
The HipHop Compiler for PHP

Haiping Zhao Iain Proctor Minghui Yang Xin Qi Mark Williams Qi Gao
Guilherme Ottoni ∗ Andrew Paroski Scott MacVicar Jason Evans Stephen Tu †

Facebook, Inc.

Abstract

Scripting languages are widely used to quickly accomplish

a variety of tasks because of the high productivity they en-

able. Among other reasons, this increased productivity re-

sults from a combination of extensive libraries, fast devel-

opment cycle, dynamic typing, and polymorphism. The dy-

namic features of scripting languages are traditionally asso-

ciated with interpreters, which is the approach used to imple-

ment most scripting languages. Although easy to implement,

interpreters are generally slow, which makes scripting lan-

guages prohibitive for implementing large, CPU-intensive

applications. This efficiency problem is particularly impor-

tant for PHP given that it is the most commonly used lan-

guage for server-side web development.

This paper presents the design, implementation, and an

evaluation of the HipHop compiler for PHP. HipHop goes

against the standard practice and implements a very dy-

namic language through static compilation. After describ-

ing the most challenging PHP features to support through

static compilation, this paper presents HipHop’s design and

techniques that support almost all PHP features. We then

present a thorough evaluation of HipHop running both stan-

dard benchmarks and the Facebook web site. Overall, our

experiments demonstrate that HipHop is about 5.5× faster

than standard, interpreted PHP engines. As a result, HipHop

has reduced the number of servers needed to run Facebook

and other web sites by a factor between 4 and 6, thus drasti-

cally cutting operating costs.

Categories and Subject Descriptors D.3.4 [Programming

Languages]: Processors – compilers, optimization, code

generation

General Terms Languages, Design, Performance

Keywords PHP, dynamic languages, compilation, C++

∗ Contact author. E-mail address: ottoni@fb.com
† Currently affiliated with MIT.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’12, October 19–26, 2012, Tucson, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1561-6/12/10. . . $10.00

1. Introduction

General-purpose scripting languages like Perl, Python, PHP,

Ruby, and Lua have been widely used to quickly accom-

plish a broad variety of tasks. Although there are several

reasons for the widespread adoption of these languages, the

key common factor across all of them is the high program-

mers’ productivity that they enable [14]. This high produc-

tivity is the result of a number of factors. First, these lan-

guages typically provide a rich set of libraries, which re-

duce the amount of code that programmers need to write,

test, and debug. Second, the dynamically-typed nature of

scripting languages provides flexibility and high degrees of

dynamic polymorphism. Last, and most important, dynamic

languages are in general purely interpreted, thus providing

a fast cycle to modify and test source changes. By “purely

interpreted” we mean that there is no compilation step nec-

essary to run a program after writing or modifying it. This

advantage is particularly relevant in the development of very

large systems, which typically take substantial time to stati-

cally compile and link.

On the down side, the major issue with scripting lan-

guages in general is performance. Because of their dynamic

features, these languages are typically implemented via in-

terpreters. Experiments have shown that programs tend to

take an order of magnitude more CPU time to run when im-

plemented in interpreted languages compared to correspond-

ing implementations in compiled languages [22].

Although performance is often not important for small

scripts written to accomplish simple tasks, it does become a

major problem when developing large CPU-intensive appli-

cations. This has spurred a number of efforts to try to im-

prove the performance of scripting languages [3, 8, 10, 19,

21, 24]. Among all general-purpose scripting languages, this

problem is probably most pronounced for PHP, since it is the

most commonly used language for server-side web develop-

ment [23]. Given the scale of users and data that Internet

companies have, improving server efficiency is a key factor

to reduce their operating costs incurred by running huge data

centers.

This paper describes the approach that we took at Face-

book to address the performance problem of PHP. Our main

insight to improve performance was to implement PHP via

a static compiler, called HipHop. Although static compila-

tion requires all the code to be known in advance, this is a

minor imposition for server-side applications, which are the

core usage of PHP. Going against the standard practice of

implementing PHP via interpreters, HipHop has proved to

be a high risk, high reward project. As this paper describes,

there are a number of challenges to enable static compila-

tion of a dynamic language like PHP. Despite these chal-

lenges, HipHop supports a very large subset of PHP, and it

only lacks a few, less useful language features. HipHop is a

source-to-source compiler, and it transforms PHP programs

into semantically equivalent C++ programs. This design en-

ables leveraging high-quality optimizing C++ compilers to

produce machine code, and we currently use GCC [9]. To

obtain high performance, in addition to leveraging GCC op-

timizations, HipHop also implements a number of optimiza-

tions. As our experiments show, this approach has enabled

HipHop to run both benchmark and real-world applications

5.5× faster on average than the standard PHP implementa-

tion [25]. Finally, although HipHop only supports PHP, we

believe that many of its techniques can be used to improve

the performance of other scripting languages as well.

HipHop has been released by Facebook as an open-source

project [6], and it is currently deployed not only within

Facebook but also in other companies. In all these cases,

HipHop has reduced the number of servers needed to run

web sites by a factor between 4 and 6, thus drastically cutting

operating costs.

This paper describes our experience in the design and

implementation of the HipHop compiler. More specifically,

this paper makes the following main contributions:

1. It describes the set of techniques that enabled implement-

ing a general-purpose, dynamic scripting language with a

static compiler.

2. It describes the set of compilation techniques that enable

HipHop to achieve outstanding performance for PHP.

3. It presents a thorough experimental evaluation of HipHop

running both benchmarks and real-world applications

from Facebook. This evaluation includes comparisons

with other PHP execution engines.

