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ABSTRACT: To analyze brake squeal, measurements are performed to extract Operational Deflection Shapes (ODS) 

characteristic of the limit cycle. The advantage of this strategy is that the real system behavior is captured, but measurements 

suffer from a low spatial distribution and hidden surfaces, so that interpretation is sometimes difficult. It is even more difficult 

to propose system modifications from test alone. Historical Structural Dynamics Modification (SDM) techniques need mass 

normalized shapes which is not available from an ODS measurement. Furthermore, it is very difficult to translate mass, 

damping or stiffness modification between sensors into physical modifications of the real system. On the model side, FEM 

methodology gives access to fine geometric details, continuous field over the whole system. Simple simulation of the impact 

of modifications is possible, one typical strategy for squeal being to avoid unstable poles. Nevertheless, to ensure accurate 

predictions, test/FEM correlation must be checked and model updating may be necessary despite high cost and absence of 

guarantee on results. To combine both strategies, expansion techniques seek to estimate the ODS on all FEM DOF using a 

multi-objective optimization combining test and model errors. The high number of sensors compensates for modeling errors, 

while allowing imperfect test. The Minimum Dynamics Residual Expansion (MDRE) method used here, ensures that the 

complex ODS expanded shapes are close enough to the measured motion but have smooth, physically representative, stress 

field, which is mandatory for further analysis. From the expanded ODS and using the model, the two underlying real shapes 

are mass-orthonormalized and stiffness-orthogonalized resulting in a reduced modal model with two modes defined at all 

model DOFs. Sensitivity analysis is then possible and the impact of thickness modifications on frequencies is estimated. This 

provides a novel structural modification strategy where the parameters are thickness distributions and the objective is to 

separate the frequencies associated with the two shapes found by expansion of the experimental ODS. 

The methodology will be illustrated for a recent disk brake test and model. 

KEY WORDS: Structural Dynamics Modifications, Operational Deflection Shapes, Minimum Dynamic Residual Expansion, 

Sensitivity analysis, Squeal

1. INTRODUCTION 

To analyze brake squeal, measurements are performed to extract 

two Operational Deflection Shape (ODS) characteristic of the limit 

cycle. These shapes have the advantage to capture the real system 

behavior but suffer from low spatial distribution of sensors. 

Historical Structural Dynamics Modification (SDM) techniques 

allow to work directly on test data need but scaled modes are 

needed, which is not available from an ODS. Moreover, classical 

SDM strategies consider modifications that are point masses or 

relative springs/dampers between sensors that are very difficult to 

translate into physical modifications of the real system.  

On the model side, the Finite Element Method (FEM) gives access 

to fine geometric details, continuous field over the whole system. 

Simple simulation of the impact of modifications is possible, one 

typical strategy for squeal handling being to separate modal 

frequencies to avoid interactions involved in squeal. However, to 
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Figure 1 SDM after expansion procedure 
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ensure accurate predictions, test/FEM correlation must be checked 

and model updating may be necessary despite high cost and 

absence of guarantee on results.  

To combine the fine spatial description of FEM with the ability to 

work directly on test data provided by standard SDM strategies, the 

procedure summarized in Figure 1 has been developed. It relies on 

three main steps:  

- expand ODS (defined at sensors) to estimate shapes at all model 

DOFs using the Minimum Dynamics Residual Expansion 

(MDRE) 

- build an approximate modal model with the ODS shapes at the 

limit cycle frequency 

- use a novel SDM strategy, where the parameters are thickness 

distributions on the model surface, to predict mode frequency 

evolutions 

Section 2 first presents the test case used as illustration throughout 

this paper: test geometry, measured ODS, FEM and topology 

correlation (model observation through sensors). ODS expansion 

and modal model estimation is then explained in section 3. 

Section 4 details the new SDM strategy and a consistency check is 

performed. The full procedure is finally applied in section 5 to the 

test case: a thickness distribution map is proposed that should 

reduce the squeal occurrence. 

