Guido Zuccon

Guido Zuccon
The Commonwealth Scientific and Industrial Research Organisation | CSIRO · Division of Computational Informatics

PhD

About

293
Publications
25,893
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,185
Citations
Additional affiliations
October 2011 - January 2014
The Australian e-Health Research Centre
Position
  • PostDoc Position
January 2008 - December 2011
University of Glasgow

Publications

Publications (293)
Preprint
Full-text available
2D Matryoshka Training is an advanced embedding representation training approach designed to train an encoder model simultaneously across various layer-dimension setups. This method has demonstrated higher effectiveness in Semantic Text Similarity (STS) tasks over traditional training approaches when using sub-layers for embeddings. Despite its suc...
Preprint
Full-text available
Effective approaches that can scale embedding model depth (i.e. layers) and embedding size allow for the creation of models that are highly scalable across different computational resources and task requirements. While the recently proposed 2D Matryoshka training approach can efficiently produce a single embedding model such that its sub-layers and...
Preprint
Full-text available
The emergence of Vec2Text -- a method for text embedding inversion -- has raised serious privacy concerns for dense retrieval systems which use text embeddings. This threat comes from the ability for an attacker with access to embeddings to reconstruct the original text. In this paper, we take a new look at Vec2Text and investigate how much of a th...
Preprint
Full-text available
Accurately estimating model performance poses a significant challenge, particularly in scenarios where the source and target domains follow different data distributions. Most existing performance prediction methods heavily rely on the source data in their estimation process, limiting their applicability in a more realistic setting where only the tr...
Preprint
Full-text available
In this demo we present a web-based application for selecting an effective pre-trained dense retriever to use on a private collection. Our system, DenseQuest, provides unsupervised selection and ranking capabilities to predict the best dense retriever among a pool of available dense retrievers, tailored to an uploaded target collection. DenseQuest...
Preprint
Full-text available
The goal of screening prioritisation in systematic reviews is to identify relevant documents with high recall and rank them in early positions for review. This saves reviewing effort if paired with a stopping criterion, and speeds up review completion if performed alongside downstream tasks. Recent studies have shown that neural models have good po...
Preprint
Full-text available
We provide a systematic understanding of the impact of specific components and wordings used in prompts on the effectiveness of rankers based on zero-shot Large Language Models (LLMs). Several zero-shot ranking methods based on LLMs have recently been proposed. Among many aspects, methods differ across (1) the ranking algorithm they implement, e.g....
Article
Foundation machine learning models are deep learning models capable of performing many different tasks using different data modalities such as text, audio, images and video. They represent a major shift from traditional task‐specific machine learning prediction models. Large language models (LLM), brought to wide public prominence in the form of Ch...
Article
In the machine learning field, the challenge of effectively learning with limited data has become increasingly crucial. Active Learning (AL) algorithms play a significant role in this by enhancing model performance. We introduce a novel AL algorithm, termed Co-learning (CoLAL), designed to select the most diverse and representative samples within a...
Chapter
Data protection legislation like the European Union’s General Data Protection Regulation (GDPR) establishes the right to be forgotten: a user (client) can request contributions made using their data to be removed from learned models. In this paper, we study how to remove the contributions made by a client participating in a Federated Online Learnin...
Chapter
Systematic reviews are crucial for evidence-based medicine as they comprehensively analyse published research findings on specific questions. Conducting such reviews is often resource- and time-intensive, especially in the screening phase, where abstracts of publications are assessed for inclusion in a review . This study investigates the effective...
Chapter
Screening documents is a tedious and time-consuming aspect of high-recall retrieval tasks, such as compiling a systematic literature review, where the goal is to identify all relevant documents for a topic. To help streamline this process, many Technology-Assisted Review (TAR) methods leverage active learning techniques to reduce the number of docu...
Preprint
Full-text available
Screening prioritisation in medical systematic reviews aims to rank the set of documents retrieved by complex Boolean queries. The goal is to prioritise the most important documents so that subsequent review steps can be carried out more efficiently and effectively. The current state of the art uses the final title of the review to rank documents u...
Preprint
Federated online learning to rank (FOLTR) aims to preserve user privacy by not sharing their searchable data and search interactions, while guaranteeing high search effectiveness, especially in contexts where individual users have scarce training data and interactions. For this, FOLTR trains learning to rank models in an online manner -- i.e. by ex...
Preprint
Full-text available
