
Gunnar MyhreCenter for International Climate and Environmental Research (CICERO)
Gunnar Myhre
PhD
About
367
Publications
106,977
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
39,590
Citations
Introduction
Additional affiliations
March 1998 - October 2005
Publications
Publications (367)
We assessed the biomass burning (BB) smoke aerosol optical depth (AOD) simulations of 11 global models that participated in the AeroCom phase III BB emission experiment. By comparing multi-model simulations and satellite observations in the vicinity of fires over 13 regions globally, we (1) assess model-simulated BB AOD performance as an indication...
We use Earth system models and a chemistry transport model to determine the radiative forcing due to changes in ozone Three different measures of radiative forcing (instantaneous: IRF, stratospheric-temperature adjusted: SARF, effective: ERF) are compared using both online and offline calculations for the IRF and SARF, and online calculations for t...
New regulations of sulfur emissions from shipping were introduced in 2020, reducing emissions of SO2 from international shipping by ∼ 80 %. As SO2 is an aerosol precursor, this drop in emissions over the ocean will weaken the total aerosol effective radiative forcing (ERF) that has historically masked an uncertain fraction of the warming due to the...
Observational evidence shows that Sahel summer precipitation has experienced a considerable increase since the 1980s, coinciding with significant diverging trends of increased sulfate emissions in Asia and decreased emissions in Europe (dipole pattern of aerosols between Asia and Europe). The decrease in European sulfate aerosols has substantial ef...
Climate sensitivity and aerosol forcing are two of the most central, but uncertain, quantities in climate science that are crucial for assessing historical climate as well as future climate projections. Here, we use a Bayesian approach to estimate inferred climate sensitivity and aerosol forcing using observations of temperature and global ocean he...
Use of hydrogen can reduce carbon dioxide emissions by replacing fossil fuel used as an energy carrier and reactant in metal production. When hydrogen is used, some hydrogen will leak during production, storage, transport, and end use. Via chemical reactions in the atmosphere, the hydrogen will affect the atmospheric composition of methane, ozone,...
Since the 5th Assessment Report of the Intergovernmental Panel on Climate Change (AR5) an extended concept of the energetic analysis of climate change including forcings, feedbacks and adjustment processes has become widely adopted. Adjustments are defined as processes that occur in response to the introduction of a climate forcing agent, but that...
Climate sensitivity and aerosol forcing are two of the most central, but uncertain, quantities in climate science that are crucial for assessing historical climate as well as future climate predictions. Here, we use a Bayesian approach to estimate the inferred climate sensitivity and aerosol forcing using observations of temperature and global ocea...
This study investigates long-term changes in the shortwave direct aerosol radiative effect (DARE) at the top of the atmosphere (TOA) induced by biomass burning aerosol (BBA) transported from southern Africa to the south-eastern Atlantic (SEA) stratocumulus region during extended fire seasons. The evolution since 2002 of aerosol, cloud properties, a...
Intergovernmental Panel on Climate Change (IPCC) assessments are the trusted source of scientific evidence for climate negotiations taking place under the United Nations Framework Convention on Climate Change (UNFCCC). Evidence-based decision-making needs to be informed by up-to-date and timely information on key indicators of the state of the clim...
We assessed the performance of 11 AeroCom models in simulating biomass burning (BB) smoke aerosol optical depth (AOD) in the vicinity of fires over 13 regions globally. By comparing multi-model outputs and satellite observations, we aim to: (1) assess the factors affecting model-simulated, BB AOD performance using a common emissions inventory, (2)...
New regulations of sulphur emissions from shipping were introduced in 2020, reducing emissions of SO2 from international shipping by ~80 %. As SO2 is an aerosol precursor, this drop in emission over the ocean will weaken the total aerosol effective radiative forcing (ERF) that historically has masked an uncertain fraction of the warming due to incr...
Intergovernmental Panel on Climate Change (IPCC) assessments are the trusted source of scientific evidence for climate negotiations taking place under the United Nations Framework Convention on Climate Change (UNFCCC). Evidence-based decision-making needs to be informed by up-to-date and timely information on key indicators of the state of the clim...
The Earth’s energy imbalance is the net radiative flux at the top-of-atmosphere. Climate model simulations suggest that the observed positive imbalance trend in the previous two decades is inconsistent with internal variability alone and caused by anthropogenic forcing and the resulting climate system response. Here, we investigate anthropogenic co...
The climate science community aims to improve our understanding of climate change due to anthropogenic influences on atmospheric composition and the Earth's surface. Yet not all climate interactions are fully understood, and uncertainty in climate model results persists, as assessed in the latest Intergovernmental Panel on Climate Change (IPCC) ass...
For over 6 months, the 2014–2015 effusive eruption at Holuhraun, Iceland, injected considerable amounts of sulfur dioxide (SO2) into the lower troposphere with a daily rate of up to one-third of the global emission rate, causing extensive air pollution across Europe. The large injection of SO2, which oxidises to form sulfate aerosol (SO42-), provid...