2. TEST CASE DESCRIPTION 

The test case used is a Hitachi Astemo disc brake presenting a 

squeal occurrence near 4050Hz. To understand the behavior, an 

ODS measurement is performed using a 3D Scanning Laser 

Doppler Vibrometer (3D-SLDV). The test wireframe composed of 

1293 sensors (431 points) is superposed over the FEM in Figure 2. 

Individual sensors are represented as red arrows on figure left. The 

gap between each wireframe node and the closest model surface is 

shown on figure right to evaluate the topology correlation. 

 
Figure 2 Test case topology correlation: sensors as red 

arrows (left) and node to surface distance map (right) 

Squeal is reproduced on a dyno test bench with constant brake 

pressure and constant disc rotational speed. When squeal occurs, 

the 3D-SLDV sequentially scans all points. Using reference 

accelerometers placed on the brake system, the sequential 

measurements are then combined using the procedure developed in 

[1] which deals with the variation of the limit cycle in frequency, 

amplitude and shape due to the wheel spin. A complex shape is 

obtained, which contains the two main real shapes that interact 

throughout the limit cycle. This complex shape is shown in Figure 

5 left, highlighting a classical lobe motion of the disc and a 

deformation localized at the center and right part of the bracket.  

On the model side, a non-linear static analysis is first performed to 

obtain the contact stiffness distributions engendered by braking 

pressure and torque. The model is linearized around this static state, 

and a Complex Eigenvalue Analysis is performed [2]. The 

correlation between complex mode shapes and the ODS is 

evaluated using the Modal Assurance Criterion [3]. At this stage, 

the best scenario is when there is good agreement between one 

numerical mode close to the squeal frequency and the ODS. The 

model is thus deemed representative and used with confidence to 

propose squeal countermeasures.  

Often, the correlation is not satisfying, which comes either from 

test, model or both. The model may not be representative enough 

of the true system dynamics. The test may lead to a limit cycle 

where non-linearities are high enough to modify shapes notably 

from a combination of two nearby modes that are the classical 

origin of instabilities [4], [5]. Other test error sources such as noise, 

bad sensor location,… can also contribute the low correlation [6].  

For this case, with no satisfying correlation between test and 

analysis, the MDRE method presented in the next section gives a 

appropriate methodology to estimate the model response from 

measurement and a not fully wrong model.  

3. EXPANSION AND MODAL MODEL 

One difficulty with vibration measurements is the low spatial 

resolution. Even for 3D-SLDV sensors, motion of hidden or 

unreachable parts cannot be measured. The first objective of 

expansion methods is the estimation of the motion at all DOFs of a 

model from an experimental shape defined at sensors. Several 

expansion methods have been developed such as static [7], 

dynamic [8], Error in Constitutive Relation [9] and MDRE [10]. 

The two last methods introduce the idea that both modeling and test 

errors can be defined and combined into a multi-objective cost 

function.  

Section 3.1 quickly reminds the MDRE theory. It is applied to the 

test case in section 3.2 with a fine tuning of the balance between 

modeling and test error to ensure that the expanded ODS is close 

enough to the measured motion but has smooth stress field. This is 

mandatory to obtain a physically representative modal model in 

section 3.3 on which the proposed novel SDM strategy can be 

applied. 

3.1. Theory of Minimum Dynamic Residual Expansion 

MDRE combines a modeling error 𝜖𝑀𝑜𝑑 and a test error 𝜖𝑇𝑒𝑠𝑡. The 

two errors depend on the expanded shape {𝑞𝐸𝑥𝑝} defined at all 

model DOF which corresponds to the shape minimizing the multi-

objective cost function 

𝐽({𝑞𝐸𝑥𝑝}, 𝛾) = 𝜖𝑀𝑜𝑑({𝑞𝐸𝑥𝑝}) + 𝛾 𝜖𝑇𝑒𝑠𝑡({𝑞𝐸𝑥𝑝})  (1) 

