

On Massive Spatial Data Cloud Storage and

Quad-tree Index Based on the HBase

Xiaolan Xie, Zhuang Xiong, Guoqing Zhou, Guoyong Cai
Institute of information science and technology, Guilin University of

Technology, Guangxi, 541004, China

Guangxi Key Laboratory of Spatial Information and Geometric, Guilin,

541004, China

School of Computer Science and Engineering ,Guilin University of

Electronic Technology, Guilin 541004, China

Abstract
This paper achieves a linear quad-tree retrieval structure in the HBase

non-relational database, and the MapReduce is applied to operate data insertion

and index creation, so that the insertion and query spatial data can basically

achieve parallelism. In order to test the spatial data query capabilities and

different parameters on retrieval efficiency, we use MapReduce to retrieval

quad-tree index structure, then compare with the single one’s efficiency thus

verifying the validity of cloud cluster retrieval calculated under the case of

massive spatial data.

Keywords: spatial data; cloud computing; quad tree; storage; index

1. Introduction

The rapid development of high resolution sensor technology puts the

geographic information system (GIS) into a serious situation, which are the rapid

increase of data and whether they are put into effective use. The requirements of

spatial database storage have been from the current GB level to TB level even to

PB level. Applied cloud computing has already become an important way to

solve mass and regional distribution of spatial data[1].

MapReduce calculation model has almost become the standard of mass data

batch. however, the research about the combination of MapReduce and spatial

data storage and retrieval is still sparse. This paper actualize a space data storage

scheme and a linear quad-tree index structure under the HBase, and tests the

influence of different parameters on the MapReduce retrieval algorithm

efficiency.

2. Quad-tree

Quad-tree is a data structures that is widely used in the analysis and

classification of spatial data. A rectangular spatial data is divided into four

parts(the quad-tree nodes). Each part can be divided into four small section,

while a quad-tree whose depth is n has 2n *2n leaf node.

Morton code is a common method to quad-tree, which uses a one-dimensional

data to represent the two-dimensional spatial information. Form the algorithm,

the Morton code is staggered by the row of two-dimensional and column of the

binary, and from the arrangement, the Morton code is more like a Z increasing

order of sequence, a 4 hexadecimal Morton code diagram shown in figure 1 [2].

0 1

2 3

00 01

0302

10 11

1312

20 21

2322

30 31

3332

000 001

003002

010 011

013012

020 021

023022

030 031

033032

100 101

103102

110 111

113112

120 121

123122

130 131

133132

200 201

203202

210 211

213212

220 221

223222

230 231

233232

300 301

303302

310 311

313312

320 321

323322

330 331

333332

Level=1

Level=3

Level=2
Fig.1: A 4 hexadecimal Morton code diagram

3. Quad-tree on HBase

3.1 The Column Properties of HBase

HBase is a suitable database for unstructured data storage. The data in HBase

is stored in the table. A table is composed by rows and columns, and a columns

is divided into a number of column families (row family) permission, disk and

memory access, whose statistics are carried out at the column family level, and

that is the properties of Hbase “stored in the column” [3].

If the spatial data possess text, images, voice and movie four descriptions

attributes, then 4 description field must be added in the traditional relational

database. However, a Column Family in Hbase could contain these four

descriptions attributes. HBase will not waste storage space for non-exist

attributes, and will easily seek data according to attributes (such as: query image

description elements).