Anthropogenic emissions of aerosols and precursor compounds are known to significantly affect the energy balance of the Earth–atmosphere system, alter the formation of clouds and precipitation, and have a substantial impact on human health and the environment. Global models are an essential tool for examining the impacts of these emissions. In this...
Observational evidence shows the ubiquitous presence of ocean-emitted short-lived halogens in the global atmosphere1–3. Natural emissions of these chemical compounds have been anthropogenically amplified since pre-industrial times4–6, while, in addition, anthropogenic short-lived halocarbons are currently being emitted to the atmosphere7,8. Despite...
Ventilation of health hazardous aerosol pollution within the planetary boundary layer (PBL) – the lowest layer of the atmosphere – is dependent upon turbulent mixing, which again is closely linked to the height of the PBL. Here we show that emissions of both CO2 and absorbing aerosols such as black carbon influence the number of severe air pollutio...
This study focuses on implications of differences between recent global emissions inventories for simulated trends in anthropogenic aerosol abundances and radiative forcing (RF) over the 1990–2019 period. We use the ECLIPSE version 6 (ECLv6) and CEDS year 2021 release (CEDS21) as input to the chemical transport model OsloCTM3 and compare the result...
With increasing global interest in molecular hydrogen to replace fossil fuels, more attention is being paid to potential leakages of hydrogen into the atmosphere and its environmental consequences. Hydrogen is not directly a greenhouse gas, but its chemical reactions change the abundances of the greenhouse gases methane, ozone, and stratospheric wa...
For over 6-months, the 2014–2015 effusive eruption at Holuhraun, Iceland injected considerable amounts of sulphur dioxide (SO2) into the lower troposphere with a daily rate of up to one-third of the global emission rate causing extensive air pollution across Europe. The large injection of SO2, which oxidises to form sulphate aerosol (SO42−), provid...
The climate science community aims to improve our understanding of climate change due to anthropogenic influences on atmospheric composition and the Earth's surface. Yet not all climate interactions are fully understood and diversity in climate model experiments persists as assessed in the latest Intergovernmental Panel on Climate Change (IPCC) ass...
Precipitation has increased across the arid Central Asia region over recent decades. However, the underlying mechanisms of this trend are poorly understood. Here, we analyze multi-model simulations from the Precipitation Driver and Response Model Intercomparison Project (PDRMIP) to investigate potential drivers of the observed precipitation trend....
This study focuses on implications of differences between recent global emissions inventories for simulated trends in anthropogenic aerosol abundances and radiative forcing (RF) over the 1990–2019 period. We use the ECLIPSE version 6 (ECLv6) and Community Emission Data System year 2021 release (CEDS21) as input to the chemical transport model OsloC...
Anthropogenic aerosols exert a cooling influence that offsets part of the greenhouse gas warming. Due to their short tropospheric lifetime of only several days, the aerosol forcing responds quickly to emissions. Here, we present and discuss the evolution of the aerosol forcing since 2000. There are multiple lines of evidence that allow us to robust...
Global models are widely used to simulate biomass burning aerosol (BBA). Exhaustive evaluations on model representation of aerosol distributions and properties are fundamental to assess health and climate impacts of BBA. Here we conducted a comprehensive comparison of Aerosol Comparisons between Observations and Models (AeroCom) project model simul...
Ventilation of aerosol pollution within the planetary boundary layer (PBL) is dependent upon turbulent mixing, closely linked to the height of the PBL. Here, we show that emissions of both CO 2 and absorbing aerosols influence the number of severe air pollution episodes through a boundary layer feedback loop, impacting turbulence and PBL height. Wh...
Anthropogenic aerosols exert a cooling influence that offsets part of the greenhouse gas warming. Due to their short tropospheric lifetime of only up to several days, the aerosol forcing responds quickly to emissions. Here we present and discuss the evolution of the aerosol forcing since 2000. There are multiple lines of evidence that allow to robus...
This data descriptor reports the main scientific values from General Circulation Models (GCMs) in the Precipitation Driver and Response Model Intercomparison Project (PDRMIP). The purpose of the GCM simulations has been to enhance the scientific understanding of how changes in greenhouse gases, aerosols, and incoming solar radiation perturb the Ear...
Global models are widely used to simulate biomass burning aerosols (BBA). Exhaustive evaluations on model representation of aerosol distributions and properties are fundamental to assess health and climate impacts of BBA. Here we conducted a comprehensive comparison of Aerosol Comparisons between Observation project (AeroCom) model simulations with...
Aerosol-induced absorption of shortwave radiation can modify the climate through local atmospheric heating, which affects lapse rates, precipitation, and cloud formation. Presently, the total amount of aerosol absorption is poorly constrained, and the main absorbing aerosol species (black carbon (BC), organic aerosols (OA), and mineral dust) are di...
Most socioeconomic pathways compatible with the aims of the Paris Agreement include large changes to land use and land cover. The associated vegetation changes can interact with the atmosphere and climate through numerous mechanisms. One of these is emissions of biogenic volatile organic compounds (BVOCs), which may lead to the formation of seconda...