The SPLADE (SParse Lexical AnD Expansion) model is a highly effective approach to learned sparse retrieval, where documents are represented by term impact scores derived from large language models. During training, SPLADE applies regularization to ensure postings lists are kept sparse -- with the aim of mimicking the properties of natural term dist...
Preprint
As in other fields of artificial intelligence, the information retrieval community has grown interested in investigating the power consumption associated with neural models, particularly models of search. This interest has become particularly relevant as the energy consumption of information retrieval models has risen with new neural models based o...
Article
Full-text available
Decisions in agriculture are increasingly data-driven. However, valuable agricultural knowledge is often locked away in free-text reports, manuals and journal articles. Specialised search systems are needed that can mine agricultural information to provide relevant answers to users’ questions. This paper presents AgAsk—an agent able to answer natur...
Article
Previous work on clinical relation extraction from free-text sentences leveraged information about semantic types from clinical knowledge bases as a part of entity representations. In this paper, we exploit additional evidence by also making use of domain-specific semantic type dependencies. We encode the relation between a span of tokens matching...
Preprint
Full-text available
Current dense retrievers (DRs) are limited in their ability to effectively process misspelled queries, which constitute a significant portion of query traffic in commercial search engines. The main issue is that the pre-trained language model-based encoders used by DRs are typically trained and fine-tuned using clean, well-curated text data. Misspe...
Chapter
The use of clarifying questions within a search system can have a key role in improving retrieval effectiveness. The generation and exploitation of clarifying questions is an emerging area of research in information retrieval, especially in the context of conversational search.In this paper, we attempt to reproduce and analyse a milestone work in t...
Preprint
Full-text available
Generative pre-trained language models (GPLMs) like ChatGPT encode in the model's parameters knowledge the models observe during the pre-training phase. This knowledge is then used at inference to address the task specified by the user in their prompt. For example, for the question-answering task, the GPLMs leverage the knowledge and linguistic pat...
Preprint
Full-text available
Systematic reviews are comprehensive reviews of the literature for a highly focused research question. These reviews are often treated as the highest form of evidence in evidence-based medicine, and are the key strategy to answer research questions in the medical field. To create a high-quality systematic review, complex Boolean queries are often c...
Article
Pseudo Relevance Feedback (PRF) is known to improve the effectiveness of bag-of-words retrievers. At the same time, deep language models have been shown to outperform traditional bag-of-words rerankers. However, it is unclear how to integrate PRF directly with emergent deep language models. This article addresses this gap by investigating methods f...
Article
Full-text available
Visual data exploration is ubiquitous in nearly every industry and organization to support discovering data-driven actionable insights. However, unlocking those insights requires analysts to manually construct a prohibitively large number of aggregate queries and visually explore their results, looking for those valuable and insightful visualizatio...
Preprint
Decisions in agriculture are increasingly data-driven; however, valuable agricultural knowledge is often locked away in free-text reports, manuals and journal articles. Specialised search systems are needed that can mine agricultural information to provide relevant answers to users' questions. This paper presents AgAsk -- an agent able to answer na...
Preprint
Full-text available
Medical systematic reviews typically require assessing all the documents retrieved by a search. The reason is two-fold: the task aims for ``total recall''; and documents retrieved using Boolean search are an unordered set, and thus it is unclear how an assessor could examine only a subset. Screening prioritisation is the process of ranking the (uno...
Preprint
Full-text available
Boolean query construction is often critical for medical systematic review literature search. To create an effective Boolean query, systematic review researchers typically spend weeks coming up with effective query terms and combinations. One challenge to creating an effective systematic review Boolean query is the selection of effective MeSH Terms...
Preprint
Entity Alignment (EA), which aims to detect entity mappings (i.e. equivalent entity pairs) in different Knowledge Graphs (KGs), is critical for KG fusion. Neural EA methods dominate current EA research but still suffer from their reliance on labelled mappings. To solve this problem, a few works have explored boosting the training of EA models with...
Preprint
Entity Alignment (EA) aims to find equivalent entities between two Knowledge Graphs (KGs). While numerous neural EA models have been devised, they are mainly learned using labelled data only. In this work, we argue that different entities within one KG should have compatible counterparts in the other KG due to the potential dependencies among the e...
Chapter
Full-text available
We consider the problem of automatically detecting drug-drug interactions, i.e., the occurrence of an adverse reaction caused by the co-administration of two or more drugs, from reports of suspected cases. This is an important problem because of the health implications that correctly identifying drug-drug interactions has, and because the automatic...
Article
