Guang-Yu Ding

Guang-Yu Ding
The Chinese University of Hong Kong | CUHK · Department of Physics

About

17
Publications
2,919
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
100
Citations

Publications

Publications (17)
Article
We present a numerical study on how tidal force and topography influence flow dynamics, transport and mixing in horizontal convection. Our results show that local energy dissipation near topography will be enhanced when the tide is sufficiently strong. Such enhancement is related to the height of the topography and increases as the tidal frequency...
Article
Full-text available
When a fluid system is subject to strong rotation, centrifugal fluid motion is expected, i.e., denser (lighter) fluid moves outward (inward) from (toward) the axis of rotation. Here we demonstrate, both experimentally and numerically, the existence of an unexpected outward motion of warm and lighter vortices in rotating thermal convection. This ano...
Article
Full-text available
We present high-precision experimental and numerical studies of the Nusselt number Nu as functions of the Rayleigh number Ra in geostrophic rotating convection with the domain aspect ratio Γ varying from 0.4 to 3.8 and the Ekman number Ek varying from 2.7×10−5 to 2.0×10−7. With decreasing Ra our heat-transport data Nu(Ra) reveal a gradual transitio...
Preprint
Full-text available
When a fluid system is subject to strong rotation, centrifugal fluid motion is expected, i.e., denser (lighter) fluid moves outward (inward) from (toward) the axis of rotation. Here we demonstrate, both experimentally and numerically, the existence of an unexpected outward motion of warm and lighter vortices in rotating turbulent convection. This a...
Article
Full-text available
Brownian motion of particles in fluid is the most common form of collective behavior in physical and biological systems. Here, we demonstrate through both experiment and numerical simulation that the movement of vortices in a rotating turbulent convective flow resembles that of inertial Brownian particles, i.e., they initially move ballistically an...
Preprint
Full-text available
We present high-precision experimental and numerical studies of the Nusselt number $Nu$ as functions of the Rayleigh number $Ra$ in geostrophic rotating convection with domain aspect ratio ${\Gamma}$ varying from 0.4 to 3.8 and the Ekman number Ek from $2.0{\times}10^{-7}$ to $2.7{\times}10^{-5}$. The heat-transport data $Nu(Ra)$ reveal a gradual t...
Article
We present studies of the solidification of binary aqueous solutions that undergo time-periodic cooling from below. We develop an experiment for solidification of aqueous $\text{NH}_{4}\text{Cl}$ solutions, where the temperature of the cooling boundary is modulated as a simple periodic function of time with independent variations of the modulation...
Article
We report an experimental study of the distributions of temperature and solid fraction of growing - mushy layers that are subjected to periodical cooling from below, focusing on late-time dynamics where the mushy layer oscillates about an approximate steady state. Temporal evolution of the local temperature at various heights in the mush demonstrat...
Article
Full-text available
We present a numerical study of quasistatic magnetoconvection in a cubic Rayleigh–Bénard (RB) convection cell subjected to a vertical external magnetic field. For moderate values of the Hartmann number $Ha$ (characterising the strength of the stabilising Lorentz force), we find an enhancement of heat transport (as characterised by the Nusselt numbe...
Preprint
Full-text available
In rotating Rayleigh-B\'enard convection, columnar vortices advect horizontally in a stochastic manner. When the centrifugal buoyancy is present the vortices exhibit radial motions that can be explained through a Langevin-type stochastic model. In a centrifugation-dominant flow regime anomalous outward motion of cyclones is observed which is contra...
Preprint
Full-text available
Vortices play an unique role in heat and momentum transports in astro- and geo-physics, and it is also the origin of the Earth's dynamo. A question existing for a long time is whether the movement of vortices can be predicted or understood based on their historical data. Here we use both the experiments and numerical simulations to demonstrate some...
Preprint
We present a numerical study of quasistatic magnetoconvection in a cubic Rayleigh-B\'enard (RB) convection cell subjected to a vertical external magnetic field. For moderate values of the Hartmann number Ha, we find an enhancement of heat transport. Furthermore, a maximum heat transport enhancement is observed at certain optimal $Ha_{opt}$. The enh...
Article
In scalar turbulence it is sometimes the case that the scalar diffusivity is smaller than the viscous diffusivity. The thermally-driven turbulent convection in water is a typical example. In such a case the smallest scale in the problem is the Batchelor scale lb, rather than the Kolmogorov scale lk, as lb=lk/Sc1/2, where Sc is the Schmidt number (o...
Article
Full-text available
We report an experimental observation of a flow topology transition via global bifurcation in a turbulent Rayleigh-Bénard convection. This transition corresponds to a spontaneous symmetry breaking with the flow becomes more turbulent. Simultaneous measurements of the large-scale flow (LSF) structure and the heat transport show that the LSF bifurcat...
Preprint
Full-text available
In scalar turbulence it is sometimes the case that the scalar diffusivity is smaller than the viscous diffusivity. The thermally-driven turbulent convection in water is a typical example. In such a case the smallest scale in the problem is the Batchelor scale $l_b$, rather than the Kolmogorov scale $l_k$, as $l_b = l_k/Sc^{1/2}$, where Sc is the Sc...

Network

Cited By