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The variance component tests used in genome-wide 
association studies (GWAS) including large sample sizes 
become computationally exhaustive when the number of 
genetic markers is over a few hundred thousand. We present 
an extremely fast variance components–based two-step 
method, GRAMMAR-Gamma, developed as an analytical 
approximation within a framework of the score test approach. 
Using simulated and real human GWAS data sets, we show 
that this method provides unbiased estimates of the SNP effect 
and has a power close to that of the likelihood ratio test–based 
method. The computational complexity of our method is 
close to its theoretical minimum, that is, to the complexity 
of the analysis that ignores genetic structure. The running 
time of our method linearly depends on sample size, whereas 
this dependency is quadratic for other existing methods. 
Simulations suggest that GRAMMAR-Gamma may be used for 
association testing in whole-genome resequencing studies of 
large human cohorts.

In most GWAS, the participants are assumed to be unrelated and to 
come from a single population. However, even in carefully designed 
studies, some degrees of relatedness and population stratification 
are unavoidable. As the sample sizes of GWAS become increasingly 
large, it becomes virtually impossible to circumvent genetic substruc-
ture. Ignoring the sample structure increases the rate of false positive  
association results1,2.

One of the most flexible and powerful methods of accounting 
for genetic substructure is the variance component approach that is  
based on mixed models. Although the method was originally pro-
posed for pedigrees with known relationships3–5, the variance 
component approach can be used for samples with unknown rela-
tionship when a large number of genetic markers are genotyped, 
thus allowing inference of genetic structure6. Likelihood ratio test 
(LRT)-based variance component analysis6–8 is considered to be 
the gold standard of genetic association analysis using the variance 
component model. However, the method requires estimation of all 
model parameters for every tested genetic marker and is computa-
tionally demanding.

To solve this problem, a two-stage approach (further named as 
fast association score test–based analysis or FASTA) was proposed 
instead of the standard LRT9. This approach divides the model 
parameters into two categories, namely, segregation parameters 
related to trait heritability and parameters describing the effects 
of genetic marker(s) on this trait. The segregation parameters  
are estimated, and the variance-covariance matrix for the phe-
notypes of study participants is computed once for a given trait.  
In the second step, the effect of every SNP marker is evaluated, 
making corrections for the variance-covariance matrix. The two-
step approach approximates the LRT well if many loci of small 
effects are involved in trait determination9,10. At the same time, 
the approach is much less computationally complex than the 
LRT-based method. A two-stage approach has been exploited in 
several fast methods, including efficient mixed models expedited 
(EMMAX)10, trait analysis by association, evolution and linkage 
(TASSEL)/population parameters previously determined (P3D)11 
and fast linear mixed models (FaST-LMM)8.

However, even these methods become rather slow when millions 
of SNP markers are analyzed in large samples. In cases when effec-
tive algorithm based on diagonalization of the relationship matrix is 
used, the computational complexity of the first step for the two-step 
methods is O(n3) + O(pn), where n is a sample size and p is the average 
number of iterations needed to find parameter estimates (Table 1). 
The term O(n3) corresponds to the time complexity of eigendecom-
position of the relationship matrix, and the second corresponds to 
the parameter estimation process. As a variant, FaST-LMM8 makes 
the performance of the first step of analysis with lower complexity 
of O(nsc

2) possible, where sc < n is the number of markers used to 
estimate relationship. Methods such as compressed mixed models11 
decrease n by ‘compressing’ the relationship matrix through identifi-
cation of almost-equivalent rows, such as twins and siblings. For the 
second part of the analysis, the time complexity for all two-stage meth-
ods (FASTA, EMMAX and FaST-LMM) is linear with the number 
of markers s but quadratic with the number of individuals n in the 
study (time complexity of O(sn2)). FaST-LMM can also decrease the 
complexity to O(snk) if only the top k eigenvectors of the relationship 
matrix are used.

Rapid variance components–based method for  
whole-genome association analysis
Gulnara R Svishcheva1, Tatiana I Axenovich1, Nadezhda M Belonogova1, Cornelia M van Duijn2 &  
Yurii S Aulchenko1

1Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia. 2Department of Epidemiology, Erasmus Medical 
Center, Rotterdam, The Netherlands. Correspondence should be addressed to Y.S.A. (yurii@bionet.nsc.ru).