The rest of this paper is organized as follows. Section 2

gives a brief introduction to PHP, its key dynamic features,

and its standard implementation. Section 3 then presents the

design of the HipHop compiler and its main techniques. Fol-

lowing that, Section 4 presents a detailed experimental eval-

uation of HipHop and compares it to other PHP execution

engines. Finally, Section 5 discusses related work and Sec-

tion 6 concludes the paper.

01) <?php

02)

03) define("confName", "OOPSLA");

04) define("firstYear", 1986);

05)

06) function year($edition) {

07) return firstYear - 1 + $edition;

08) }

09)

10) echo "Hello " . confName . "’" . year(27);

Figure 1. PHP code example

2. PHP Background

PHP is an imperative scripting language, originally con-

ceived in 1995 for creating dynamic web pages. After its ini-

tial definition, PHP has evolved significantly. Since version

3, PHP is an object-oriented programming language and to-

day, at version 5.4, it is a general-purpose language used be-

yond web development. Like Java, PHP combines interfaces

and single inheritance. However, since version 5.4, PHP also

supports traits [5]. In the absence of a formal specification,

the language is defined by its standard implementation [25].

Although PHP syntactically resembles C++, PHP is in-

herently much more dynamic. Figure 1 illustrates a simple

PHP example, which prints “Hello OOPSLA’2012”. The

defines in lines 3 and 4 are calls to a built-in function that

declares a constant named after its first argument and with

value given by its second argument. In line 10, echo prints

to the output and ‘.’ is string concatenation. Syntactically,

some key differences from C++ are: (1) names of variables

start with ‘$’, and (2) variables are not declared.

Given that C++ well represents the class of static, high-

performing languages, while PHP is representative of the

much worse performing scripting languages1, it is worth

pointing out the main differences between the two lan-

guages. After describing these differences in Section 2.1,

Section 2.2 briefly introduces the approach used in PHP’s

standard implementation. This brief overview provides key

insights into the performance gap between PHP and C++.

2.1 Comparison between PHP and C++

Table 1 summarizes the key language features that are more

general in PHP than in C++. In general, these PHP features

incur significant runtime costs, and their more restricted

forms in C++ enable more efficient execution. Below, we

briefly discuss and illustrate each of these features. This

discussion not only gives insights into the performance gap

between the two languages, but it also demonstrates the

biggest challenges that HipHop faces to translate PHP code

into C++.

1 The performance gap is 36.8× for measured benchmarks using Zend

PHP [22].

Feature PHP C++

types dynamic static

function and class name binding dynamic static

dynamic name resolution yes no

dynamic symbol inspection yes no

reflection yes no

dynamic code evaluation (eval) yes no

Table 1. Key language features that are richer in PHP than

in C++

2.1.1 Dynamic Typing

Being dynamically typed, PHP allows variables to hold val-

ues from different types during the execution. For example,

$x takes both string and integer values in the following code:

function foo($x) {

echo "foo: " . $x . "\n";

}

foo("Hello"); // prints: "foo: Hello"

foo(10); // prints: "foo: 10"

This is fundamentally different from statically typed lan-

guages like C++, where the programmer has to declare the

types of variables, which the compiler can then rely on.

2.1.2 Dynamic Name Binding

In PHP, the names of functions and classes are only bound

to concrete implementations during runtime. For example,

consider the following PHP code:

if ($cond) {

function foo($x) { return $x + 1; }

} else {

function foo($x) { return $x - 1; }

}

$y = foo($x);

If $cond is true, function foo is defined per the first declara-

tion and $y gets the value of $x + 1. Otherwise, the second

definition of foo is used and $y gets the value of $x - 1.

Note that, however, PHP does not allow functions and

classes to be redeclared during execution.

2.1.3 Dynamic Name Resolution

In PHP, the names of variables, properties, functions, and

classes may reside in variables and may be dynamically

created. Consider the following example:

$a = ’f’;

$b = ’c’;

$c = ’oo’;

$func = $a . $$b;

$func();

$obj = new $c;

This code invokes function foo in the fifth line. Notice the

$$ in front of b: $b first evaluates to c, and then $c evaluates

to oo. In the last statement, this example creates an object of

class oo.

The following example illustrates dynamic properties:

class C {

public $declProp = 1;

}

$obj = new C;

$obj->dynProp = 2;

echo $obj->declProp . "\n";

echo $obj->dynProp . "\n";

Although property dynProp is not declared in class C, this

program is valid and prints out 1 and 2.

2.1.4 Dynamic Symbol Inspection

In PHP, programs can make runtime queries to check whether

or not functions or classes have been declared. For instance,

code like the following is valid:

if (function_exists(’foo’)) {

...

}

if (class_exists($c)) {

...

}

The ability to make such queries is intrinsic to dynamic

languages, while static languages typically assume all the

program is seen before it is executed.

2.1.5 Reflection

PHP has native support for reflection, which enables query-

ing various properties about classes, methods, functions, and

more. However, C++ does not have native support for reflec-

tion. Notice that the lack of reflection is specific to C++ and

not a general limitation of static languages.

2.1.6 Dynamic Code Evaluation

Like other scripting languages, PHP supports evaluating

arbitrary strings as PHP code. In PHP, this is supported

through calls to the eval built-in function. While dynamic

code evaluation is simple to support in purely interpreted

languages, its support in static languages would be much

more complex and thus is not normally provided.

2.2 Standard PHP Implementation

In order to support PHP’s dynamic features such as those de-

scribed in the previous section, PHP’s standard implementa-

tion (Zend) is an interpreter [25]. The choice of an interpreter

is not particular to PHP, as it is also the most common ap-

proach used to implement other dynamic languages like Perl,

Python, and Ruby. In this section, we give a brief overview

of how the Zend interpreter works, which provides some in-

sights into its main sources of inefficiency.