where the weighting coefficient 𝛾 leads to verification of model 

equations for low values and exact observation of the test for high 

values.  
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To measure the difference between the expanded shape {𝑞𝐸𝑥𝑝} and 

the test measurement{𝑦𝑇𝑒𝑠𝑡}, the model is first observed at sensors 

using an observation matrix [𝑐]𝑁𝑆∗𝑁𝐷𝑂𝐹  built from the test/FEM 

superposition. The test error is then defined by  

𝜖𝑇𝑒𝑠𝑡(𝑞𝐸𝑥𝑝) = ‖{𝑦𝑇𝑒𝑠𝑡} − [𝑐]{𝑞𝐸𝑥𝑝}‖
2
   (2) 

To evaluate how the model is forced to follow the test, dynamic 

residual loads {𝑅𝐿} and the associated energy norm 𝐾 define the 

modeling error 

𝜖𝑀𝑜𝑑(𝑞𝐸𝑥𝑝) = ‖{𝑅𝐿}‖𝐾
2 = ‖([𝐾] − 𝜔2[𝑀]){𝑞𝐸𝑥𝑝}‖

𝐾

2
 (3) 

with [𝐾], [𝑀], the stiffness and mass matrices and 𝜔 the expansion 

pulsation. One notes that {𝑅𝐿} = 0 is equivalent to say that {𝑞𝐸𝑥𝑝} 

is a normal mode and 𝜔 the associated modal frequency.  

More details on the implementation, norm definitions and 

examples can be found in [1], [11]. One just reminds here that 

model reduction is mandatory to solve the expansion in an 

acceptable time. This reduction is performed on the basis composed 

by the normal mode shapes [𝜙]𝑀 and the enrichment with static 

loads at sensors [𝑇𝑆𝑒𝑛𝑠
⊥ ]. The reduced coordinates can thus be split 

in two 

{𝑞} = [𝑇]{𝑞𝑅} = [𝜙𝑀     𝑇𝑆𝑒𝑛𝑠
⊥ ] {

𝑞𝑀

𝑞⊥
}   (4) 

with 𝑞𝑀 the part linked to the model modes and 𝑞⊥ the part linked 

to the enrichment at sensors.  

The test case used has 1.7 million model DOFs and 1293 

vibrometer sensors. The offline phase consisting in computing 100 

normal modes and the enrichment with 1293 static loads at sensors 

takes about an hour. Computing the expanded shape associated to 

a single 𝛾 only takes a second. 

3.2. Expansion result 

The ODS shown in Figure 5 left is expanded using MDRE for 

several values of the 𝛾  weight equally spaced on a logarithmic 

scale. Increasing 𝛾 gives more and more weight to the test error on 

the multi-objective cost function (1): the test error decreases up to 

0 while the modeling increases to its maximum. To display 

modeling and test error evolution whose values are not in the same 

range, the relative error is defined 

𝜖𝑇𝑒𝑠𝑡
𝑅 =

𝜖𝑇𝑒𝑠𝑡

‖{𝑦𝑇𝑒𝑠𝑡}‖2  ;  𝜖𝑀𝑜𝑑
𝑅 =

𝜖𝑀𝑜𝑑

‖{𝑞𝐸𝑥𝑝}‖
𝐾

2     (5) 

and the relative model error is split in a part linked to the normal 

modes and a part linked to the sensor enrichment using (4). 

Figure 3 shows the evolution of the relative test and modeling 

errors with 𝛾. An interesting value is found at 𝛾 = 1𝑒4. For lower 

values, modeling error was mainly due to the modal part. Higher 𝛾 

values lead to a quick increase of the modeling error due to the 

enrichment part, which can occur because noise is transferred from 

the test error to the modeling error or because dynamics are missing 

in the normal mode part to better match the measurement. 

 
Figure 3 Evolution with 𝛾 of relative test and modeling 

errors  

Display of the spatial repartition of modeling and test errors is 

helpful to go deeper in the analysis of sources of bad correlation as 

can be seen in [1], [11], [12] which is helpful if model updating 

must be performed. This is not the main topic for this paper so it 

will not be developed here. Authors want to mention that figures 

similar to Figure 3 were wrong in previous papers [9], [10], model 

errors linked to mode and enrichment parts being inverted: this is 

corrected here with a more convincing interpretation. 