Received 16 November 2011; accepted 16 August 2012; published online 16 September 2012; doi:10.1038/ng.2410

np
g

©
 2

01
2 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://www.nature.com/doifinder/10.1038/ng.2410
http://www.nature.com/naturegenetics/


Nature Genetics  VOLUME 44 | NUMBER 10 | OCTOBER 2012	 1167

To further increase the computation speed, we have previously  
proposed the GRAMMAR method using environmental residuals 
estimated from the segregation model as a transformed trait12,13. 
Further analysis assumes independence among these transformed 
phenotypes of the study participants. However, GRAMMAR, 
although being computationally very fast, produces a conservative 
test and biased effect estimates12.

Here, we describe a new variance component–based two-step 
method, GRAMMAR-Gamma, which is a fast approximation 
of FASTA. We show analytically that the ratio of GRAMMAR 
and FASTA tests can be approximated by a constant named the 
GRAMMAR-Gamma factor (Online Methods). Using this factor 
allows correction of the test statistic and SNP effect estimates 
obtained by the fast GRAMMAR approach and compensates for 
its conservativeness. Thus, the new method operates as fast as the 
original GRAMMAR approach and achieves the power of FASTA, 
which, in turn, is almost equivalent to the gold standard LRT-based 
variance component analysis.

In the first step, the new method estimates the segregation param-
eters and GRAMMAR-Gamma factor, and the trait is transformed. 
This step is accelerated by analytical optimization of the matrix 
operations on the basis of the eigendecomposition of the relationship 
matrix and analytical parameter estimation. Being mostly determined 
by the eigendecomposition, the computational complexity of this step 
is similar to that of other two-step methods, such as EMMAX10 and 
FaST-LMM8 (Table 1).

In the second step, the score test for the association between the 
transformed trait and genotypes is performed without the explicit 
use of the relationship matrix, and the resulting SNP effect esti-
mates and test statistic values are corrected by dividing them by the 
GRAMMAR-Gamma correction factor. Computational complexity 
for the second step is linearly dependent on the number of indi-
viduals and markers (time complexity of O(ns)) and is much lower 
compared to that of other methods using the variance component 
model (Table 1).

We evaluated our method using a human GWAS data set from the 
Erasmus Rucphen Family (ERF) study14, which is embedded into a 
genetically isolated population. Real genotypes in combination with 
simulated and real phenotypes were used for association analysis. In 
addition, the method was applied to five traits of Arabidopsis thaliana 
(published data of Atwell et al.15). This sample is very different from 
the human sample in its structure and size, heritability of traits and 
size of SNP effects.

RESULTS
Statistical properties of GRAMMAR-Gamma
We compared statistical properties of the new GRAMMAR-Gamma 
method with those of the FASTA and LRT-based variance component 
methods (see Online Methods for details).

We contrasted the type 1 error, power and SNP effect estimates using the 
approach described in previous publications12,13. The results are shown 
in Figure 1 for selected scenarios and in Supplementary Tables 1–4  
for the extended set of methods and all scenarios. The estimates of 
SNP effect produced by GRAMMAR-Gamma were very close to those 
from FASTA and the LRT-based methods (two-sided Student’s t-test  
P values > 0.22 and 0.11 for all scenarios, respectively) and to the 
simulated values of the SNP effects (all P > 0.19). The values of the 
GRAMMAR-Gamma test statistic were also very close to those from 
FASTA (all P > 0.8) and were only slightly but not significantly lower than 
the values from the LRT-based method (all P > 0.11). All ratios of the 
non-centrality parameter between GRAMMAR-Gamma and FASTA and 
LRT-based methods were greater than 0.997 and 0.97, respectively.

Thus, GRAMMAR-Gamma addresses the limitations of the origi-
nal GRAMMAR approach. It gives unbiased estimates of the SNP 
effect and, therefore, the correct distribution of the test statistic. 
GRAMMAR-Gamma has a power that is essentially identical to that 
of FASTA and close to that of the LRT-based method.