3.2 Storage Spatial Data into HBase

The key in HBase table is used of spatial data’s autoid, while Column is used

to store the different attributes description, in table 1 (Timestamp omited, the

same below)

Table 1: HBase spatial data table

Key Column Family

355 Point=1F4E30E6

3DA62

Word=

hankou

Photo=as

.png

356 Point=1F4E30E6

4E302

Word=

xiantao

 Sound=bo.

mp3

357 Point=1F34E306

3DA62

 Photo=lt

2.jpg

Sound=ks.

wmv

Movie=e3.a

vi

The key in HBase index table is to save the area’s Morton code, and Column

to store all the space elements and coordinate information (point spatial data to

save the coordinates, line or polygon spatial data save MBR information), parts

of the point of spatial index table in table 2:

Table 2: HBase spatial index table

Key Column Family

0ED3 3692=146.9,40.6 3693=195.14,279.6 3701=135.8,100.8

0ED4 3697=221.8,288.3 3710=46.51,246.2

0ED5 3734=184.1,96.4 3740=48.64,205.8

Data in HBase arranged according to the Key, and most of operations in space

retrieval are “regional”. If the spatial data index in accordance with the regional

Morton codes are arranged linearly, the adjacent region index stored in HBase

database will be closer. Therefore, it is likely to retrieval the spatial data

contained in a region and its adjacent region.

If the spatial data is not point but lines or geometric figure, we can create

another index table to describe the spatial data across regional space for

convenient query. The key is to save the autoid of spatial data, and Column to

save the regional Morton code and MBR information, as shown in table 3:

Table 3: HBase spatial index-plus table

Key Column Family

3692 0ED3=146.7,40.6,195.1,279.5 0EE3=135.8,100.9,240.4,119.0

3697 3ED4=46.5, 141.2,76.5,246. 8 0F83=118.1,167.4, 287.3,229.8

3734 04D5=48.6,205.2, 265.9,267.4 1DA3=202.8,83.2, 206.4,20.3

4. The Actualize of Mass Point Insertion and Query

Algorithm with MapReduce

4.1 Insertion Algorithm

Use MapReduce to complete the insert operation steps of massive spatial data

[6, 7]:

Step1: Map

1). Read the inputs of the X, Y coordinates, and calculate the Morton code of

that space.

2). Convert the autoid and other attribute of the point to Key-value, and output

it (Key is to save the autoid of point, value to save other attribute).

3). Convert the Morton code, x/ y coordinate and autoid of point to Key-value,

and output it (Key = “Morton” , and value is to save the coordinate, Morton and

autoid).

Step2: Combiner/Reducer
If the value of key is Morton code, convert the value to the coordinate, Morton

code and autoid. Then set the Morton code to the Key, set the autoid and

coordinate of point to the name and content of Column, and upload the data into

HBase’s index table.

If the value of the key isn’t Morton code, set the autoid to the Key, the other

attribute to Column’s name and value, and upload the data into HBase’s data

table.

Line and polygon are more complex than point, which is less used in plotting.

The correspondent attributes are inserted in the data tables, while the autoid and

the object of MBR are inserted into the index table. If the line and polygon span

several regions, the autoid and MBR data of geometry should be inserted in

every index table of that area.

 Because of the uncertainty of Combiner run, the repetition of the same data to

the data base is inevitably a waste of performance (For the covering properties of

Hbase, the final result will not be affected by the repetition). Therefore, the

single Reduce will be adopted in this paper. If there are enough computing

power and higher requirements for efficiency, Combiner or multiple Reducer are

considered as options..

4.2 Query Strategy

A typical selection to find points in rectangular area, the steps as follows:

 Step1:Map

1). Read a row(a Morton code of an area) in Hbase, and calculate whether this

area belongs to the scope of inquiry.

2). If this area isn’t included in the scope of inquiry, end the task in this row.

Run the node of the Map task and apply for the next Map task.

3). If the area is included the scope of inquiry, all points in the shape is

suitable for the selection and output autoid of all of the point in this shape.

4). If the area intersects to the scope of inquiry, continue the step 5 and decide

whether the points in the shape are suitable.

5). Read the X, y coordinates of all the points. If the point is suitable the select,

output the autoid. If not, next point will be continued to examine.

Step2: Combiner/Reducer
Theoretically speaking, the same autoid in spatial point data is not exist. The

value in Key-value which the Combiner/Reducer received should not be a key

corresponding to the multiple values. Combiner/Reducer here plays a role of

summary, and will output the Key-value as original.