The choice of 𝛾  has a high influence on the stress field of the 

expanded shape. In Figure 4 right, a too high value of 𝛾 leads to 

stress concentration at sensors which is clearly not physical and 

thus cannot be used for further model error localization or 

sensitivity studies. 

 
Figure 4 Stress field of expanded shape for 𝛾 = 1𝑒4 (left) 

and 𝛾 = 1𝑒7 (right) 

𝛾 = 1𝑒4 is thus finally chosen and is quite satisfying: the relative 

test error of 15% is reasonable since the test shape contains noise 

and the relative modeling error is very low at about 5%. This 

answers the question raised at the end of section 2: despite the 

absence of correlation between mode shapes and ODS, relatively 

small residual loads are needed to reproduce the ODS so that the 

model accuracy is acceptable. Figure 5 shows the measured ODS 

on the left and the retained expanded shape on the right. 

 
Figure 5 Squeal ODS (left) and expanded shape with 𝛾 =

1𝑒4 (right) 

When the modeling error is too high, model updating is necessary 

to gain confidence in the prediction of system evolution in response 

to modifications. Even if model updating is always useful, it often 

takes long time and there is no guarantee to reach satisfying results. 

In the meantime, the expansion gives access to a shape defined at 

all model DOFs with good agreement with the real system. This 
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can be exploited to build a simple modal model on which SDM can 

be applied. 

3.3. Modal model from ODS expansion 

To perform SDM, a modal model is needed. Standard modal 

scaling uses collocated measurements (input load and output 

motion at the same location and direction) which is not available 

for ODS because the system excitation is neither controlled nor 

measured. To still obtain a modal model, the real and imaginary 

parts of the complex expanded ODS are extracted and the two are 

mass-orthonormalized and stiffness-orthogonalized with the 

nominal model. This leads to reduced mass matrix, stiffness matrix 

and basis 

[𝑀𝑅] = [
1 0
0 1

]  ; [𝐾𝑅] = [
𝜔1

2 0

0 𝜔2
2] ; [𝑇] = [𝜙1𝜙2] (6) 

Figure 6 shows these two shapes for the illustrated application. 

Because these are obtained from expansion allowing modeling 

error, the two corresponding frequencies 𝑓1 = 𝜔1/2𝜋 and 𝑓2 =

𝜔2/2𝜋 are higher than the expansion frequency (4050Hz): the first 

shape is at 4119Hz (Δ𝑓/𝑓 = 1.7%) and the second at 4217Hz 

(Δ𝑓/𝑓 = 4.1%). 

  
Figure 6 Modal model shapes built from ODS expansion 

To correct these frequency shifts, diagonal values of the reduced 

stiffness matrix are modified to correspond to the expected limit 

cycle frequency. Reduced matrices actually used for further SDM 

are thus  

[𝑀𝑅] = [
1 0
0 1

]  ; [𝐾𝑅] = [𝜔2 0
0 ω2] ; [𝑇] = [𝜙1𝜙2] (7) 

with 𝜔 = 2π ∗ 4050 𝑟𝑎𝑑/𝑠  

4. STRUCTURAL DYNAMICS MODIFICATION 

From a modal model, SDM techniques allow to predict the 

evolution of modes in response to modifications. SDM theory in 

section 4.1 and limitations of the historical use of SDM lead to the 

proposition of a new strategy in section 4.2 which relies on 

sensitivity analysis to thickness modifications. Consistency is 

finally checked in section 4.3. 

4.1. SDM theory 

The objective of SDM is to estimate the influence of a structural 

modification (typically modification of mass and stiffness) from a 

second order reduced modal model 

(−ω2[MR] + [KR]){qR} = 0    (8) 

with [MR] = [T]T[M][T] ; [KR] = [T]T[K][T] and [T]  the 

reduction basis defined at specific output locations. 