Theory and model evidence indicate a higher global hydrological sensitivity for the same amount of surface warming to solar as to greenhouse gas (GHG) forcing, but regional patterns are highly uncertain due to their dependence on circulation and dynamics. We analyse a multi-model ensemble of idealized experiments and a set of simulations of the las...
For the radiative impact of individual climate forcings, most previous studies focused on the global mean values at the top of the atmosphere (TOA), and less attention has been paid to surface processes, especially for black carbon (BC) aerosols. In this study, the surface radiative responses to five different forcing agents were analyzed by using...
Biases in aerosol optical depths (AOD) and land surface albedos in the AeroCom models are manifested in the top‐of‐atmosphere (TOA) clear‐sky reflected shortwave (SW) fluxes. Biases in the SW fluxes from AeroCom models are quantitatively related to biases in AOD and land surface albedo by using their radiative kernels. Over ocean, AOD contributes a...
How emissions of black carbon (BC) aerosols affect the climate is still uncertain, due to incomplete knowledge of its sources, optical properties and atmospheric processes such as transport, removal and impact on clouds. Here we constrain simulations from four climate models with observations of atmospheric BC concentrations and absorption efficien...
Plain Language Summary
There are two main human drivers of climate change: (a) Greenhouse gas emissions, which warm the planet; and (b) air pollution (aerosols) that offset some of this warming. Unfortunately, disentangling the effects of historical aerosol cooling is difficult based on the available observations. Therefore, we often use climate mo...
For the radiative impact of individual climate forcings, most previous studies focused on the global mean values at the top of the atmosphere (TOA) and less attention has been paid to surface processes, especially for black carbon aerosols. In this study, the surface radiative responses to five different forcing agents were analyzed by using ideali...
Plain Language Summary
Climate change is a response to energy imbalances in the climate system. For example, rising greenhouse gases directly cause an initial imbalance, the radiative forcing, in the planetary radiation budget, and surface temperatures increase in response as the climate attempts to restore balance. The radiative forcing and subseq...
Effective radiative forcing (ERF) is evaluated in the ACCESS1.0 General Circulation Model (GCM) with fixed land and sea‐surface‐temperatures (SST) as well as sea‐ice. The 4xCO2 ERF is 8.0 W m⁻². In contrast, a typical ERF experiment with only fixed SST and sea‐ice gives rise to an ERF of only 7.0 W m⁻². This difference arises due to the influence o...
Aerosol induced absorption of shortwave radiation can modify the climate through local atmospheric heating, which affects lapse rates, precipitation, and cloud formation. Presently, the total amount of such absorption is poorly constrained, and the main absorbing aerosol species (black carbon (BC), organic aerosols (OA) and mineral dust are diverse...
This paper quantifies the pre-industrial (1850) to present-day (2014) effective radiative forcing (ERF) of anthropogenic emissions of NOX, volatile organic compounds (VOCs; including CO), SO2, NH3, black carbon, organic carbon, and concentrations of methane, N2O and ozone-depleting halocarbons, using CMIP6 models. Concentration and emission changes...
Uncertainty in the representation of biomass burning (BB) aerosol composition and optical properties in climate models contributes to a range in modeled aerosol effects on incoming solar radiation. Depending on the model, the top-of-the-atmosphere BB aerosol effect can range from cooling to warming. By relating aerosol absorption relative to extinc...
Within the framework of the AeroCom (Aerosol Comparisons between Observations and Models) initiative, the state-of-the-art modelling of aerosol optical properties is assessed from 14 global models participating in the phase III control experiment (AP3). The models are similar to CMIP6/AerChemMIP Earth System Models (ESMs) and provide a robust multi...
Radiative forcing (RF) time series for total ozone from 1850 up to the present day are calculated based on historical simulations of ozone from 10 climate models contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6). In addition, RF is calculated for ozone fields prepared as an input for CMIP6 models without chemistry schemes an...
More than half of the world's population lives in urban areas, which are especially vulnerable to climate extremes. Urbanization itself is known to increase surface temperatures, but its quantitative effect on extreme precipitation remains very uncertain. Using decadal convection-permitting climate simulations in four midlatitude megacities (Paris,...
The diurnal temperature range (DTR) (or difference between the maximum and minimum temperature within a day) is one of many climate parameters that affects health, agriculture and society. Understanding how DTR evolves under global warming is therefore crucial. Physically different drivers of climate change, such as greenhouse gases and aerosols, h...
This study presents a multiparameter analysis of aerosol trends over the last 2 decades at regional and global scales. Regional time series have been computed for a set of nine optical, chemical-composition and mass aerosol properties by using the observations from several ground-based networks. From these regional time series the aerosol trends ha...
Black carbon (BC) aerosols emitted from natural and anthropogenic sources induce positive radiative forcing and global warming, which in turn significantly affect the Asian summer monsoon (ASM). However, many aspects of the BC effect on the ASM remain elusive and largely inconsistent among previous studies, which is strongly dependent on different...
The uptake of water by atmospheric aerosols has a pronounced effect on particle light scattering properties, which in turn are strongly dependent on the ambient relative humidity (RH). Earth system models need to account for the aerosol water uptake and its influence on light scattering in order to properly capture the overall radiative effects of...