DIRECT DESIGN OF LINEAR-PHASE NONUNIFORM FILTER BANKS WITH ARBITRARY INTEGER DECIMATION FACTORS*

X. M. Xie, L. L. Liang, G. M. Shi and A. Fernandez

School of Electronic Engineering, Xidian University
Xi’an, China
xmxie@mail.xidian.edu.cn; llliang@mail.xidian.edu.cn; gmshi@xidian.edu.cn; afernanz@inaoep.mx;

ABSTRACT

In this paper, we study the direct design of M-channel nonuniform filter banks (NUFBs) and propose a novel method for the NUFBs with linear-phase (LP) property. The filter banks we are concerned with have integer decimation factors and satisfy the maximal decimation condition. We derive a design criterion for the LP NUFBs. In addition, we propose certain modification on the direct structure, achieving LP NUFBs with arbitrary integer decimation factors. A detailed analysis on the new structure is presented to show that the significant aliasing can also be cancelled. Design examples are given to show that the proposed method is capable of achieving near-perfect-reconstruction NUFBs with LP property.

1. INTRODUCTION

M-channel maximally decimated filter banks with linear-phase (LP) property have been successfully employed in some image processing applications. For more flexibility in partitioning subbands, nonuniform filter banks (NUFBs) are highly desired. Tree structure by cascading uniform filter banks [1], is an easy way to achieve LP NUFBs. However, the choice of the decimation factors is very limited. Recombination structure (indirect structure) can also produce LP NUFBs [2], where certain subbands of a uniform filter bank are merged by sets of transmultiplexers. The system delay of the NUFBs is long due to the two-stage architecture. For the NUFBs with single-stage structure (direct structure), the design methods can be classified as the direct and indirect designs. The NUFBs by using the indirect design method are obtained based on uniform filter banks [3-5]. Unfortunately, the LP property of the resulting filters cannot be achieved by this method because of the highly complicated phase distribution. The direct design of NUFBs is proposed [6-13]. In [8-10] the effective design for NUFBs based on cosine-modulation is provided, however, the LP property of the filters is not considered. The work described in [11] is focused on the design of LP NUFBs. The design is limited to two-channel NUFBs. Although the designs in [12, 13] aim at M-channel NUFBs, highly nonlinear optimization procedures are involved with a considerable number of parameters and the quality of the filters cannot be maintained. Additionally, the complex filters in [12] are involved even in NUFB systems with integer decimation factors, thereby making the implementation more costly.

In this study, we propose a novel method for the direct design of LP NUFBs, which is based on the direct structure. The decimation factors, we focus on, are integers and satisfy maximal decimation condition. With the direct structure, the partitioning schemes of the frequency bandwidth can be either feasible or non-feasible depending on the sampling factors used for the NUFBs. In the feasible partitioning case, the significant aliasing, appearing in the transition bands of analysis filters, can be cancelled by the proper design of analysis and synthesis filters. In contrast, in the nonfeasible partitioning case, the large aliasing, appearing in the passband regions of analysis filters, cannot be cancelled even with ideal filters. In our work, we first derive a design criterion for the LP NUFBs with feasible frequency partitioning. Then, we propose a modified structure for the NUFBs with nonfeasible partitioning. The structure is based on the one proposed in [3, 13] where the LP property of the analysis and synthesis filters is lost. In our modified structure, the phase distortion is compensated, thereby maintaining the LP property of the filters. A detailed analysis on the resulting NUFBs shows that the significant aliasing can be cancelled. With the modified structure and the derived criterion, the design can be applied to the realization of LP NUFBs with arbitrary integer decimation factors. Further, we employ the Parks-McClellan algorithm to design the filter because the desired magnitude response of the filter can be specified as an optimization objective in the algorithm, leading to a less design effort. Design examples show that the performance of the designed near-perfect-reconstruction NUFB in terms of stopband attenuation is excellent with the expected LP property.

The rest of this paper is organized as follows: in Section II, the proposed LP NUFBs with integer decimation factors are investigated. The nonfeasible case is discussed in Section III. Examples are given in Section IV, followed by conclusions in Section V.

2. PRINCIPLE OF THE PROPOSED LINEAR PHASE NONUNIFORM FILTER BANKS

Figure 1 shows a typical direct structure of an M-channel NUFB, where the decimation/interpolation factors, $n_0, k = 0,\ldots,M-1$, are integers. In this paper, we are only concerned with the maximally decimated NUFBs, and all analysis and synthesis filters are LP with real coefficients.

$$x(n) \rightarrow H_n(z) \downarrow n_0 \rightarrow \cdots \rightarrow F_z(z) \uparrow n \rightarrow H_{u,n}(z) \downarrow n_{u,n} \rightarrow x(n)$$