Zend is a bytecode interpreter, meaning that it uses a

lower-level program representation – the Zend bytecode.

This is in contrast to AST (abstract syntax tree) walker inter-

preters, which interpret a program while traversing its AST.

The first time a file is invoked, Zend parses it and translates

it into bytecode. Zend then interprets bytecode instructions

one at a time. In its highest performing setup, Zend uses

a bytecode cache (e.g. APC [1]), which avoids repeatedly

parsing the program and translating it to bytecode.

As with other dynamic languages, Zend discovers and

loads various program components during execution as

source files are included. This feature is known as dynamic

loading. The program components, including classes, func-

tions, variables, and constants, are kept in various lookup ta-

bles. Dynamic loading is particularly expensive for classes,

which require composing class methods, properties, and

constants along with those from parent classes and traits.

While composing classes, Zend also needs to perform a

number of semantic checks. For instance, it needs to check

if method overrides are valid, and if all interface and abstract

base-class methods are implemented by concrete classes.

During execution, each time the interpreter needs to ac-

cess a given symbol, it uses the symbol’s name to consult

the lookup tables. This incurs runtime costs referred to as

dynamic lookups. For example, consider the code in Fig-

ure 1. The execution of the echo statement incurs one con-

stant lookup (confName) and one function lookup (year), in

addition to one constant lookup (firstYear) and one vari-

able lookup ($edition) in function year. Although some

of these dynamic lookups can be eliminated through byte-

code optimizations, in practice these optimizations have re-

sulted in very small speedups (1-2%) [12].

In addition to the costs of dynamic loading and lookups,

another major overhead in Zend comes from dynamic typ-

ing. Since variables can contain values of different types

during execution, they are kept in generic, boxed values

called z-values. The Zend bytecode instructions are mostly

untyped and, while interpreting each bytecode instruction,

Zend checks the types of operands in order to perform the

appropriate actions. For example, the ADD bytecode first

checks if the operands are numbers and, if not, attempts to

convert them according to a set of type-specific rules. The

mere type check itself amounts to a very significant over-

head for the common case of adding two integers.

3. The HipHop Approach

Historically, there has been a rough separation between

“static” and “dynamic” languages. This categorization is

based mostly on whether the languages are statically or dy-

namically typed, but it also encompasses other languages

features such as those listed in Table 1. While dynamic lan-

guages provide higher levels of abstraction and thus tend to

increase productivity, static languages are commonly used

when performance is important. In fact, the categorization

between static and dynamic languages is usually aligned

with how the language is implemented. Static languages

are usually statically compiled, which significantly helps

achieving high performance. In contrast, dynamic languages

are generally interpreted, which helps supporting their dy-

namic features but significantly affects performance.

HipHop breaks this standard practice and implements

PHP via static compilation. With this approach, HipHop

brings high performance to a typical scripting language.

In Section 3.1, we give an overview of HipHop’s ap-

proach and discuss how it addresses the main PHP inefficien-

cies. After that, Section 3.2 presents the high-level design of

HipHop. Finally, Section 3.3 describes the techniques that

HipHop uses to address the challenges imposed by PHP’s

dynamic nature.

3.1 Overview

Being a static compiler, HipHop is fundamentally different

from PHP’s standard implementation. This key difference

has several implications. First, it requires all the source code

to be known a priori. For server-side applications, where

PHP is mostly used, we believe this is a small imposition.

Also, knowing all the source code in advance enables whole-

program analyses that can significantly boost performance.

Second, most but not all PHP features are supported by

HipHop. Most notably, HipHop does not support dynamic

code evaluation (eval). Support for eval is theoretically

possible in HipHop by invoking an interpreter. However, we

opted not to implement that because the use of eval exposes

serious security problems and is therefore discouraged [15,

18]. For this same reason, HipHop does not support PHP’s

create function() and preg replace() with “/e”. Be-

sides eval, HipHop does not support automatic promotion

from integer to floating-point numbers in case of overflow.

The decision not to support this PHP feature was made in

the interest of performance. Third, HipHop effectively an-

alyzes, compiles, and loads all symbols before execution

starts. Although this differs from original PHP semantics,

which only hoists (i.e. pre-loads) symbol definition under

certain ill-defined rules, we have found that HipHop’s se-

mantics is easier to reason about and more often matches

the programmer’s intent. Finally, static compilation incurs

a significant cost to rebuild large systems even after small

code changes, which can dramatically reduce programmer

productivity. To address that, one can combine the use of

HipHop for building production code with the use of inter-

preters for code development. This is the setup we have been

successfully using at Facebook.

Although HipHop’s approach faces a number of chal-

lenges to support dynamic language features (discussed in

Section 3.3), it directly addresses the three main PHP inef-

ficiencies discussed in Section 2.2. Below, we explain how

static compilation addresses each of these overheads.

Dynamic Loading. By compiling the entire program in ad-

vance, HipHop can reduce most of the overhead of dynami-

cally loading classes, functions, and variables. This not only

Compiler Phase Role

1. Parsing generates AST

2. Program analysis collects symbols and their dependencies

3. Pre-optimizer performs type-independent optimizations

4. Type inference infers primitive types of expressions

5. Post-optimizer performs type-dependent optimizations

6. Code generation outputs C++ code

Table 2. HipHop compiler phases

enables classes to be composed statically, but it also enables

creating various lookup tables for functions, classes, and

variables during compilation instead of execution time. For

the cases where PHP’s dynamic-loading semantics matter,

we have designed a set of techniques to provide that seman-

tics (see Section 3.3), but which incur runtime costs. Overall,

this combination of techniques allows HipHop to eliminate

overheads in the common case while still supporting PHP

semantics.