Distribution of GRAMMAR-Gamma correction factor
The only assumption that should hold for good approximation of 
FASTA by our new method is that the GRAMMAR-Gamma correc-
tion factor (the ratio of the FASTA and GRAMMAR test statistics) is 
approximately the same for all markers. To examine this assumption 
empirically, we analyzed 6 traits in a large human pedigree (ERF study14, 
sample size from 2,568 to 2,592) and 5 traits of A. thaliana (data from 
a previous study15, sample size from 84 to 164) (see details in Online 
Methods). The marker-specific GRAMMAR-Gamma factors (expres-
sion (5) in Online Methods) were estimated using FASTA implemented 
in the ‘mmscore’ function of the GenABEL package16. The variance of 

Table 1  Complexity of different two-step algorithms
Method Time complexity Space complexity

Step 1

FASTA O (n3 + pn) O (n2)

EMMAX O (n3 + pn) O (n2)

FaST-LMM O (n3 + pn) O (n2)

FaST-LMM-restricted O (nsc
2 + pn) O (nsc)

GRAMMAR-Gamma O (n3 + pn) O (n2)

Step 2

FASTA O (sn2) O (n)

EMMAX O (sn2) O (n)

FaST-LMM O (sn2) O (n)

FaST-LMM-restricted O (snk) O (n)

GRAMMAR-Gamma O (sn) O (n)

n, sample size; s, number of tested SNPs; sc, number of SNPs used for singular value 
decomposition; p, average number of iterations needed to find parameter estimates;  
k, number of eigenvectors used.
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Figure 1  Comparison of mixed model–based methods. SNP effect 
estimates (left) and test statistics (right) obtained using LRT-based FMM 
(white), FASTA (dark gray) and GRAMMAR-Gamma (light gray) methods 
under nine selected simulation scenarios (modeled covariate effect = 
0.1). Error bars, s.e.m. 
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the GRAMMAR-Gamma factor was small for all human traits but was 
substantially higher for A. thaliana (Supplementary Fig. 1).

Association analysis of real traits
We performed GWAS on the selected human and A. thaliana traits 
using GRAMMAR-Gamma, FASTA, LRT, EMMAX and a method that 
does not incorporate knowledge about genetic (sub)structure, namely, 
linear regression with genomic control (LR-GC). In LR-GC, the test 
statistic from simple linear regression was corrected by dividing it by 
the genomic control inflation factor17.

For all human traits studied, GRAMMAR-Gamma yielded genomic 
control inflation factors, P values and SNP effect estimates that were 
almost equivalent to those obtained using FASTA and EMMAX (cor-
relation of test statistic values ranged from 0.997 to 1.0 for differ-
ent traits) and LRT (correlation from 0.996 to 0.999) (Fig. 2a and 
Supplementary Tables 5 and 6).

The samples in the A. thaliana data set consist of pure lines, the pheno
types of which are averages across homozygous individuals within the 
lines. The data set is characterized by high heritabilities (0.84–1.00)  
and small sample sizes (84–164). However, despite these features, 
the statistics and SNP effect estimates of GRAMMAR-Gamma were 
close to those obtained using FASTA and EMMAX (correlation of 
test statistic values ranged from 0.932 to 0.985 for different traits) 
(Fig. 2b and Supplementary Table 5). Correlations of test statistic 
values obtained by LRT and GRAMMAR-Gamma were significantly 
smaller (from 0.629 to 0.953). However, similar correlations (from 
0.690 to 0.969) were observed between test statistic values obtained 
by LRT and FASTA (Supplementary Table 5). This indicates that a 
two-step score-based approach may not be correct for approximating 
LRT when a trait with very high heritability is analyzed using small 
data sets with highly heterogeneous relationships.

Using GRAMMAR-Gamma for association testing, we replicated 
associations with all loci reported in a previous A. thaliana study15 
(Supplementary Table 6). We found good agreement between top 
P values obtained by FASTA, GRAMMAR-Gamma and LRT, whereas 

P values from EMMAX were several orders of magnitude lower. We 
suggest that different statistical tests, which are asymptotically equiva-
lent (as we see with the large human data set), could give different 
results because of the small size of A. thaliana data set. For example, 
for association between the marker snp-1-4143161 and the avrPphB 
phenotype we obtained P values ranging from 2 × 10−14 to 4 × 10−13 
when using FASTA, GRAMMAR-Gamma and LRT, but we obtained 
a P value of 6 × 10−22 when using EMMAX (Supplementary Table 6) 
and an even lower P value of 8 × 10−38 when using the Wald test–based 
analog of FASTA in the genome-wide feasible generalized least squares 
(GWFGLS) function of MixABEL.