Even without a full knowledge of [𝑀], it is possible to introduce 

modifications of  

- mass [Δ𝑀] at output locations 

- stiffness [Δ𝐾] between outputs  

With the hypothesis that the reduced basis subspace remains 

representative enough, these modifications are projected on this 

basis and introduced in the model  

(−ω2([𝑀𝑅] + [Δ𝑀𝑅]) + ([𝐾𝑅] + [Δ𝐾𝑅])){𝑞𝑅} = 0 (9) 

with [Δ𝑀𝑅] = [𝑇]𝑇[Δ𝑀][𝑇] and [𝐾𝑅] = [𝑇]𝑇[Δ𝐾][𝑇] 

New modes associated to this modified reduced model allow to 

evaluate frequency shifts and eventually shape evolution 

(combination of reduced basis vectors). 

Historically [13], [14], the modal model is built from experimental 

modal analysis with the basis [𝑇] being composed of identified 

mode shapes defined at sensors. These modes are normalized using 

colocalized transfers so that [𝑀𝑅] = [𝐼] and [𝐾𝑅] = [𝜔2]  the 

diagonal matrix of squared mode pulsations. The main drawback 

of this strategy is that model outputs are sensors and thus mass and 

stiffness modifications are only possible at sensor locations: 

add/remove mass at sensor locations or add/remove stiffness 

between sensors. It is then very difficult to interpret these very 

coarse modifications as real physical modifications of the real 

system. 

To allow more realistic modifications, the use of expansion 

technique was proposed in [15] : the reduction basis [𝑇] is extended 

from outputs at sensors to outputs at all model DOFs. An example 

shown in Figure 7 left highlights that after expansion it is possible 

to connect a stiffener whereas interface nodes do not correspond to 

measured points. After expansion, we have a direct access to the 

mass and stiffness assembly matrices corresponding to each 

element: mass [Δ𝑀] and stiffness [Δ𝐾] modifications in equation 

(9) corresponding to the removal of some elements is easily tested. 

 
Figure 7 Modification adding stiffener [15] and topology 

optimization example [16] 

Another objective is to obtain realistic modifications. For this 

purpose, the first thought would be addition/removal of elements 

as in topology optimization techniques [16] illustrated in Figure 7 

right. While quite precise spatially, this strategy still ends up with 

a rather coarse description of the final surface and is limited to 

element removal only. A new SDM strategy that tackles both issues 

is thus proposed in the next section. 
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4.2. A SDM using thickness modification 

The proposed SDM strategy is based on the sensitivity analysis of 

the reduced model modal frequencies to thickness modification at 

the component surfaces. Without entering into the details which 

can be found in [17], the sensitivity of a modal frequency to a 

parameter 𝑝  is related the sensitivity of the mass and stiffness 

matrices to this parameter 𝑝 projected on the mode 

𝜕𝜔𝑗
2

𝜕𝑝
= {𝜙𝑗}

𝑇
(

𝜕𝐾

𝜕𝑝
− 𝜔𝑗

2 𝜕𝑀

𝜕𝑝
) {𝜙𝑗}   (10) 

with 𝜔𝑗  and {𝜙𝑗} the pulsation and shape of mode 𝑗. 

Rearrangement of this equation gives an energy interpretation: the 

evolution of the squared modal frequency is equal to twice the 

difference between the strain and kinetic energy evolution.  