Dynamic Lookups. Static compilation also eliminates most

of the overhead associated with dynamic lookups. In the

common case, the compiler can statically resolve symbol

names and emit code that directly accesses program com-

ponents (e.g. variables, functions). This enables the genera-

tion of efficient binary code where the addresses of compo-

nents are used, thus saving expensive dynamic table lookups.

For the rare cases that the compiler cannot statically resolve

symbol names, HipHop employs less efficient techniques

based on lookup tables (see Section 3.3).

Dynamic Typing. As a static compiler, HipHop can perform

more extensive program analyses than is practical at runtime.

This enables HipHop to do aggressive type inference. For

variables and expressions that HipHop is able to infer primi-

tive types, this information is used to produce efficient code

that bypasses dynamic type checking.

3.2 High-level Compiler Design

HipHop is a source-to-source compiler, and it uses an AST

as the primary program representation throughout its phases.

HipHop has six main compilation phases, listed in Table 2.

Below, we briefly describe HipHop’s steps at each of these

phases, and illustrate its operation in Figure 3 for the exam-

ple from Figure 1.

Phase 1 – Parsing

The parser reads in the PHP source files and creates corre-

sponding ASTs, which are then used by subsequent phases.

Figure 3(c) illustrates the AST constructed for the PHP code

in Figure 3(a).

Phase 2 – Program Analysis

This phase traverses the ASTs and collects information

about all symbols, including classes, functions, variables,

constants and more. With this information, HipHop can

determine how many symbols are declared with the same

Variant

String

DoubleInteger

Boolean Numeric ObjectArray

Figure 2. HipHop type hierarchy

name, which then enables it to generate more efficient code

for uniquely defined symbols. The information collected for

program-defined constants is shown at the lower left cor-

ner of Figure 3(c). Besides collecting this information, this

phase also creates a dependence graph between program

symbols. This dependence graph is used by later phases for

various purposes and also enables their parallelization.

Phase 3 – Pre-optimizer

This phase performs a number of optimizations that do

not require type information. These optimizations include:

constant inlining and folding; logical-expression simplifi-

cation; dead-code elimination; copy propagation; inlining

of small user-defined functions, and also built-in functions

like class exists() and defined() that can be stati-

cally determined; string concatenation optimizations. Given

that PHP scripts generally manipulate a lot of strings, string

concatenation is very common and worth special attention.

PHP’s double-quoted strings may contain variables that need

to be replaced. The pre-optimizer breaks these strings into

cascaded calls to concat. In addition, naı̈ve pairwise concate-

nation is inefficient because it requires memory allocation

and data copying at each step. To mitigate that, the pre-

optimizer replaces cascaded pairwise concatenations with a

call to an internal concat() function that performs a series

of concatenations at once.

Figure 3(d) shows the AST after it is processed by

the pre-optimizer. In function year, the value of constant

firstYear is replaced and the result of the subtraction is

folded. In the echo statement, the call to function year is

inlined, which allows the addition 1985 + 27 to be folded.

Finally, all the operands in the resulting chain of string con-

catenations become known constants, so the resulting string

is concatenated at this phase.

Phase 4 – Type Inference

This phase attempts to determine the types of various sym-

bols, and it plays a central role in HipHop. The more types

HipHop can statically infer, the fewer checks need to be per-

formed at runtime. HipHop uses an adaptation of the tradi-

tional Damas-Milner constraint-based algorithm [4] to infer

the types of constants, variables, function parameters and

return values, and other expressions. The HipHop built-in

types are illustrated in the type hierarchy in Figure 2. Vari-

ant is the most general type, to which all symbols belong

before type inference. For symbols whose types can be in-

01) <?php

02)

03) define("confName", "OOPSLA");

04) define("firstYear", 1986);

05)

06) function year($edition) {

07) return firstYear - 1 + $edition;

08) }

09)

10) echo "Hello " . confName . "’" . year(27);

(a) PHP Code (hello-oopsla.php)

01) const StaticString k_confName("OOPSLA");

02) const int64 k_firstYear = 1986LL;

03)

04) /* SRC: hello-oopsla.php line 6 */

05) Numeric f_year(const Variant& v_edition) {

06) return (1985LL + v_edition);

07) }

08) Variant pm_php$hello_oopsla_php(bool incOnce,

09) LVariableTable* variables,

10) Globals *globals) {

11) echo("Hello OOPSLA’2012");

12) return true;

13) }

(b) C++ Code

’confName’

String ’OOPSLA’confName

Integer 1986firstYear

Type ValueName

Table of Constants

define

’firstYear’ ReturnStmt .

"’"

FuncCall$edition

+

−

.

1986

ExprList

StmtList

’OOPSLA’

ExprListdefine

FuncCall

year StmtListExprList

FuncCall FuncStmt

firstYear −1

$edition ’Hello’

.

confName

year 27

EchoStmt

(c) Initial AST generated by the parser and constants collected by the analysis phase

S

S:

I:

V:

Integer

Numeric

String

Variant

N:

define

ReturnStmt$edition

+

1986

ExprList

StmtList

’OOPSLA’

ExprListdefine

FuncCall

year StmtListExprList

FuncCall FuncStmt

$edition

EchoStmt

1985

"Hello OOPSLA’2012"

S I V

VI

N

S

’confName’ ’firstYear’ S

(d) AST after pre-optimizer and type-inference phases

Figure 3. Example of HipHop compilation phases. (a) input PHP code; (b) sketch of the generated C++ code; (c) initial AST;

(d) AST after pre-optimizer and type-inference phases.

ferred, HipHop uses the specific inferred types, for which the

runtime system contains fast, specialized implementations.