Whereas, The output of lines and polygon in Map may have duplicate values

(the output of the point retrieval in Map is not repeated, so the final results could

be directly made after being merged.). Therefore, the Combiner and Reducer of

the lines and geometric shapes must be equipped with the function of removal

repeat, which means that only one result should be output from the multiple

repeats.

After Reduce operation, we get the autoid of all the points that are suitable for

the select. At the meantime, we can retrieval a detailed description in data index

according the autoid.

5. MapReduce and Hbase Performance Tuning

Common method to connect Hbase by MapReduce is extending the parent

class of Mapper which is provided by org.apache.Hadoop.HBase. By extending

the class and overwriting the Map, we can achieve the MapReduce to connect

Hbase. However, the Htable will be splatted according to region ‘s start/end key,

which remains to be processed by the MapReduce provided by Hbase. Each

Mapper processes one region data. According to default configuration, The

amount of region is less than that of cluster nodes, but each region is very huge.

Hence, the tasks of Map will be much fewer after being splatted. While the

workload for single Map is much heavier, which makes the workload for

MapReduce difficult to balance.

To solve this issue, we can set the size of region to a small value. The default

value for Hbase.hregion.Max.filesize is 256 m [8], we may set it to 1M or even

smaller. This method works more effectively, but it will have a big effect on the

response time of MapReduce group when frequently invoking spilt and

compaction. What’s more, it may bring a lot of management and other aspects of

troubles.

6. Experiments

6.1 Platform

Hardware: Master: 3.40GHz i5-3570 CPU 4G Memory;

 Four Slave: 3.30GHz i3-3220 CPU 4G Memory;

System: Fedora18 x86_64 Hadoop-1.0.3 HBase-0.94.2 jdk-7u40;

Test Data: using 1 million random spatial points generated by a Java program,

among which 90 percent has the attribute of text, 50 percent has the attribute

image, 30 percent with sound attribute, and 10 percent with movie attribute.

6.2 Performance between the MapReduce and a standalone computer

Record the time of select operation in table 4(data time unit: thousand, time

unit: ms, OM stands for memory error in Java):

Table 4: the time of select operation

Data size 10 50 100 200 400 500 800 1000

Hadoop 14260 14453 13109 14347 17424 20279 27647 34559

signal 247 1789 3569 7578 OM OM OM OM

The data amount is abscissa, and the retrieval time is vertical axis. Figure 2

shows the retrieval time changing with the data amount.

0

10000

20000

30000

40000

1万 5万 10万 20万 40万 50万 80万 100万

Hadoop

单机

Fig.2

It is shown that it is not suitable for the cluster to possess the less data. When

the amount of data is not too much, the retrieval cost is much slower than

standalone computer since the calculation model mainly depends on the IO. The

cost time passing the data which is calculated by Map to Reduce process is much

higher than the Map and Reduce processing time. Therefore, if the size of the

data does not reach a certain degree, it will affect the performance of retrieval to

apply for the cluster. When the data volume is less than 200 thousand, the

increasing of data has no influence on retrieval time because most time of cluster

is costed by IO.

When the data’s size reaches a certain degree, the calculation required time is

much higher than the transmission one, then the advantages of the cluster begins

to show. The increasing rate of the standalone possessing time increases faster

than the in cluster environment in the later stage. When the data amounts to 200

thousand, it can not proceed normally in standalone environment, while it can

be easily handled by cluster. Therefore, it is better to apply cluster than

standalone for the mass data .

6.3 Different quad-tree Level on retrieval efficiency

Create spatial index for different spatial data in Hadoop cluster with setting

level=6, 7, 8, then run space retrieval operation, and record the retrieval time as

table 5(data time unit: thousand, time unit: ms, OM stands for memory error in

Java).

