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ABSTRACT

When the controlled-source electromagnetic (CSEM) data are
contaminated by intense cultural noise and the signal-to-noise ra-
tio (S/N) is lower than 0 dB, the existing denoising methods can
hardly achieve good results. To overcome the problem, a new
strong-noise elimination method called inception-temporal convo-
lutional network-shift-invariant sparse coding (IncepTCN-SISC)
is developed based on deep learning and dictionary learning. First,
a novel deep neural network model called IncepTCN is created
based on the inception block and temporal convolutional network
(TCN). Then, IncepTCN is used to recognize strong-noise seg-
ments in the observed signal, which are then discarded. Finally,
a dictionary-learning method based on shift-invariant convolu-
tional coding is used to denoise the remaining weak-noise
segments. A series of simulated and field data experiments

indicate that the new proposed IncepTCN network has obvious
advantages in accuracy and efficiency compared with alternative
methods. The average recognition accuracy of IncepTCN is
96.5%, which is 25.5%, 3.2%, 1.1%, and 2.0% higher than that
of the fuzzy C-means clustering, convolutional neural network
(CNN), residual network (ResNet), and the nonimproved TCN,
respectively. In addition, the test results of unfamiliar data indicate
that the generalization ability of IncepTCN is significantly better
than the CNN, ResNet, and nonimproved TCN. This IncepTCN-
SISCmethod can improve the S/N of CSEMdata from−5.0 dB to
3.1 dB or from 5.0 dB to 31.9 dB and solve the denoising problem
of noisy data below 0 dB to a certain extent. After IncepTCN-
SISC processing, the initially distorted apparent resistivity curves
become smooth, and the result is better than dictionary learning.
This method is intelligent without any manual intervention and is
suitable for batch processing of CSEM data.

INTRODUCTION

The controlled-source electromagnetic (CSEM) method includes
the controlled-source audio magnetotelluric (CSAMT) method,
wide-field electromagnetic (WFEM) method, induced polarization
(IP) method, and transient electromagnetic (TEM) method. It is
widely used in resource exploration, engineering geologic explora-
tion, geologic disaster detection, and many other fields (Myer et al
., 2011; Maclennan and Li, 2013; He, 2018; Hu et al., 2022). Due

to controlled sources, CSEM has a better anti-interference ability than

the natural source-based MT sounding method. Nevertheless, the re-

sults of CSEM exploration are still inevitably affected by cultural

noises. With the continuous increase in exploration depth and accu-

racy requirements, it becomes more important to eliminate cultural

noise in CSEM data (Yang et al., 2018; Adrian et al., 2021).
To improve the quality of CSEM data, scholars have proposed

many effective cultural noise suppression methods. Among them,
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two commonly used schemes are noise separation and data selection.
Noise separation includes singular-value decomposition (SVD)
(Reninger et al., 2011), wavelet transform (Deo and Cull, 2016),
empirical-mode decomposition (EMD) (Liu et al., 2019), wavelet
neural networks (Wu et al., 2019), and other methods. In recent years,
compressed sensing has successfully implemented seismic signal and
ground-penetrating radar (GPR) signal processing (Candès and
Wakin, 2008). Sparse representation (Jafari and Plumbley, 2011),
which is the critical technology of compressed sensing, has attracted
much attention in the electromagnetic community. It is first used to
remove periodic or regular components in MT signals (Li et al.,
2017) and MT inversion (Nittinger and Becken, 2018).
The CSEM data with periodic characteristics can easily be

sparsely represented (most of the amplitudes are very small or equal
to zero in a particular transform domain), which is especially suit-
able for sparse representation denoising. Zhang et al. (2020) denoise
the marine CSEM (MCSEM) data via a predefined dictionary. Even
so, the atoms in the predefined dictionary are not flexible enough for
different kinds of noise. Xue et al. (2020) propose an airborne TEM
(ATEM) data denoising method using K-SVD dictionary learning,
and its performance is significantly better than the predefined dic-
tionary. The K-SVD algorithm also has achieved good results in the
denoising of MCSEM data (Zhang et al., 2022a). Taking advantage
of the sparsity of periodic signals, Li et al. (2021a) propose a
denoising method of CSEM data based on shift-invariant sparse
coding (SISC) dictionary learning (Blumensath and Davies,
2006). The method automatically obtains sparsity and other param-
eters, and it can adaptively and accurately remove various types of
noise, such as power-frequency interference, baseline-drift noise,
random noise, and impulsive noise; its performance is better than
soft-threshold wavelet denoising (wavelet), mathematical morpho-
logical filtering (MMF), and K-SVD dictionary learning. However,
the sparse representation denoising method also has its limitation.
When there is abnormally large amplitude noise in the time series,
its denoising accuracy decreases sharply.
Theoretically, we only need one cycle of high-quality data to ob-