In Figure 3(d), the AST nodes are annotated with the

types inferred by HipHop. For example, in function year,

although one of the operands of the addition has type Vari-

ant, the compiler infers that the result of the addition must be

of Numeric type, and so does the return value of the function.

Phase 5 – Post-optimizer

After type inference, HipHop performs a couple of optimiza-

tions that benefit from type information, including algebraic

and logical simplifications. In addition, another round of

some pre-optimizer’s optimizations (e.g. string concatena-

tion, dead-code elimination) is performed to handle oppor-

tunities exposed by type-specific optimizations. In the exam-

ple from Figure 3(d), the code has been fully optimized by

the pre-optimizer, so there are no further opportunities left

for the post-optimizer.

Phase 6 – Code Generation

The last step of HipHop is to traverse the AST and emit C++

code. The choice of C++ was made due to a few factors.

First, C++ is known as one of the fastest languages and

it has highly optimized compilers. HipHop has been using

GCC [9] to compile the generated code, thus leveraging the

substantial amount of optimizations that GCC implements.

Second, C++ is a very flexible language, which makes it

a good target for auto-generated code. Finally, C++ shares

many similarities with PHP, including object orientation,

which facilitate the translation process.

HipHop generates four groups of C++ files:

1. Class Header Files: Each PHP class has one C++ header

file, which is included by other files that use that particu-

lar PHP class.

2. PHP-File Header Files: Each PHP file has one corre-

sponding C++ header file with the prototype of functions

that it defines. A PHP include statement is translated

into a C++ include for the corresponding C++ header

file. This effectively makes the functions defined in that

file visible to the other files that include it.

3. Implementation Files: These files have implementation

of converted PHP functions, class methods, and top-

level statements (i.e. statements outside any function or

method). Each of these C++ files is generated from one

or more PHP files.

4. System Files: These files do not have corresponding PHP

files and they are generated to store system-level func-

tions and global lookup tables (discussed in Section 3.3).

Given the similarities between C++ and PHP, most con-

structs can be easily translated into C++ from the AST. Some

notable exceptions include:

1. Some statements need to have a declaration added to

header files as discussed above. These statements include

functions, methods, classes, interfaces, traits, class vari-

ables and constants.

2. Top-level statements are wrapped into what we call a

pseudo-main function. A PHP include statement in-

cluding a file with top-level statements will also result in

a C++ call to its pseudo-main function to execute these

statements.

3. Some expressions have dynamic evaluations that do not

have a C++ counterpart. These include dynamic variable,

function, and class names as illustrated in Section 2.1.3.

How HipHop supports these features is discussed in Sec-

tion 3.3 below.

Figure 3(b) presents a sketch of the C++ file gener-

ated for the PHP script from Figure 3(a). The top-level

echo statement is wrapped into the pseudo-main function

pm php$hello oopsla php. The echo function is pro-

vided by the HipHop runtime system.

3.3 Supporting PHP Semantics

In this section, we describe how HipHop handles some of

the most dynamic and challenging PHP features discussed

in Section 2.1.

3.3.1 Dynamic Typing

Support for dynamic typing is implemented with a combina-

tion of type inference (see Section 3.2) and a runtime system

that implements the PHP operators for the variant type (at

minimum) and other common types (for performance).

3.3.2 Dynamic Symbol Tables

In order to support dynamic name binding (Section 2.1.2)

and resolution (Section 2.1.3), HipHop keeps track of global

state during runtime in a global symbol table (GST). This

table includes entries for:

• Global variables;

• Dynamically declared constants;

• Static variables inside functions, methods, and classes;

• Whether a file has been included or not;

• Redeclared functions and classes.

For functions and classes that are defined multiple times

in the PHP code, called redeclared, HipHop generates all

their versions (with unique names) and the GST keeps track

of which version is dynamically included.

In scopes with symbol names that cannot be resolved

statically (e.g. those in Section 2.1.3), HipHop also generates

a local symbol table (LST). All variable accesses within

such scopes then need to go through a helper that looks up

the symbol in LST and GST. The LST is also used in the

presence of PHP extract and compact functions.2

Finally, to support dynamic properties (see Section 2.1.3),

HipHop keeps inside the objects a property symbol ta-

ble (PST) that maps property names to values. The PST

is used when accessing dynamic properties.

With this approach based on dynamic symbol tables,

HipHop supports dynamic name binding and resolution in

PHP (at a performance cost) while still leveraging static

binding to generate efficient code for the most common

cases.

3.3.3 Invocation Tables

HipHop uses a few invocation tables for invoking functions,

instantiating objects, or including source files whose names

cannot be resolved statically. In these situations, HipHop

produces code that does a runtime lookup into the appro-

priate table, which is very similar to how Zend processes

2 PHP’s extract function imports the variables from a given array into the

current local symbol table, while compact does the opposite.

function calls. HipHop’s invocation tables map names of

functions, classes, or files to the corresponding implementa-

tion. These invocation tables, which contain all known func-

tions, classes, and files, is completely generated at compila-

tion time, which is possible due to HipHop’s whole-program

analysis.

3.3.4 Volatile Symbols

In HipHop, we call the PHP symbols whose presence af-

fect the execution volatile symbols. Section 2.1.4 illustrates

how a program can check for the presence of functions and

classes. In PHP’s interpreter-based reference implementa-

tion, the symbols are only present after they are dynami-

cally loaded, which occurs when the files containing their

definitions are included. With HipHop, all symbols are nat-

urally loaded statically, before the program starts execution.

In the cases where the dynamic-loading semantics is rele-

vant, HipHop provides that illusion in the following way.