Figure 1: Typical structure of integer decimated NUFBs

For the LP analysis filter $H_n(z)$, its impulse response $h_n(n)$ has the form of

$$h_n(n) = \begin{cases} h_0(N-n), & \text{for symmetry}, \\ -h_0(N-n), & \text{for anti-symmetry}. \end{cases}$$

where N is the order of the filter. In this work, we assume that all filters have the same length, and the synthesis filters are the time
reversed versions of the analysis filters as
\[f_i(n) = h_i(N - n), \quad 0 \leq k \leq M - 1. \] (2)

By the time-reverse relation in (2), we get
\[f_i(n) = \begin{cases} h_i(n), & \text{for symmetry,} \\ -h_i(n), & \text{for anti-symmetry.} \end{cases} \] (3)

To compensate the energy loss caused by the decimation factors \(n_i \), we multiply the constants \(n_i \) to the outputs of the corresponding channels as shown in Fig. 1, \(k = 0, \ldots, M - 1 \). Subsequently, the output of the system can be expressed as
\[X(z) = \sum_{k=0}^{M-1} \sum_{n=1}^{n_i} (-1)^{\pi k} H_i(z W_n^k) H_i(z) X(z W_n^k) \] (4)

where \(W_n = e^{j2\pi n/N} \) and \(p_k = \begin{cases} 0, & h_i(n) \text{ is symmetric,} \\ 1, & h_i(n) \text{ is anti-symmetric.} \end{cases} \)

From (4), it can be verified that the cutoff frequencies of \(H_i(z) \) must be located at the points of \(\pi n/n_i \), \(n = 1, \ldots, n_i - 1 \), to avoid large aliasing. Otherwise, there must be large amount of aliasing between \(H_i(z W_n^k) \) and \(F_i(z) \), \(k \in [1, \ldots, n_i - 1] \), which cannot be cancelled even with ideal filters. We introduce the term “feasible frequency partitioning” to describe such NUFB systems where the large aliasing cannot appear and “nonfeasible frequency partitioning” to denote the others with large aliasing.

To help understand this better, let us take an example of the NUFB with decimation factors \((2, 3, 6) \). As an illustration, only the cancelled. Figure 3 shows the alias components of the NUFB with factors such as \((2, 6, 3) \) and \((3, 6, 2) \), the aliasing terms can be cancelled. Figure 4 shows the alias components of the NUFB with factors \((2, 3, 6) \) and \((3, 2, 6) \).

3. LINEAR-PHASE NONUNIFORM FILTER BANKS WITH NONFEASIBLE PARTITIONING

With the direct structure, the large aliasing caused by the adjacent filters cannot be cancelled in nonfeasible partitioning NUFBs because of this case the cutoff frequency of at least one analysis filter \(H_i(z) \) is not located at the points of \(n\pi/n_i \), \(n = 1, \ldots, n_i - 1 \), \(0 \leq k \leq M - 1 \). If such invalid filter is shifted to a suitable location to satisfy the feasible condition, the large aliasing may be avoided.

Here, we will propose a modified structure, where the large aliasing is avoided and the LP property of analysis/synthesis filters is obtained.

3.1 The Modified Structure

Assume that \(H_i(z) \) occupies an invalid frequency location. It should be shifted to a suitable position to satisfy the feasible con-
In the synthesis section, the reversed operations of the analysis section are taken. After decimation and interpolation, the received signal in the \(k \)-th channel are respectively processed with the three steps: i) modified by \(\beta \) and \(\alpha \), ii) shifted back to their original positions, iii) filtered by \(F_i'(z) \) and \(F_i(z) \), forming,
\[
Y_i(z) = Y_i'(z) + Y_i(z)
\]
\[
= \beta \sum_{i=1}^{n_i} X_i'(z)W_i^{-1}S^{-1}F_i'(z) + \alpha \sum_{i=1}^{n_i} X_i'(z)W_i^{-1}S^{-1}F_i(z)
\]
\[
= A_{i,s}X(z) + \sum_{i=1}^{n_i} A_{i,j}X(z)W_i^{-1}S^{-1}
+ \sum_{i=1}^{n_i} A_{i,j}'X(z)W_i^{-1}S^{-1} + \sum_{i=1}^{n_i} A_{i,j}'X(z)W_i^{-1}S^{-1},
\] (11)
where
\[
A_{i,s} = H_i'(z)F_i'(z) + H_i'(z)F_i'(z) \quad i = 0, \ldots, n_i - 1;
A_{i,j} = H_i'(z)W_i^{-1}S^{-1}F_i'(z), \quad i = 0, \ldots, n_i - 1;
A_{i,j}' = \beta H_i'(z)W_i^{-1}S^{-1}F_i'(z), \quad i = 0, \ldots, n_i - 1.
\]
In (11), \(X(z)W_i^{-1}S^{-1} \) are aliasing terms in the \(k \)-th channel; and \(A_{i,j} \), \(A_{i,j}' \), and \(A_{i,j}' \) are the gains of those aliasing terms. In our analysis, we assume that the stopband attenuation of filters is sufficiently high and only the significant aliasing, appearing in the transition bands, is caused by the adjacent filters. Thus, we have \(A_{i,j} = 0 \), \(i = 0, \ldots, n_i - 1 \). Hence, (11) can be simplified as
\[
Y_i(z) = A_{i,s}X(z) + \sum_{i=1}^{n_i} A_{i,j}X(z)W_i^{-1}S^{-1} + \sum_{i=1}^{n_i} A_{i,j}'X(z)W_i^{-1}S^{-1}.
\] (12)