To show the performance of GRAMMAR-Gamma approximation of 
FASTA, we also compared it with the other fast approximation, LR-GC. 
In this study, 95% of all absolute differences between the FASTA and 
GRAMMAR-Gamma test statistic values were <0.053 for low-density 
lipoprotein (LDL) concentration and <0.13 for human height. The abso-
lute differences between the FASTA and LR-GC test statistics, however, 
were at least an order of magnitude larger (the 95% percentile was 1.40 
for LDL and 3.32 for height). For the A. thaliana lesioning (LES) pheno-
type, where GRAMMAR-Gamma factors were quite variable, the 95% 
percentile of absolute differences between the FASTA and GRAMMAR-
Gamma test statistic values was relatively large (0.67). However, this 
value was much smaller than that from LR-GC (2.71).

Running time
Finally, we addressed a question of the running time of practical 
implementations of different two-stage variance component methods. 
EMMAX10, FaST-LMM8 and FASTA implemented in the GenABEL 
package (mmscore) and the GRAMMAR-Gamma test in the current 
study were compared. The analyses were run on data from 500 to 
3,000 individuals at 456,516 SNP markers (Online Methods) using a 
single-core Intel Xeon X5550 at 2.67 GHz with 36 GB of random-access 
memory (RAM).

The measured elapsed real times are presented in Figure 3. The 
proposed GRAMMAR-Gamma implementation provided the fastest 
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means to run GWAS using the approximate variable component 
method. Compared with EMMAX and FaST-LMM (the two-stage 
option where the parameters are estimated only once for the null 
model), GRAMMAR-Gamma achieved increases in speed of up to 
38 times and 10 times, respectively, on this data set. According to the 
nature of the algorithm, the more individuals and genetic markers 
that are analyzed, the larger the expected increase in speed will be 
compared to other methods.

Although the scenario above assumes the use of a SNP array, one 
of the current challenges in statistical genomics is the analysis of 
whole-genome resequencing data. Therefore, a scenario in which 
36.5 million SNPs were available in 3,000 individuals was investigated 
(Online Methods). Using the new method, the analysis of this data 
set was completed in 38 min.

DISCUSSION
In the current study, we report a new fast method for GWAS, which 
is based on the variance component mixed-model approach and 
corrects for sample structure. The new method is the fast approxi-
mation of the two-step score test–based method proposed by Chen 
 and Abecasis9.

The two-stage approach is widely used to speed up GWAS when 
hundreds of thousands of SNPs are analyzed in large samples8,10,11. 
The recent works concentrated on increasing the speed of the first 
step of analysis where segregation parameters are estimated. The fast-
est approaches for the first step use additional algorithms, such as 
clustering individuals into groups (compressed mixed model)11 or 
reducing the relationship matrix (singular value decomposition)8. At 
the same time, computational complexity of the second step in differ-
ent methods increases quadratically with the number of individuals 
in the study (Table 1) because the n × n variance-covariance matrix 
is involved in the calculations. When the number of genetic markers 
reaches millions, the time complexity of the second step becomes 
restrictive. The main advantage of our new method is the reduction 
of computational complexity of this second step to a point close to 
theoretical minimum (defined by the complexity of the analysis of 
samples without genetic structure).

Two different approaches with computational complexity close to 
the minimum, particularly genomic control17,18 and GRAMMAR12, 
have been proposed earlier. The former ignores the genetic structure 
of the sample and considers correlated phenotypes and genotypes 
as independent values but adjusts the test statistic values by the 
whole-genome inflation factor, which is empirically calculated17,18. 

However, a study by Kang et al.10 and the current study (Fig. 2) show 
that the genomic control approach leads to a substantial decrease in 
power. The latter approach, GRAMMAR, takes into account correla-
tion between phenotypes, but it ignores correlation between geno-
types12. Although the test statistic can be adjusted through genomic 
control, SNP effects are underestimated13.

The current study analytically shows that the test statistics and 
SNP effect estimates from GRAMMAR and FASTA differ from one 
another by the GRAMMAR-Gamma factor. The effectiveness of the 
new method is shown using both simulated and real human data.  
The statistical properties of the new method are practically identical 
to the statistical properties of FASTA and are very close to that of the 
gold standard LRT-based variance component method. At the same 
time, the new method is extremely fast. The running time depends 
linearly on sample size, whereas dependency is quadratic for the 
majority of existing two-step methods.

