Gunta Kunakova

Gunta Kunakova
University of Latvia | LU · Institute of Chemical Physics

Phd

About

28
Publications
2,533
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
236
Citations

Publications

Publications (28)
Article
Mismatch between adjacent atomic layers in low-dimensional materials, generating moiré patterns, has recently emerged as a suitable method to tune electronic properties by inducing strong electron correlations and generating novel phenomena. Beyond graphene, van der Waals structures such as three-dimensional (3D) topological insulators (TIs) appear...
Article
Full-text available
The majority of proposed exotic applications employing 3D topological insulators require high-quality materials with reduced dimensions. Catalyst-free, PVD-grown Bi2Se3 nanoribbons are particularly promising for these applications due to the extraordinarily high mobility of their surface Dirac states, and low bulk carrier densities. However, these...
Article
Dielectrophoresis is used to assemble nanowires between metallic electrodes to form scalable functional interconnects. The dielectrophoresis parameters are investigated for semiconductor copper oxide (CuO) nanowires that are desirable for energy conversion and storage, gas sensors and nanoelectromechanical systems. Experimental yields of multiple-...
Article
Full-text available
Nanoribbons of topological insulators (TIs) have been suggested for a variety of applications exploiting the properties of the topologically protected surface Dirac states. In these proposals it is crucial to achieve a high tunability of the Fermi energy, through the Dirac point while preserving a high mobility of the involved carriers. Tunable tra...
Article
Full-text available
The yield and morphology (length, width, thickness) of stoichiometric Bi2Se3 nanoribbons grown by physical vapor deposition is studied as a function of the diameters and areal number density of the Au catalyst nanoparticles of mean diameters 8–150 nm formed by dewetting Au layers of thicknesses 1.5–16 nm. The highest yield of the Bi2Se3 nanoribbons...
Article
We have used Bi 2 Se 3 nanoribbons, grown by catalyst-free physical vapor deposition to fabricate high quality Josephson junctions with Al superconducting electrodes. In our devices, we observe a pronounced reduction of the Josephson critical current density J c by reducing the width of the junction, which in our case corresponds to the width of th...
Preprint
We have used Bi$_2$Se$_3$ nanoribbons, grown by catalyst-free Physical Vapor Deposition to fabricate high quality Josephson junctions with Al superconducting electrodes. In our devices we observe a pronounced reduction of the Josephson critical current density $J_c$ by reducing the width of the junction, which in our case corresponds to the width o...
Article
Full-text available
Size distribution, Young’s moduli and electrical resistivity are investigated for CuO nanowires synthesized by different thermal oxidation methods. Oxidation in dry and wet air were applied for synthesis both with and without an external electrical field. An increased yield of high aspect ratio nanowires with diameters below 100 nm is achieved by c...
Article
Bi2Se3 nanoribbons, grown by catalyst-free Physical Vapor Deposition, have been used to fabricate high quality Josephson junctions with Al superconducting electrodes. The conductance spectra (dI/dV) of the junctions show clear dip-peak structures characteristic of multiple Andreev reflections. The temperature dependence of the dip-peak features rev...
Preprint
Bi$_2$Se$_3$ nanoribbons, grown by catalyst-free Physical Vapour Deposition, have been used to fabricate high quality Josephson junctions with Al superconducting electrodes. The conductance spectra (dI/dV) of the junctions show clear dip-peak structures characteristic of multiple Andreev reflections. The temperature dependence of the dip-peak featu...
Article
Full-text available
In the present work, a catalyst-free physical vapour deposition method is used to synthesize high yield of Bi2Se3 nanoribbons. By replacing standard glass or quartz substrates with aluminium covered with ultrathin porous anodized aluminium oxide (AAO), the number of synthesized nanoribbons per unit area can be increased by 20–100 times. The mechani...
Article
Germanium tin (GeSn) has been proposed as a promising material for electronic and optical applications due to the formation of a direct band-gap at a Sn content >7 at%. Furthermore, the ability to manipulate the properties of GeSn at the nanoscale will further permit the realisation of advanced mechanical devices. Here we report for the first time...
Article
Full-text available
Many applications for topological insulators (TIs) as well as new phenomena require devices with reduced dimensions. While much progress has been made to realize thin films of TIs with low bulk carrier density, nanostructures have not yet been reported with similar properties, despite the fact that reduced dimensions should help diminishing the con...