𝜕𝜔𝑗
2

𝜕𝑝
= {𝜙𝑗}

𝑇 𝜕𝐾

𝜕𝑝
{𝜙𝑗} − {𝜙𝑗}

𝑇
𝜔𝑗

2 𝜕𝑀

𝜕𝑝
{𝜙𝑗} = 2 ∗ (

𝜕𝐸𝑘,𝑗

𝜕𝑝
−

𝜕𝐸𝑚,𝑗

𝜕𝑝
) (11) 

The parameter 𝑝 for this study is a small thickness increase at the 

component surfaces. A thin layer of finite elements is built by 

extruding the external surface of the structure in the normal 

direction. This is illustrated with the test case in which thickness 

modifications are evaluated for the caliper and bracket components 

shown on Figure 8 left. The map of normals to the external surface 

shown on top right is used to extrude the thin layer shown at bottom 

right (thickness is increased to 1mm on the image for visualization 

purpose, but the actual thickness for computation is 0.01mm) 

 

 

 

Figure 8 Caliper yellow and bracket green component 

(left), normal map (top right) and thin layer (bottom 

right) 

On this thin layer, motion is only known at the initial surface (set 

of nodes 𝑎). To estimate the motion of extruded nodes (set of nodes 

𝑏), dynamic expansion is performed. Motion known at DOFs {𝑞𝑎} 

is enforced and motion sought at DOFs {𝑞𝑏}  is computed by 

allowing external forces {𝐹𝑎} at known DOFs only 

[
𝑍𝑎𝑎(𝜔) 𝑍𝑎𝑏(𝜔)

𝑍𝑏𝑎(𝜔) 𝑍𝑏𝑏(𝜔)
] {

𝑞𝑎(𝜔)

𝑞𝑏(𝜔)
 } = {

𝐹𝑎(𝜔)
0

}  (12) 

{
𝑞𝑎(𝜔)

𝑞𝑏(𝜔)
 } = [

𝐼
𝑍𝑏𝑏

−1(𝜔)𝑍𝑏𝑎(𝜔)] {𝑞𝑎(𝜔)}   (13) 

with 𝑍(𝜔) = (−𝜔2𝑀 + 𝐾) the dynamic stiffness 

As illustration, Figure 9 shows the estimated motion of the thin 

layer for a mode of interest.  

 
Figure 9 Dynamic expansion of thickness layer   

Strain and kinetic energy are then computed at Gauss points of the 

thickness layer and energy density maps on the surface are obtained 

as shown in Figure 10. The difference between strain and kinetic 

energy density maps gives the thickness sensitivity map (or “shift” 

energy density map): it is directly related to the frequency shift 

from the sensitivity equation (11). 

 
Figure 10 Energy density maps: strain energy (top left), 

kinetic energy (top right) and shift energy (bottom) 

In areas with positive shift energy density, thickness increase adds 

more strain energy than kinetic energy thus increasing the modal 

frequency. To also increase the modal frequency in areas with 

negative shift energy, the extrusion should be in a negative 

direction corresponding to removing material. 

From the thickness sensitivity map, a thickness distribution map is 

derived. Note that this step is generally not straightforward as many 

constraints must be respected such as 

- Do not deform functional surfaces 

- Avoid removing too much material to ensure brake 

performances and durability 

- Avoid adding too much material to limit material costs and 

brake weight 

- Keep smooth surface curvature 

- … 

For the sake of simplicity, these difficulties are not addressed in 

this paper. The thickness distribution map is simply the thickness 

sensitivity map with maximum amplitude normalized to one, thus 

leading to a maximum thickness modification of 1mm. Because the 

thickness distribution map can be positive or negative, special 

attention must be paid to elements whose nodes are not all 

positively or negatively extruded. Figure 11 left shows three 

scenarii for each model element:  
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- Red element: all nodes are associated to a positive thickness 

value (material addition). Extrude outside the surface to get 

positive volume and count energy positively 

- Blue element: all nodes are associated to a negative thickness 

value (material removal). Extrude inside the surface to get 

positive volume but count energy negatively 

- Grey element: nodes are associated to positive and negative 

thickness values. The element volume is shrinked, thus not 

reliable and finally removed from the thickness layer. 

Nevertheless, it would have contained very low energy content 

(around zero thickness modification) 

Figure 11 right shows the element kept in the layer. Like previously, 

dynamic expansion from known displacement at the nominal 

surface is performed to get the motion of the whole layer.  