For each symbol that requires this behavior, HipHop keeps

a flag that tells whether the symbols has been loaded or

not. This flag is initially unset, and HipHop emits code

to set it at the program point where the symbol is de-

clared. The real difficulty with this approach is to deter-

mine which symbols are volatile, and thus need to be tracked

by this mechanism. To address this problem, HipHop uses

a few heuristics (e.g., foo is marked volatile if it appears

in class exists(’foo’)). However, precisely determin-

ing whether a symbol is volatile may ultimately depend on

program inputs and dynamic execution flow, and thus it is

an undecidable problem. Therefore, besides its heuristics,

HipHop also leverages a user-provided list of symbols that

need to be treated as volatile.

3.3.5 Reflection

Contrary to PHP, C++ does not have any support for reflec-

tion. To support PHP’s reflection APIs, HipHop statically

generates a set of tables containing the necessary data, in-

cluding: class information, function prototypes, and source

location information. The source location information for

functions also enables generating a PHP-level stack trace

from the C++ frames on the stack.

4. Evaluation

This section evaluates HipHop and compares it with other

PHP execution engines. The evaluation was performed on

64-bit Linux servers based on Intel R© Xeon processors. We

used the latest release of HipHop at the time of this writing,

and Zend PHP version 5.3.10, which was released in Febru-

ary 2012.

We present experiments running both standard bench-

marks and the Facebook web site. The benchmarks include

the widely used bench.php provided by Zend, and also the

set of PHP applications from the computer language bench-

marks [22].

4.1 Standard Benchmarks

Figure 4 presents the performance comparison for our set

of benchmarks. The first portion of these programs (up to

strcat) is part of Zend’s bench.php, while the remaining

ones are from the computer language benchmarks [22]. The

bars in Figure 4 are the execution times relative to Zend.

HipHop is faster than Zend in all benchmarks. The maxi-

mum speedup is on simpleudcall, for which HipHop is

260× faster than Zend. This program simply has a loop call-

ing an empty function, which HipHop inlines to eliminate

the call overhead. The geometric mean shows that HipHop

is 5.6× faster than Zend for this set of benchmarks.

In addition to Zend and HipHop, Figure 4 also presents

results for the HHVM interpreter (HHVMi) [7]. HHVMi is

a PHP bytecode interpreter recently developed at Facebook.

In principle, HHVMi is similar to Zend (also a bytecode

interpreter), but it uses the HipHop extensions, runtime, and

web server. Figure 4 shows that HHVMi is on average 17.9%

slower than Zend and 6.3× slower than HipHop.

Notice that none of these benchmarks use the PHP fea-

tures unsupported by HipHop (described in Section 3.1).

This fact confirms the assumption made in HipHop that such

features are uncommon (and sometimes even insecure).

4.2 Facebook Workloads

In this section, we present experimental results of running

the Facebook web site with production traffic, i.e. serving

real user requests.

Facebook currently uses HipHop to compile all its PHP

code base. Most of HipHop’s compilation phases have been

parallelized, which enables HipHop to compile Facebook’s

huge code base from PHP into C++ in 3.5 minutes using

a single 12-core server. The generated C++ code, which

is about 5× bigger than the original PHP as measured in

lines of code, is then compiled in parallel using GCC and

distcc on a cluster of servers. This step takes 8 minutes. The

final binary is linked using Google’s Gold linker, and it is

distributed to all Facebook web servers using bittorrent.

Unfortunately, due to new language extensions in HipHop

that are widely used in the Facebook code base (e.g. richer

type hints and yield generators), Zend PHP has been unable

to run the Facebook web site since August 2010. Given this

limitation, we present two sets of experiments to give an

idea of HipHop’s current benefits over Zend running Face-

book production traffic. The first set of experiments is based

on historical improvements made to HipHop since August

2010, and the second one uses HHVMi.

4.2.1 Tracking HipHop’s Historical Improvements

In these experiments, we measured the initial performance

improvement of HipHop over Zend when Zend was last

able to run the Facebook web site. From that point, we

kept track of performance improvements made to HipHop

over itself. For that, a baseline HipHop branch was created

si
m

pl
e

si
m

pl
ec

al
l

si
m

pl
eu

ca
ll

si
m

pl
eu

dc
al
l

m
an

del

m
an

del
2

ac
ker

m
an

n(
11

)

ar
y(

500
00

00
0)

ar
y2(

50
00

00
00

)

ar
y3(

20
00

0)

fib
o(

40)

ha
sh

1(
100

00
00

0)

ha
sh

2(
100

00
)

he
ap

so
rt
(2

00
00

00
)

m
at
ri
x(

20
00

0)

ne
st
ed

lo
op

(3
6)

si
ev

e(
30

00
0)

st
rc

at
(3

00
00

)

bi
nar

y−t
re

es

fa
nnk

uc
h−r

ed
ux

fa
st

a

k−n
uc

le
ot

id
e1

m
an

del
br

ot

n−b
od

y

re
gex

−d
na

re
ver

se
−c

om
pl

em
en

t

sp
ec

tr
al

−n
or

m

G
eo

M
ea

n

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Zend HHVMi HipHop
E

x
e
c
u

ti
o
n
 t

im
e
 r

e
la

ti
v
e
 t

o
 Z

en
d

Figure 4. Performance comparison of Zend, HHVMi, and HipHop using standard PHP and computer language benchmarks

and updated with the minimal changes necessary to keep

it running the site. These updates included support for new

language extensions, but no performance enhancements.