tain all the required information because of the periodic controlled-
source signal. Therefore, the data selection method also is suitable
for CSEM data processing. The data selection method can be imple-
mented in the frequency, time, or other domains (Rita et al., 2013).
In most cases, the selection threshold needs to be set manually, such
as the WFEM spectra selection method based on the gray judgment
criterion (Mo et al., 2017) and the IP time-series selection method
based on the correlation coefficient between the transmitted signal
and the received signal (Liu et al., 2017). However, setting the
threshold manually can easily cause subjective deviation and is
not suitable for batch processing. Rather than using the single cor-
relation coefficient, Li et al. (2021b) use the correlation coefficient,
maximum value of amplitude, and sample entropy as the evaluation
criteria and implement unsupervised machine learning to obtain the
threshold automatically. The method eliminates the subjective
deviation and thus improves the reliability. However, unsupervised
machine learning can only divide the data into two parts and cannot
determine the high-quality one.
Deep learning is a new research direction in the field of machine

learning. It shows outstanding performance in classification and
prediction. Its performance in many areas far exceeds that of pre-
vious technology (Lecun et al., 2015; He et al., 2021; Kaur et al.,
2021; Yu and Ma, 2021), and it increasingly has attracted attention

in the electromagnetic community in recent years. Li et al. (2020)
present an ATEM imaging method based on the long short-term
memory (LSTM) technique and error back-propagation scheme.
Moghadas (2020) realizes 1D electromagnetic induction data inver-
sion based on a convolutional neural network (CNN). CNN also is
used for MT data classification (Li et al., 2022b, 2023). Bang et al.
(2021) propose an ATEM imaging method based on a recurrent
neural network (RNN). Deep learning also has appeared in the field
of CSEM data denoising. Wu et al. (2020) propose a multisource
noise removal method for ATEM data via a deep denoising autoen-
coder (DAE) neural network. Wu et al. (2021) propose a new TEM
data denoising method based on LSTM and DAE. Zhang et al.
(2022b) classify and denoise MT data based on the residual network
(ResNet). Although deep learning in electromagnetic exploration is
still in its infancy, its advantages have been demonstrated in recent
publications.
The existing deep-learning identification methods of electromag-

netic time series mainly include CNN and ResNet, but research
shows that CNN has some shortcomings, such as gradient explosion
or disappearance (Yang and Li, 2020; Ma et al., 2021; Li et al.,
2022a). In recent years, Lea et al. (2017) propose a new deep neural
network (DNN) model for time series processing, namely temporal
convolutional network (TCN). Similar to LSTM, TCN also is in-
vented for sequence modeling, including time series classification
and prediction, but its application in geophysics is rarely reported.
This paper constructs a new deep-learning network model called
IncepTCN based on TCN and inception block (a multiscale feature
extraction network) (Szegedy et al., 2015) and combines it with dic-
tionary learning to solve the problems in dictionary learning and
unsupervised machine learning mentioned previously. The main
idea is as follows. First, the strong-noise segments are identified
by the proposed IncepTCN network and discarded to avoid their
contribution to the decline in dictionary-learning accuracy. Then,
a dictionary-learning method based on SISC is used to denoise
the remaining weak-noise segments. The supervised deep-learning
algorithm learns the rules from the manually labeled samples and
can accurately distinguish the high-quality and strong-noise seg-
ments. Therefore, it also solves the problem that the unsupervised
machine-learning method can only classify but cannot judge the
categories.
The rest of the paper is organized as follows. First, it introduces the

origin, advantages, and basic network structures of CNN, ResNet,
TCN and inception, and the construction of the optimized network
IncepTCN. Then, through the analysis of synthetic data, the superi-
ority and breakdown point of the proposed method are tested. Sub-
sequently, the performances of five algorithms, i.e., fuzzy C-means
(FCM) clustering, CNN, ResNet, TCN, and IncepTCN, are com-
pared in terms of classification accuracy (A), precision (P), recall rate
(R), F1-score, and confusion matrix. Subsequently, the proposed method
is applied to the measured CSEM data to verify the effectiveness
further. Finally, some conclusions and suggestions are presented.

METHOD AND THEORY

Data processing flow

The data processing workflow is shown in Figure 1. First, the
observed data are preprocessed by conventional means. Then,
IncepTCN is used to divide the preprocessed data into strong-
and weak-noise segments. The strong-noise segments are directly
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discarded, and the weak-noise segments are retained. Finally, SISC
removes the residual noise in the weak-noise segments. The prepro-
cessing mentioned previously includes removing power-frequency
interference based on fast Fourier transform (FFT) and removing
baseline drift via complementary ensemble EMD (CEEMD). Com-
pared to the FFT-CEEMD-SISC method proposed by Li et al.
(2021a), the main difference in our scheme is the addition of the
IncepTCN identification. Therefore, the focus of this paper is
IncepTCN. For other relevant algorithms, please refer to the rel-
evant literature (Li et al., 2021a).