 
Figure 11 Extrusion direction and warped element (left), 

dynamic expansion on retained elements (right) 

Using the equation (11), the evolution of the modal frequency in 

response to this modification is obtained from the nominal 

frequency 𝜔𝑛𝑜𝑚, the strain energy Δ𝐸𝑘 and the kinetic energy Δ𝐸𝑚 

contained in the thickness layer. 

𝜔𝑛𝑒𝑤 = √𝜔𝑛𝑜𝑚
2 + 2 ∗ (Δ𝐸𝑘 − Δ𝐸𝑚)   (14) 

This strategy which looks at the frequency evolution of one mode 

at a time will be called SDM-1Mode. If more than one mode is 

available in the reduction basis, it is more interesting to come back 

to the SDM equation (9) to take into account the impact of the 

modification on all modes at once. 

The mesh is split in two parts 

- one containing elements of the nominal model whose reduced 

mass  [𝑀𝑅] and stiffness [𝐾𝑅] matrices are those of equation (7)  

- another with new elements for the modification. Since new nodes 

are added, the response of [𝑇] on those nodes is estimated by 

dynamic expansion and the [Δ𝑀]  and [Δ𝐾]  were defined in 

equation (9).  

Solving equation (9) then gives new modes for which both 

frequency and shape may vary. This second strategy which looks 

at the evolution of all modes at once will be called SDM-AllModes. 

Note that all these steps are quite fast. In our example, the thin layer 

is about 250.000 DOFs: from a thickness distribution, extrusion, 

dynamic expansion and new mode computation only take 15s. 

4.3. Consistency analysis 

To evaluate the proposed SDM strategy, a consistency analysis 

must be performed. Because further application will be done on the 

ODS at 4050Hz, the closest nominal model mode (at 4005Hz) is 

chosen and one seeks to increase its frequency.  

The thickness sensitivity map of this mode is shown in Figure 10. 

This map is directly applied as signed thickness distribution map to 

build the thickness layer, whose motion after dynamic expansion 

was shown on Figure 11 right. SDM-1Mode and SDM-AllModes 

are finally computed to evaluate mode evolution. 

To obtain a reference, the same signed thickness distribution map 

is applied to the model using a morphing strategy [18]: surface 

nodes are moved and volume interior nodes smoothly follow to 

keep good element quality. Computation of mode shapes on the full 

morphed models performed: these modes are the reference ones 

(hereafter called true model modes). 

Figure 12 shows, for thickness variations up to 5 mm, the 

comparison between true mode frequencies (solid line), SDM-

1Mode predictions (line with x crosses) and SDM-AllModes values 

(dashed line). For all modes in this frequency band, the two SDM 

strategies are quite accurate even if SDM-AllModes is always 

closer to the true model mode evolution. 

 
Figure 12 Comparison of SDM-1Mode and SDM-

AllModes with true model frequency evolution in the 

frequency band of interest for the ODS 

The major interest of using SDM-AllModes is found when close 

modes interact with each other. This is shown in Figure 13 where 

two modes cross around frequency 5575Hz and scale 2.5. SDM-

AllModes is still very close to the true model evolution, but SDM-

1Mode clearly fails in predicting the modal frequency evolution 

because shape evolution is not possible. 
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Figure 13 Comparison of SDM-1Mode and SDM-

AllModes with true model frequency evolution in a 

frequency band where mode crossing occurs 

5. SQUEAL REDUCTION OBJECTIVE: 

SEPARATE MODE FREQUENCIES 

The final objective is to modify the system in order to reduce squeal 

occurrences. As explained in [12], brake instability can be analyzed 

as the interaction of real mode shapes (often mainly two) leading 

to a complex mode with negative damping. Making the hypothesis 

that the ODS complex shape contains the two main real shapes 

responsible of the instability, the idea is to separate them in 

frequency. 

The SDM strategy detailed in section 4.2 is thus applied on the 

modal model obtained after expansion of the ODS in section 3.3.  