Table 5: different quad-tree level on retrieval

Data

size

10 50 100 200 400 500 800 1000

Level=6 14260 14453 13109 14347 21332 23563 OM OM

Level=7 14380 14235 13250 14544 14424 17279 33435 OM

Level=8 13116 14979 13421 14379 14676 17135 27647 34559

According to the table, when the data amount is less, the quad-tree level has

almost no influence on the retrieval performance. Because the quad-tree of

Hbase comes from the linear array of the quad-tree of Morton code. The retrieval

for key of Hbase is a binary, so there is not too much influence on retrieval

performance with the increasing of quad-tree level. It is sure that more index

table will be brought with the increasing of quad-tree level. At the meantime, the

data in index table decreases relatively. Therefore, all of all, the increasing

quad-tree level makes no influence on retrieval performance for the less data.

For larger amount of data, the data is relatively huge in the index table. The

retrieval time for index table is much less than the judgement time for intersect

space, even the level is too less to process. Comprehensively speaking, We can

set a high value for quad-tree level in the early stage of the creation for the index

so that we can avoid recreating spatial index in later stage when the data amount

increases.

6.4 Different Region Size on Retrieval Efficiency

Set the HBase Region size to 32 m, 64 m, and 4m. Create spatial index for

different sizes of spatial data, then run space retrieval operation, and record

retrieval time in table 6 (data time unit: thousand, time unit: ms):

Table 6:different Region Size on retrieval

Datasize 400 500 800 1000

4M 14325 17864 26985 34437

32M 14424 17279 27647 34559

64M 15038 16932 28050 34332

The influence of region size on performance seems not that big as expected.

The most important reason is that the number of computer cluster is limited, and

the biggest role of Region partition is to make the graphs to parallel processing,

but if it splits too much, it will make HBase split operation too frequently as well

as the query Region, thus leading to the performance issue of Hbase. Therefore,

it will get better result when the amount of region is twice than the amount of

calculation.nods.

7. Conclusions

In order to solve the problem of mass spatial data storage and retrieval, this

paper implements a massive spatial data storage and implementation method of

quad-tree index on Hadoop and HBase cloud platform. The experiment shows

that the cloud can indeed deal better with the huge amounts of spatial data, which

is difficult for standalone machine to process. At the same time, this paper tested

the influence of quad-tree layer, number and size of the Region on the efficiency

of retrieval performance, and presents a parameter selection method to improve

the query performance of the cloud data.

Acknowledgements

This research work was supported by National High Technology Research and

Development Program 863 under Grant No. 2013AA12A402, Natural Science

Foundation of Guangxi Provincial under Grant No. 2013GXNSFAA019349 and

GuangXi Key Laboratory of Spatial Information and Geomatics under Grant

No.GuiKeNeng 1103108-25, 1207115-13 and 1207115-23.

References

[1] ZhuQing,ZhouYan. Distributed Spatial Data Storage Object. Geometric and

Information Science of Wuhan University,31(5) ,pp.391-394, 2006.

[2] HeRongYuan, LiQuanJie,FuWenJie.Guide to Developing and Application

With Oracle Spatial Database. Surveying and Mapping Press,pp.1-48, 2008.

[3] iammonster.HBase profile. http://jiajun.iteye.com/blog/899632, Jan.30,2011.

[4] wikipedia.shapefile. https://zh.wikipedia.org/wiki/Shapefile,Jul.22,2013.

[5] LuoXingYan. Reretrieval and Implementation on HBase based

Column-oriented Compression Algorithms .South China University of

Technology, pp.11-19, 2011.

[6] LiuTong. Design and implementation of the data analysis system besed on

Hadoop. Beijing University of Post and Telecommunication,pp. 9-31,2012.

[7] TianXiuXxia,ZhouYaoJun,etc. The Technology and Application of

Distributed Computing and Storage Based on Hadoop Architecture. Journal

of Shanghai University of Electric Power,27(1) ,pp.70-74,2011.

[8] Apache.HBase Handbook. http://hbase.apache.org/book/config.files.html，
Sep20,2013.