High-quality medical systematic reviews require comprehensive literature searches to ensure the recommendations and outcomes are sufficiently reliable. Indeed, searching for relevant medical literature is a key phase in constructing systematic reviews and often involves domain (medical researchers) and search (information specialists) experts in de...
Preprint
Full-text available
High-quality medical systematic reviews require comprehensive literature searches to ensure the recommendations and outcomes are sufficiently reliable. Indeed, searching for relevant medical literature is a key phase in constructing systematic reviews and often involves domain (medical researchers) and search (information specialists) experts in de...
Preprint
Entity Alignment (EA) aims to match equivalent entities that refer to the same real-world objects and is a key step for Knowledge Graph (KG) fusion. Most neural EA models cannot be applied to large-scale real-life KGs due to their excessive consumption of GPU memory and time. One promising solution is to divide a large EA task into several subtasks...
Preprint
Full-text available
The Differentiable Search Index (DSI) is a new, emerging paradigm for information retrieval. Unlike traditional retrieval architectures where index and retrieval are two different and separate components, DSI uses a single transformer model to perform both indexing and retrieval. In this paper, we identify and tackle an important issue of current D...
Preprint
Pseudo-Relevance Feedback (PRF) assumes that the top results retrieved by a first-stage ranker are relevant to the original query and uses them to improve the query representation for a second round of retrieval. This assumption however is often not correct: some or even all of the feedback documents may be irrelevant. Indeed, the effectiveness of...
Preprint
Full-text available
Current pre-trained language model approaches to information retrieval can be broadly divided into two categories: sparse retrievers (to which belong also non-neural approaches such as bag-of-words methods, e.g., BM25) and dense retrievers. Each of these categories appears to capture different characteristics of relevance. Previous work has investi...
Preprint
In this perspective paper we study the effect of non independent and identically distributed (non-IID) data on federated online learning to rank (FOLTR) and chart directions for future work in this new and largely unexplored research area of Information Retrieval. In the FOLTR process, clients join a federation to jointly create an effective ranker...
Preprint
Full-text available
Medical systematic review query formulation is a highly complex task done by trained information specialists. Complexity comes from the reliance on lengthy Boolean queries, which express a detailed research question. To aid query formulation, information specialists use a set of exemplar documents, called `seed studies', prior to query formulation....
Chapter
Pseudo-Relevance Feedback (PRF) utilises the relevance signals from the top-k passages from the first round of retrieval to perform a second round of retrieval aiming to improve search effectiveness. A recent research direction has been the study and development of PRF methods for deep language model based rankers, and in particular in the context...
Preprint
Full-text available
In this paper we study how to effectively exploit implicit feedback in Dense Retrievers (DRs). We consider the specific case in which click data from a historic click log is available as implicit feedback. We then exploit such historic implicit interactions to improve the effectiveness of a DR. A key challenge that we study is the effect that biase...
Preprint
Full-text available
Previous work has shown that dense retrievers are not robust to out-of-domain and outlier queries, i.e. their effectiveness on these queries is much poorer than what expected. In this paper, we consider a specific instance of such queries: queries that contain typos. We show that a small character level perturbation in queries (as caused by typos)...
Chapter
Screening or assessing studies is critical to the quality and outcomes of a systematic review. Typically, a Boolean query retrieves the set of studies to screen. As the set of studies retrieved is unordered, screening all retrieved studies is usually required for high-quality systematic reviews. Screening prioritisation, or in other words, ranking...
Preprint
Full-text available
The process of model checkpoint validation refers to the evaluation of the performance of a model checkpoint executed on a held-out portion of the training data while learning the hyperparameters of the model, and is used to avoid over-fitting and determine when the model has converged so as to stop training. A simple and efficient strategy to vali...
Preprint
Full-text available
Case law retrieval is the retrieval of judicial decisions relevant to a legal question. Case law retrieval comprises a significant amount of a lawyer's time, and is important to ensure accurate advice and reduce workload. We survey methods for case law retrieval from the past 20 years and outline the problems and challenges facing evaluation of cas...
Preprint
Online learning to rank (OLTR) aims to learn a ranker directly from implicit feedback derived from users' interactions, such as clicks. Clicks however are a biased signal: specifically, top-ranked documents are likely to attract more clicks than documents down the ranking (position bias). In this paper, we propose a novel learning algorithm for OLT...
Preprint
Pseudo-Relevance Feedback (PRF) utilises the relevance signals from the top-k passages from the first round of retrieval to perform a second round of retrieval aiming to improve search effectiveness. A recent research direction has been the study and development of PRF methods for deep language models based rankers, and in particular in the context...