Figure 14 shows that for the first mode, areas with the highest 

thickness sensitivity are located on the top and left of the bracket 

and on top of the caliper. For the second mode, most sensitive areas 

are mainly on top of the caliper cylinder. 

 
Figure 14 Thickness sensitivity map for the two modes of 

the modal model after ODS expansion 

The objective being to separate frequencies, the map shown in 

Figure 15 is the difference between the two previous ones. In red 

areas, the gap between the first and the second mode frequencies 

increases whereas it is the contrary in blue areas. 

 
Figure 15 Sensitivity map to separate the frequencies 

displayed on the two mode shapes 

One difficulty with this thickness sensitivity map is that few nodes 

have a very high value that would lead to very localized thickness 

increase. To smooth the map, it is first normalized with the 

maximum value set to one and then square root is applied to the 

values, reducing the gap between high and medium values. The 

resulting map is the thickness distribution finally applied with 

several scales going from -5 to 5 mm.  

Figure 16 shows the evolution of the frequency in response to the 

thickness distribution maps. Both SDM-1Mode and SDM-

AllModes give very close predictions. 

 
Figure 16 Absolute frequency evolution with the thickness 

modification 

One mode is more sensitive than the other to the modification but 

the main focus is the relative frequency shift between the two 

modes 

Δ𝑓(𝑠)

𝑓(0)
=

𝑓2(𝑠) − 𝑓1(𝑠)

𝑓(0)
∗ 100 

shown in Figure 17. Using positive or negative scale is almost 

equivalent even if frequency shift is a bit higher with negative scale 

(second mode frequency gets lower than the first mode frequency). 

  
Figure 17 Relative frequency shift evolution with the 

thickness modification 

If a frequency shift higher than 3% is for instance required, the 

chosen scale is -3 and the corresponding thickness modification 

map is shown in Figure 18. 
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Figure 18 Final thickness distribution map to reach 3% of 

frequency shift 

6. CONCLUSION 

This study defines a new strategy to propose surface thickness 

modifications with the objective to shift frequencies associated 

with shapes measured during squeal occurrences. From ODS, it has 

been shown that a fine tuning of MDRE algorithm leads to shape 

estimates at all model DOFs with physically representative stress 

distribution. A modal model is extracted from the expanded shapes 

and a frequency correction is applied. Thickness sensitivity maps, 

computed for each mode with SDM technique, help determining 

areas where material addition/removal has a strong influence on the 

modal frequencies. A final thickness distribution map is then 

derived.  Consistency analysis confirmed that this strategy can 

predict true mode shifts with accuracy. The procedure has finally 

been applied to an industrial brake system with the objective to 

separate two modal frequencies: a thickness varaiation map to get 

a 3% frequency shift has been proposed. 

The proposed strategy has been developed in the Structural 

Dynamics Toolbox (for use with MATLAB) [19] as it provides all 

the necessary background for test analysis, correlation and SDM. 

Using the models typically considered for CEA, one avoids the 

need to perform correlation and updating by considering expansion 

and assuming that the limit cycle frequency corresponds to modal 

frequencies of the expanded shapes. Thickness sensitivity maps 

immediately give insight to propose system modifications.  

Of course, as the model is improved through correlation and update 

processes, the sensitivity studies should be recomputed and this is 

quite realistic as the computation time is not huge, typically a few 

hours. It is worth noting that the expansion gives information about 

model errors and can help updating.  

The next step is obviously to test the proposed thickness 

modifications experimentally. Other future developments are 

considered: 

- Optimization of thickness distribution maps from thickness 

sensitivity maps to respect design constraints 

- Extension of the SDM strategy after MDRE to other 

modifications such as chamfers, local remeshing, … 

- Evaluate the robustness of stress field estimation in expanded 

shapes to model error and sensor location 

- Instead of using ODS, try to identify modes of the brake system 

in operating conditions close to instability but still stable. This 

would give access to the root cause of the squeal; damping 

could be introduced (not available with ODS) and more 

confidence would be gained because of a higher knowledge of 

the system dynamics in the modal model. 
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