The only assumption that needs to hold for GRAMMAR-Gamma 
approximation of FASTA is that marker-specific GRAMMAR-Gamma 
factors (equation (5) in Online Methods) do not vary much between 
the markers. The smaller the variability of the GRAMMAR-Gamma 
factors, the closer the GRAMMAR-Gamma statistic to those derived 
using the FASTA test. If the variability is high, the GRAMMAR-
Gamma estimates and statistics (although asymptotically unbiased) 
may deviate from FASTA estimates for particular markers.

The assumption about low GRAMMAR-Gamma factor vari-
ability seems to hold well for large samples from human popula-
tions with hidden relationships. These samples require very fast 
methods for GWAS. However, caution needs to be exercised when 
GRAMMAR-Gamma is used for small data sets with highly hetero-
geneous relationships, such as the example A. thaliana data set. For 
this sample, the variance of the GRAMMAR-Gamma correction 
factor was substantially higher compared to the variance observed 
for human data.

The simplest way to evaluate GRAMMAR-Gamma applicability 
before analysis is to calculate GRAMMAR-Gamma factors for a 
subset of markers. This distribution can be used to estimate, for 
example, the 95% confidence intervals of the distribution of differ-
ences between the FASTA and GRAMMAR-Gamma test statistic 
values. The choice of method depends on the compromise between 
desired speed and accuracy.

The algorithm in the current study can easily be integrated into 
the second step of any two-step variance component–based method. 
Thus, the increase in speed can be achieved by combining the fastest 
method for the second step with the fastest approaches for the first 
step that uses additional algorithms. Use of the method proposed 
in the current study is expected to increase in the future because 
of the rapid generation of whole-genome resequencing data. The 
GRAMMAR-Gamma method is available through the ‘grammar’ 
procedure of the GenABEL package v 1.7-1 or later.

URLs. The GRAMMAR-Gamma method is available as the gram-
mar procedure within the GenABEL package v 1.7-1 or later 
(GenABEL project, http://www.genabel.org/). The FASTA method 
is available in the GenABEL package (mmscore procedure). The 
FMM implementation of variance component LRT (developed by 
W. Astle) is available as the fmm procedure of the MixABEL pack-
age (part of the GenABEL project). EMMAX software is available 
at http://genetics.cs.ucla.edu/emmax/. FaST-LMM software is avail-
able at http://fastlmm.codeplex.com/. The A. thaliana data set used 
here is accessible at AtPolyDB (https://cynin.gmi.oeaw.ac.at/home/
resources/atpolydb).
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Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS 
Model. A standard mixed linear model for association analysis of quantita-
tive traits can be written as y = µ + XbX + gβg + u + e, where y (n × 1) and  
g (n × 1) are vectors of phenotypes and genotypes of an analyzed SNP marker, 
respectively, observed for n individuals; X (n × k) is a matrix of k observed 
covariates; µ is an intercept; βg is fixed effect for an analyzed SNP; bX (k × 1) 
is a vector of covariate effects; and u (n × 1) and e (n × 1) are vectors of unob-
served polygenic and random residual effects, respectively. For the analyzed 
marker having two alleles, A and a, a genotype score, g, is defined as 1, 0.5 and 
0 for the AA, Aa and aa genotypes, respectively.

This model assumes that the phenotypes follow a multivariate normal  
distribution and a logarithm of the likelihood (log likelihood) is given by 

log log log | |l n E T= − ( ) − − − ( )( ) − ( )( )−
2

2 1
2

1
2

1p W Wy y y yE

where E(y) is a mean vector 

E X gX( )y g= + b

and Ω is a covariance matrix 

W = + −s2 2 21( ( ) )h R h I

where σ2 is a total trait variance; h2 is a trait heritability; and R and I are a rela-
tionship and an identity matrix, respectively. Relationship coefficients between 
relatives are defined by the pedigree structure or may be estimated on the basis 
of the large number of genotyped markers (genomic relationship).

Score-based association test. Use of the score approach allows estimation of 
all model parameters (except for βg) only once for a given trait. Then, a score 
statistic for a given marker is defined via one parameter, βg, by 

T g

g
score
2

2
= ( )

b

bvar

where var(βg) is the variance of βg. This statistic is approximately distributed 
as χ2 with 1 degree of freedom.