Article
Full-text available
The original version of this Article contained an error in Fig. 6b. In the top scattering process, while the positioning of both arrows was correct, the colours were switched: the first arrow was red and the second arrow was blue, rather than the correct order of blue then red.
Article
Full-text available
The original version of this Article omitted the following from the Acknowledgements: “This work was partly supported by the Research Council of Norway through its Centres of Excellence funding scheme, project number 262633, QuSpin.” This has now been corrected in both the PDF and HTML versions of the article.
Article
Full-text available
Electrical properties of Bi 2 S 3 nanowires grown using a single source precursor in anodic aluminum oxide templates are sensitive to the relative humidity in an inert gas environment. Dynamic sensing dependency is obtained and shows presence of spontaneous resistance switching effect between low and high relative humidity states. Employing the the...
Article
Full-text available
Topological superconductivity is central to a variety of novel phenomena involving the interplay between topologically ordered phases and broken-symmetry states. The key ingredient is an unconventional order parameter, with an orbital component containing a chiral px + ipy wave term. Here we present phase-sensitive measurements, based on the quantu...
Article
An electrostatically induced resonance behaviour of individual topological insulator Bi<sub>2</sub>Se<sub>3</sub> nanoribbons grown by a catalyst free vapour-solid synthesis was studied in-situ by scanning electron microscopy. It was demonstrated that the relation between the resonant frequencies of vibrations in orthogonal planes can be applied to...
Article
We report on the chargetransport properties of individual Bi2S3nanowires grown within the pores of anodized aluminum oxide templates. The mean pore diameter was 80 nm. Space charge limited current is the dominating conduction mechanism at temperatures below 160 K. Characteristic parameters of nanowires, such as trap concentration and trap character...
Article
We present a simple two-stage vapour-solid synthesis method for the growth of bismuth chalcogenide (Bi2Te3, Bi2Se3) topological insulator nanowires/nanobelts by using Bi2Se3 or Bi2Te3 powders as source materials. During the first stage of the synthesis process nanoplateteles, serving as "catalysts" for further nanowire/nanobelt growth, are formed....
Article
Full-text available
Bismuth sulfide (Bi2S3) nanowires were grown in porous aluminium oxide template and a selective chemical etching was applied to transfer the nanowires to a solution. Well aligned nanowire arrays were assembled on pre-patterned silicon substrates employing dielectrophoresis. Electron beam lithography was used to connect aligned individual nanowires...
Article
Electrochemical Impedance Spectroscopy (EIS) was used to characterise the electrical properties of bismuth sulphide (Bi2S3) nanowires (NWs) templated within anodic aluminium oxide (AAO) membranes. A specially engineered cell, with a nominal electrolyte volume of 0.1–0.2 ml, was used to hold and measure the electrochemical impedance of the fragile N...
Article
Full-text available
The photoconductive properties of Bi2S3 nanowires synthesized inside anodized alumina (AAO) membrane have been characterized as a function of illuminating photon energy between the wavelengths of 500 to 900 nm and at constant illumination intensity of 1–4 μW·cm−2. Photoconductivity spectra, photocurrent values, photocurrent onset/decay times of ind...
Article
Full-text available
We have realized YBa2Cu3O7-δ nanowires and nano Superconducting Quantum Interference Devices (nanoSQUID). The measured temperature dependence of the wire resistances below the superconducting transition temperature has been analyzed using a thermally activated vortex entry model valid for wires wider than the superconducting coherence length. The e...
Article
Full-text available
Current studies of the electrical impedance and admittance characteristics of the anodised aluminum oxide (AAO) nanoporous arrays and bismuth sulphide (Bi2S3) nanowire within AAO membranes are presented. The influence of potential and frequency scan rate effect produced on the real, imaginary and complex electrochemical impedance and double layer c...
Article
Conductive AFM and in situ methods were used to determine contact resistance and resistivity of individual Sb2S3 nanowires. Nanowires were deposited on oxidized Si surface for in situ measurements and on Si surface with macroelectrodes for conductive AFM (C-AFM) measurements. Contact resistance was determined by measurement of I(V) characteristics...

Network

Cited By