Guillaume Chapuis

Guillaume Chapuis
Institute for Research in IT and Random Systems | IRISA · GenScale

About

17
Publications
4,908
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,302
Citations

Publications

Publications (17)
Article
Full-text available
The recent availability of the first commercial quantum computers has provided a promising tool to tackle NP hard problems which can only be solved heuristically with present techniques. However, it is unclear if the current state of quantum computing already provides a quantum advantage over the current state of the art in classical computing. Thi...
Article
Full-text available
This paper assesses the performance of the D-Wave 2X (DW) quantum annealer for finding a maximum clique in a graph, one of the most fundamental and important NP-hard problems. Because the size of the largest graphs DW can directly solve is quite small (usually around 45 vertices), we also consider decomposition algorithms intended for larger graphs...
Chapter
We describe three algorithms and their associated graphics processing unit (GPU) implementations for two types of shortest path problems. These implementations target computations on graphs with up to millions of vertices and executions on GPU clusters. The first two algorithms solve the All-Pairs Shortest Path problem. The first of these two algor...
Conference Paper
This paper assesses the performance of the D-Wave 2X (DW) quantum annealer for finding a maximum clique in a graph, one of the most fundamental and important NP-hard problems. Because the size of the largest graphs DW can directly solve is quite small (usually around 45 vertices), we also consider decomposition algorithms intended for larger graphs...
Conference Paper
We develop several parallel algorithms for shortest distance queries in planar graphs that use graph partitioning in the preprocessing phase to precompute and store distances between selected pairs of vertices. In the query phase, given a pair of arbitrary vertices v and w, the stored information is used to find the distance between v and w fast. T...
Article
We present a new approach for solving the All-Pairs Shortest-Path (APSP) problem for planar graphs that exploits the massive on-chip parallelism available in today’s Graphics Processing Units (GPUs). We describe two new algorithms based on our approach. Both algorithms use Floyd–Warshall method, have near optimal complexity in terms of the total nu...
Article
Full-text available
Finding similarities between protein structures is a crucial task in molecular biology. Most of the existing tools require proteins to be aligned in order-preserving way and only find single alignments even when multiple similar regions exist. We propose a new seed-based approach that discovers multiple pairs of similar regions. Its computational c...
Conference Paper
Full-text available
We develop an efficient parallel algorithm for answering shortest-path queries in planar graphs and implement it on a multi-node CPU/GPU clusters. The algorithm uses a divide-and-conquer approach for decomposing the input graph into small and roughly equal subgraphs and constructs a distributed data structure containing shortest distances within ea...
Conference Paper
We describe a new algorithm for solving the all-pairs shortest-path (APSP) problem for planar graphs and graphs with small separators that exploits the massive on-chip parallelism available in today's Graphics Processing Units (GPUs). Our algorithm, based on the Floyd-War shall algorithm, has near optimal complexity in terms of the total number of...
Article
Abstract Mapping quantitative trait loci (QTL) using genetic marker information is a time-consuming analysis that has interested the mapping community in recent decades. The increasing amount of genetic marker data allows one to consider ever more precise QTL analyses while increasing the demand for computation. Part of the difficulty of detecting...
Article
Full-text available
The process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, accept...
Article
Full-text available
Low-cost short read sequencing technology has revolutionized genomics, though it is only just becoming practical for the high-quality de novo assembly of a novel large genome. We describe the Assemblathon 1 competition, which aimed to comprehensively assess the state of the art in de novo assembly methods when applied to current sequencing technolo...
Conference Paper
As genomes, transcriptomes and meta-genomes are being sequenced at a faster pace than ever, there is a pressing need for efficient genome assembly methods. Two practical issues in assembly are heavy memory usage and long execution time during the read indexing phase. In this article, a parallel and memory-efficient method is proposed for reads inde...

Network

Cited By