Estimates 

b W
Wg

T

T=
−

−
 

 
g y
g g

1

1

and 

var b
Wg T( ) = −
1

1 g g

obtained as a result of maximization of the log likelihood under the alternative 
hypothesis lead to the score statistic proposed by Chen and Abecasis9

T =
T

Tscore
2

 

 

g y

g g

W

W

−

−
( )1 2

1

where y y y= − ( )E  and g g g= − ( )E .
The time complexity of the score test for each genetic marker is a quad-

ratic function of the sample size. A lot of time could be required for GWAS, 
when millions of genetic markers are analyzed in large samples. To speed  
up computations, we have recently proposed a fast approximation of  
the score test–based method named the GRAMMAR approach12. Its 
improved speed is the result of transforming the vector of dependent phe-
notype residuals y  into the vector of the independent ones,  y y* = es2 1W− .  
Then y* can be analyzed by standard linear regression methods using the 
following score statistic: 

T =
n T

T TGRAMMAR
2

 

   

g y

g g y y

*

* *

( )
( )





2

(1)(1)

(2)(2)

(3)(3)

This equation holds because the GRAMMAR test estimates the effect of a 
quantitative trait locus (QTL) and its variance as 

bg

T

TGRAMMAR =
 

 
g y
g g

*

and 

var
* *

bg

T

TnGRAMMAR( ) = ( )
 

 

y y
g g

respectively. However, it was demonstrated that the GRAMMAR test is  
conservative and gives biased estimates of marker effect13.

The GRAMMAR-Gamma test. Here, we describe a new test, which is based 
on the GRAMMAR method but, unlike GRAMMAR, results in unbiased test 
statistic and marker effect estimates.

The score test (2) can be presented as follows:

T
T

T

T

Tscore
2 =

( ) 






− − 
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 

g y

g g
g g
g g

W W
1 2

1

The numerator of equation (4) is a new statistic 

T
T

Tnew
2 =

( )− 

 

g y

g g

W 1 2

which is similar to equation (3) and does not take into consideration the cor-
relations within genotype data g . In this case, transforming the phenotype 
data by use of W−1y makes them uncorrelated with the genotypic data. Then, 
standard linear regression methods can be used to calculate this statistic. The 
denominator of equation (4) 

 

 
g g
g g

T

T
W−1

is indeed a correction factor, which allows us to obtain the score statistic for 
the analyzed marker from this new statistic.

The denominator of expression (4) for genetic marker m can be written as 

g

w

m

mi m ij mj m
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where subscripts i and j define a pair of relatives, ω–1 is an element of the Ω–1 

matrix, E(gm) is a genotype mean and 
1
1

2

1n
g gml m

l=

n

−
− ( )( )∑ E  is a genotype 

variance, var(gm).
We assume here that, if many loci with small effects control the trait, then 

the correction factors (5) for different markers (m M= 1, ) are similar to each 
other. This assumption follows from observing the linear dependence between 
statistics (2) and (3), which has been demonstrated empirically12. In this case, 
we can introduce the GRAMMAR-Gamma factor γ, which is equal to the 
arithmetic mean 

g g=
=

∑1

1M m
m

M

leading to the following expression for the factor:
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Because permuting the operations of summation on markers and  
individuals does not change the value of γ, expression (6) can be rewritten 
as follows:

g =
−

− ( )( ) − ( )( )




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1

11
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i, j
w

E E

var( )==

n

1
∑

The expression in square brackets defines the rij genomic relationship between 
i and j relatives2,13, resulting in the following definition of the GRAMMAR-
gamma factor:

g =
−

−∑1
1 1n

rij ij
i, j=

n
w 1

As follows from expression (1), 
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were V−1 is an inverse correlation matrix, V–1 = σ2Ω–1. As can be seen from 
expression (7), the factor γ does not depend on marker information and can 
be analytically defined through h2 and σ2. Therefore, it can be estimated only 
once at the first step of analysis.

Thus, the score statistic (2) is approximated by the new statistic 

T
T

Tnew
2 =

( )− 

 

g y

g g

W 1 2

which results from linear regression analysis, divided on the correction  
factor γ (7). 