In August 2010, we last compared the performance of

HipHop and Zend running Facebook production traffic. At

that time, the version of Zend used was 5.1.3. For this com-

parison, two clusters of servers were used, one with HipHop

and another with Zend, and load balancers ensured that the

two sets received equal traffic. The average CPU time serv-

ing requests in each cluster was computed across a large pe-

riod of time. On average, HipHop completed web requests

2.5× faster than Zend. Since HipHop was much faster, the

servers in its cluster were underutilized. We also compared

the throughput of the clusters when the servers were fully

loaded. To do so, we configured the load balancers to pro-

vide enough traffic to keep the CPUs in both clusters 100%

utilized. The results of this experiment, measured in number

of requests-per-second (RPS), demonstrated that the HipHop

cluster achieve throughput 2.5× higher than Zend. On the

left side of Figure 5, this throughput data is plotted relative

to HipHop.

Figure 5 also plots the throughput improvements made to

HipHop after August 2010. This comparison was performed

using the same methodology described above, except that

the Zend cluster was changed to use the baseline HipHop

branch instead. The load balancers were again set to keep

the servers in each cluster fully utilized, so that we could

measure the maximum throughput achieved by each server.

Overall, HipHop’s throughput over this period improved by

A
ug

’2
01

0

D
ec

’2
01

0

M
ar

’2
01

1

Ju
n’2

01
1

Sep
’2
01

1

D
ec

’2
01

1
0

0.5

1

1.5

2

2.5

Baseline HipHop HipHop Zend

R
e
la

ti
v
e
 T

h
ro

u
g

h
p

u
t

Figure 5. HipHop throughput over time, running Face-

book production traffic. The baseline is the throughput of

HipHop’s version from August 2010, which is when Zend

last ran Facebook.

another 2.3×. Although we cannot directly compare with

Zend running the current Facebook web site, these data sug-

gest that HipHop’s throughput is now 5.8 (2.5 × 2.3) times

higher than what Zend 5.1.3 would achieve. These improve-

ments resulted from additional tuning, static analyses, and

optimizations described in Section 3 that were added in this

period.

Given the nature of the Facebook application, which pro-

cesses huge data sets, one could expect Facebook’s web

servers to be I/O bound. However, given the great amount

of work done on data fetching and caching, Facebook’s web

servers are actually CPU bound. This is the reason why

HipHop greatly impacts the performance of Facebook’s web

servers, in a similar fashion to how it also improved the per-

formance of benchmark applications.

4.2.2 HipHop vs. HHVMi

As another experiment, we compared the performance of

HipHop against HHVMi [7], which is a PHP bytecode in-

terpreter akin to Zend. Although HHVMi’s performance is

slightly lower than Zend on the benchmarks evaluated in

Section 4.1, a comparison between HipHop and HHVMi ef-

fectively isolates the core differences between the two dif-

ferent PHP execution engines. This is because HHVMi uses

the same HipHop extensions, runtime, and web server.

Following the same methodology described in the previ-

ous section, we ran HHVMi and HipHop in production, serv-

ing normal Facebook web requests. This experiment demon-

strated that, on average, HipHop served web requests 5.5×

faster than HHVMi.

Overall, our evaluation demonstrates that HipHop is more

than 5× faster than other PHP implementations. This has

been confirmed through extensive experiments both using

standard PHP benchmarks and running the Facebook web

site in production. Our findings are also aligned with what

has been reported by another company that converted from

Zend to HipHop and published an experimental evalua-

tion [11].

5. Related Work

The continuous expansion of the Internet and adoption of

PHP for server-side development has motivated a number

of efforts to improve PHP performance. We briefly describe

various of these efforts in this section.

One approach to improve the performance of PHP has

been to leverage Java Virtual Machines (JVM) by translat-

ing PHP into Java bytecode [16, 17, 21]. Tatsubori et al. [21]

have pursued this approach by retrofitting PHP into IBM’s

P9 JVM. Compared to Zend, their evaluation shows a 20-

30% improvement on SPECweb2005, and 2.5×-9.5× im-

provement on micro-benchmarks. A similar approach has

been followed by Quercus [17] and Project Zero [16]. Quer-

cus’s reported performance is similar to Zend with bytecode

caching (APC) [1, 17]. For Project Zero, performance has

not been reported and the emphasis is on the interoperability

between PHP and Java.

Analogous to the JVM-based efforts above, Phalanger [2]

compiles PHP to Microsoft CIL bytecode. Here again, Pha-

langer’s emphasis has been more on interoperability than

performance. Phalanger’s recently reported performance is

on par with Zend PHP using bytecode caching [13].

Another JIT-based project for PHP is the HappyJIT [10],

which is based on PyPy [19]. On bench.php and the com-

puter language benchmarks, HappyJIT’s performance com-

pared to Zend varies from 4× slower to 8× faster.

Most closely to HipHop’s approach, a couple of other

projects have compiled PHP to C, including phc [3] and

Roadsend [20]. Unlike HipHop, phc makes extensive calls

to the Zend runtime and does not exploit many of the oppor-

tunities available through static compilation. For example, it

does not leverage static binding and, instead, generates code

that performs extensive dynamic lookups. Furthermore, phc

does not perform static analysis and optimizations, and its

benefits over Zend come mostly from avoiding the dispatch

overheads in the interpreter loop. Its reported speedup over

Zend on bench.php is 1.53× [3]. Roadsend followed a sim-

ilar approach, but it is more simplistic and does not support

various PHP extensions. Recent evaluations show that Road-

send is not able to run all bench.php and that its perfor-

mance is similar to Zend [10].

Lemos [12] presents a performance comparison among

HipHop, phc, and Zend running bench.php. Although this

evaluation did not use the latest HipHop release, it still found

HipHop to be the fastest engine by far, being 3× faster than

the second one (phc).

6. Conclusion

Although scripting languages have considerably increased

in popularity over the past decades, their performance is still

a main blocker for building large, CPU-intensive systems.

