 1.19 3.1 5 7.5 11.3 16.9 21.3
Grid updating 0.37 1 1.1 2.5 3.8 5.6 6.9
Rendering 0.1 0.2 0.3 0.4 0.6 0.7 0.9
Total Time 1.66 43 6.4 10.4 15.7 232 29.1
Frames per second 602 232 156 96 63 43 34
Conclusions:

A physical engine based on a lattice-Boltzmann model of the shallow-waters equations was presented. The
tool was applied to produce interactive animations of free water surfaces at realtime. The user can interact with
the virtual liquid by means of source terms that are designed to resemble perturbations of the free surface. The
engine is capable of produce scenes of ponds whose surface reacts to perturbations introduced by the user or
controlled by the computer, like drizzle or the stirring of a finger. The resulting algorithm is easy to
implement, stable and fast enough to produce excellent real-time scenes and visual effects.
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