T Tscore new
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In light of the new statistic, the QTL effect and its variance are estimated as 
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respectively. These estimates are biased because they do not take into consid-
eration the correlations within genotype data g . It is easy to show that γ is also 
the correction factor for a new estimates of the QTL effect and its variance. 
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Fast calculations under the null hypothesis. To accelerate the first step of 
the method in the current study, where segregation parameters are estimated 
using a maximum-likelihood approach, two algorithms are proposed. The first 

(7)(7)

is the use of the theory of eigenanalysis in likelihood calculation to replace 
‘expensive’ operations over matrices with ‘inexpensive’ operations over vectors. 
The second is the implementation of the analytical procedure for estimation of 
all model parameters, except for the heritability. The study demonstrates that a 
system of equations with (k + 3) variables, where k is the number of covariates, 
may be analytically reduced to an equation with a single variable. The descrip-
tion of these algorithms is presented in the Supplementary Note.

Comparison of methods. The majority of LRT-based methods implement-
ing the variance component mixed model for GWAS are rather slow when 
large samples and great numbers of genotypes are analyzed. Two LRT-based 
methods, FMM19 and FaST-LMM_full8, run relatively fast and can be used 
for analysis of large data sets. The test statistics obtained for simulated QTLs 
in 15 experiments using FMM and FaST-LMM_full were compared. Both 
methods gave identical values of the test statistics (Pearson’s correlation was 
0.99999) (Supplementary Fig. 2). However, FMM was running about four 
times faster than FaST-LMM_full. Therefore, FMM is the method of choice 
for the comparison. The mmscore function of GenABEL software16 was  
used to implement FASTA, which is described in detail in the score based– 
association test section. The methods EMMAX10, which is a two-step approxi-
mation of the LRT-based method EMMA7, and FaST-LMM8, where parameters  
of the null hypothesis are estimated only once for every trait, were used to 
compare the running time and the implementation of additional testing of 
statistical properties.

Simulated data. For the simulation study, real data from the ERF study, which 
was performed among a young genetically isolated Dutch population14, were 
used. All study protocols were approved by the Medical Ethics Committee 
of Erasmus University, and all participants gave written informed consent in 
accordance with the Declaration of Helsinki. The trait was simulated on the 
basis of real genotypes as a sum of four independent effects, namely, QTL, 
polygenic, fixed covariate and residual random effects. Several scenarios con-
cerning three parameters, namely, total trait heritability (0.3, 0.5 and 0.8), 
proportion of variance explained by a QTL (0.02, 0.03 and 0.04) and covariates 
(0.01, 0.1 and 0.5), were considered for the tests.

To estimate the type 1 error and power, 1,000 replicas of phenotypes using 
50,000 SNPs randomly distributed over the autosomes of 500 individuals from 
the ERF study were generated.

To estimate the running time of the different methods, the size of the data 
set was made to vary from 500 to 3,000 individuals with a step size of 500. The 
genotypes of 456,516 SNP markers with minor allele frequency (MAF) of >1% 
were included in the analysis.

To estimate the running time of the analysis of the whole-genome 
resequencing data, 36.5 million genotypes from 3,000 people were used.  
The genotype data were generated as 80 repeats of real genotypes of 456,516  
SNP markers.

Real data. The data used for the analysis of human traits were a part of the ERF 
study described in the previous section. The sample included data for 2,596 
individuals with a call rate of ≥0.95 genotyped at 239,843 SNP markers with 
MAF of ≥0.05 and call rate of ≥0.99. Six traits were analyzed, namely, height, 
body mass index (BMI) and serum levels of high-density lipoprotein (HDL) 
cholesterol, low-density lipoprotein (LDL) cholesterol, total cholesterol and 
triglycerides. All traits were adjusted for age and sex.

The A. thaliana data analyzed in this study are described in ref. 15 and are 
freely available for access at AtPolyDB (see URLs). We tested 206,603 SNP 
markers for association with the 5 traits that showed the strongest association 
signals15, namely, FRI gene expression (FRI), three phenotypes describing 
the hypersensitive response for bacterial inoculation (avrPphB, avrRpm1 and 
avrB) and presence or absence of lesioning (LES).

19.	Astle, W. Population Structure and Cryptic Relatedness in Genetic Association 
Studies. PhD Thesis, University of London (2009).
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