To help understand the point better, we present Figure 5 as an illustration of the aliasing terms. For the analysis simplicity, we assume that \(s \) is a positive number and the input signal has unit amplitude and zero phase. Figure 5(a) shows the magnitude responses of \(X_{i,s} \) and its various shifted versions to be filtered by \(F_i'(z) \), Figure 5(b) shows those to be filtered by \(F_i(z) \). Figure 5(c) shows the magnitude responses of \(F_i'(z) \) and \(F_i(z) \). From Figure 5(a) and (c), we can see that \(H_i'(z)W_i^{-1}S^{-1}F_i'(z) \) is zero. Similarly, \(H_i(z)W_i^{-1}S^{-1}F_i(z) \) is also zero from Figure 5(b) and (c). This indicates that \(A_{i,j} = 0 \), \(i = 1, \ldots, n_i - 1 \). Figure 5(d) shows the residual aliasing gain \(A_{i,j}' = \beta H_i'(z)W_i^{-1}S^{-1}F_i'(z) \) and \(A_{i,j}' = \alpha H_i'(z)W_i^{-1}S^{-1}F_i'(z) \).
and various shifted versions to be filtered by $F_k(z)$, the filter has a length of 97. The frequency response of $F_k(z)$ and $F_k'(z)$ can be canceled by those appearing in the adjacent channels.

It can be easily verified that the aliasing terms as shown in Figure 5(d) can be canceled by those appearing in the adjacent channels.

3.3 Choice of the Filter Length

To remove the effect of the phase modification factor $\alpha = e^{j\theta/2}$ and $\beta = e^{j\phi/2}$ on aliasing gains $A_{i,\omega}(z)$ and $A_{i,\omega}^\prime(z)$, it is necessary to set

$$sN = 2\pi i, \quad i \in \mathbb{Z}$$

Since s can be expressed as $s = q\pi/p$, p and q are integers.

From (13), we conclude that the order of the filter should satisfy the following constraint

$$N = 2p/q, \quad i \in \mathbb{Z}$$

Different from the feasible partitioning NUFB, the choice of the length of the filter in the nonfeasible NUFB is limited due to the requirement constraint given in (14). The second example in the next section will numerically illustrate this point.

4. DESIGN EXAMPLES AND PERFORMANCE ANALYSIS

In the filter design, we employ the Parks-McClellan algorithm, implemented by `firpm` function in Matlab, which is optimal in minimax sense. More importantly, the desired characteristic of the filter can be specified and used as the design target. We can achieve our target by letting the transition band of the filter follow approximately a cosine roll-off characteristic and keeping the intersection point of the two filters to have the value of $1/\sqrt{2}$.

Since all the analysis/synthesis filters are of the same length, they can be designed to have the similar transition band while keeping the identical amount of passband ripple and stopband attenuation. To demonstrate the proposed method, we provide two examples. The first one is to show the 3-channel LP NUFB with feasible partitioning whereas the second is to show the nonfeasible partitioning. Note that the proposed method is also useful for filter banks with more than 3 channels.

Example 1: Assume the NUFB has decimation factors (2, 6, 3).

We choose the length of each filter being 97. According to the design criterion described in Section II, the filters are alternatively symmetric. The filters are designed individually by using the Parks-McClellan algorithm. By specifying each filter to have the similar transition band that follows a cosine roll-off function, we get the desired LP NUFB. Figure 6 shows the magnitude responses of the analysis filters, amplitude distortion and aliasing error of the system. In this example, the maximum peak to peak of amplitude distortion and the maximum aliasing error are respectively $E_{pp} = 2.774 \times 10^{-3}$ and $E_a = 9.096 \times 10^{-4}$.

![Figure 5: Demonstration of the aliasing term in the k-th channel. (a) Magnitude response sketches of X_n, and various shifted versions to be filtered by $F_k(z)$, (b) those to be filtered by $F_k'(z)$, (c) magnitude response sketches of synthesis filter, and (d) the residual aliasing gain.](image)

![Figure 6. The (2,6,3) LP NUFB. (a) Magnitude response of analysis filters, (b) amplitude distortion, and (c) aliasing error.](image)
5. CONCLUSION

In this paper, we proposed a new approach to the design of near-perfect-reconstruction LP NUFBs with integer decimation factors. A design criterion has been derived aiming at the cancellation of alias components. With a certain modification on the typical structure of NUFBs, we can obtain LP NUFBs with arbitrary integer decimation factors. For further consideration, the possibility of the realization of LP NUFBs with arbitrary rational decimation factors based on the rational decimated NUFBs [15, 16] may be studied.

REFERENCES