This paper described how the HipHop compiler addresses

the performance problem of a typical and widely used script-

ing language, PHP. The key for achieving performance in

HipHop is the use of static compilation, to generate very

efficient code whenever possible, combined with a set of

techniques to support various inherently dynamic PHP fea-

tures. Overall, our thorough experimental evaluation demon-

strated that HipHop is on average 5.5× more efficient than

traditional PHP execution engines based on interpreters. The

drastic efficiency gains provided by HipHop have resulted in

its adoption not only inside Facebook but also in a number

of other Internet companies. Finally, we believe that the ap-

proach and techniques used to make HipHop a success can

also be applied to other scripting languages. As such, we

expect HipHop to have great impact in improving the per-

formance of scripting languages in general, and thus help

expand their uses.

Acknowledgments

For their support, feedback on the HipHop compiler project,

and/or feedback on earlier drafts of this paper, we thank: Ali-

Reza Adl-Tabatabai, Aditya Agarwal, Albert Bergman, Er-

van Darnell, Jordan DeLong, Steven Grimm, Andrei Home-

scu, Harry Li, Scott MacFiggen, David Mortenson, Mike

Paleczny, Jay Parikh, Girish Patangay, Daniel Pepper, David

Reiss, Sonya Rikhtverchik, Jeff Rothschild, Paul Saab, Mike

Schroepfer, and the rest of the HipHop team at Facebook.

We also thank the anonymous reviewers for their valuable

feedback.

References

[1] APC: Alternative PHP Cache. Web site:

http://php.net/manual/en/book.apc.php.

[2] J. Benda, T. Matousek, and L. Prosek. Phalanger: Compiling

and running PHP applications on the Microsoft .NET plat-

form. In Proceedings on the 4th International Conference on

.NET Technologies, pages 11–20, 2006.

[3] P. Biggar, E. de Vries, and D. Gregg. A practical solution

for scripting language compilers. In Proceedings of the ACM

Symposium on Applied Computing, pages 1916–1923, 2009.

[4] L. Damas and R. Milner. Principal type-schemes for func-

tional programs. In Proceedings of the ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Lan-

guages, pages 207–212, 1982.

[5] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and A. P.

Black. Traits: A mechanism for fine-grained reuse. ACM

Trans. Program. Lang. Syst., 28:331–388, March 2006.

[6] Facebook, Inc. The HipHop compiler for PHP. Available at:

https://github.com/facebook/hiphop-php/wiki/.

[7] Facebook, Inc. The HipHop Virtual Machine.

Web site: https://www.facebook.com/note.php?

note id=10150415177928920, December 2011.

[8] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin,

M. R. Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Oren-

dorff, J. Ruderman, E. W. Smith, R. Reitmaier, M. Bebenita,

M. Chang, and M. Franz. Trace-based just-in-time type spe-

cialization for dynamic languages. In Proceedings of the ACM

SIGPLAN Conference on Programming Language Design and

Implementation, pages 465–478, 2009.

[9] GCC. Gnu Compiler Collection. Web site: http://gcc.gnu.org.

[10] A. Homescu and A. Şuhan. HappyJIT: a tracing JIT compiler

for PHP. In Proceedings of the 7th Symposium on Dynamic

Languages, pages 25–36, 2011.

[11] Hyves, Inc. HipHop for PHP at Hyves. Web site:

http://hyvesblogonproductdevelopment.blogspot.com/

2011/10/hiphop-for-php-at-hyves.html, October 2011.

[12] M. Lemos. PHP compiler performance. Available

at: http://www.phpclasses.org/blog/post/117-PHP-compiler-

performance.html, February 2010.

[13] J. Misek. Improved wordpress performance with phalanger.

Web site: http://www.php-compiler.net/blog/2011/phalanger-

wordpress-performance, 2011.

[14] J. K. Ousterhout. Scripting: Higher-level programming for the

21st century. Computer, 31:23–30, March 1998.

[15] PHP eval. Web site:

http://php.net/manual/en/function.eval.php.

[16] Project Zero. Web site: https://www.projectzero.org/php/.

[17] Quercus: PHP in Java. Web site:

http://www.caucho.com/resin-3.0/quercus/.

[18] G. Richards, C. Hammer, B. Burg, and J. Vitek. The eval that

men do: A large-scale study of the use of eval in JavaScript

applications. In Proceedings of the 25th European Conference

on Object-oriented Programming, pages 52–78, 2011.

[19] A. Rigo and S. Pedroni. PyPy’s approach to virtual ma-

chine construction. In Proceedings of the 21st ACM SIGPLAN

Symposium on Object-oriented Programming Systems, Lan-

guages, and Applications, pages 944–953, 2006.

[20] Roadsend compiler. Web site: http://www.roadsend.com.

[21] M. Tatsubori, A. Tozawa, T. Suzumura, S. Trent, and T. On-

odera. Evaluation of a just-in-time compiler retrofitted for

PHP. In Proceedings of the 6th ACM SIGPLAN/SIGOPS In-

ternational Conference on Virtual Execution Environments,

pages 121–132, 2010.

[22] The Computer Language Benchmarks Game. Web site:

http://shootout.alioth.debian.org/.

[23] S. Warner and J. Worley. SPECweb2005 in the real world:

Using IIS and PHP. In Proceedings of SPEC Benchmark

Workshop, 2008.

[24] K. Williams, J. McCandless, and D. Gregg. Dynamic interpre-

tation for dynamic scripting languages. In Proceedings of the

8th IEEE/ACM International Symposium on Code Generation

and Optimization, pages 278–287, 2010.

[25] Zend PHP. Web site: http://php.net.