Temporal convolution networks

The temporal convolution network (Lea et al., 2017) is proposed
to improve the performance of sequence modeling. It solves the
problems of the varying length of input and output sequences
and future information leakage in CNNs. It realizes the function
similar to RNNs, which can obtain sequences of arbitrary length
and map them to output sequences of the same length. Meanwhile,
it avoids the problems of gradient explosion or disappearance and
excessive memory occupation of RNNs. Its prominent feature is the
use of dilated causal convolution (DCC). Causal convolution can
solve the problems of different input and output sequence lengths
and future information leakage in the CNN model. Dilated convo-
lution can broaden the receptive field of the convolution kernel and
reduce the number of network layers. TCN has simple architecture
and no hop connection between layers, allowing very deep net-
works and a long-term memory. It can predict the time series more
accurately combined with historical information (Yang and Li,
2020; Ma et al., 2021; Li et al., 2022a). The preliminary evaluation
of TCN shows that its performance on multiple tasks and data sets is
better than RNN networks, such as LSTM, and shows longer-term
memory (Bai et al., 2018; Hewage et al., 2020).
As shown in Figure 2, the basic TCN is composed of three parts:

the input layer, hidden layer, and output layer. The dimension of the
input layer is the CSEM sample length multiplied by the number of
channels. The hidden layer consists of five residual blocks (Fig-
ure 3), containing two 1D DCCs and a 1D convolution. The output
of the residual block is aggregated by the results of two 1D DCCs
and a 1D convolution. The connection between input and output can
avoid the network degradation caused by the increase of layers. The
output layer consists of a flattened layer and a fully connected dense
layer. The flatten layer flattens the result from the residual block 5
into a 1D sequence; the dense layer contains two neurons and is
activated using the softmax function. Softmax function often is used
in classification tasks, which maps the output of the network into
the interval [0, 1] and represents the normalized category probabil-
ity. Let the training set has N samples, then the softmax function is
defined as follows (Cardarilli et al., 2021):

yic ¼
eyiP
C
c¼1 e

yc
; (1)

where yi is the output of the network, i ¼ 1; : : : ;
N; c ∈ ½1; C�, and C is the number of categories.
Then, yic represents the probability that yi belongs
to the cth category.
DCC is a combination of causal convolution

and dilated convolution. Causal convolution
obtains historical information, and dilated convo-

lution expands the receptive field of the convolution kernel. The ar-
chitecture of DCC is shown in Figure 4. Causal convolution means
that the mth element of the output sequence only depends on the mth
and previous elements in the input sequence, which effectively avoids
the influence of future information on the existing state. The dilated
convolution enables the network to obtain more extended historical
information based on the same network layer. To ensure the consis-
tent length of input and output sequences, the TCN adopts the mecha-
nism of zero filling, and the number of filling is

z ¼ ðk − 1Þ × d; (2)

where k is the size of the convolution kernel, d ¼ 2L is the dilated
coefficient, and L is the number of network layers before the dilated
convolution. Meanwhile, to speed up obtaining historical informa-
tion, the dilated convolution is used to control the growth rate with
the dilated coefficient. Taking time series X ¼ fx1; x2; : : : ; xMg as
an example, using convolution kernel f with size k, the DCC of the
input xm in the layer L is

FL
d ðmÞ ¼

Xk−1
i¼0

fi · xL−1m−i·d; (3)

where the superscript indicates the network layer of the current
element. The activation function HL

d ðmÞ after convolution is

Figure 1. Workflow of the proposed IncepTCN-SISC method.

Figure 2. The architecture of basic TCNs.
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HL
d ðmÞ ¼ ReLUðFL

d ðmÞ þ bÞ; (4)

where ReLU is the rectified linear unit, which is one of the commonly
used activation functions in the convolution network, and b is the
offset term. The expression of ReLU is as follows:

ReLUðtÞ ¼ max½0; t� ¼
�

0 t ≤ 0

t t > 0
: (5)

TCN uses residual blocks to enhance features further. The activation
function ~HLðmÞ after adding residual connection is

~HL
d ðmÞ ¼ ReLUðFL

d ðmÞ þ bþHL−1
d ðmÞÞ: (6)

According to equation 6, the features in layer L can be further
strengthened based on layer L-2 when the network learns effective
data features in layers L and L-1, which improves the generalization
ability of the model to a certain extent and prevents the degradation of
the network. Network degradation means that the accuracy of the
model reaches saturation as the number of network layers increases.
If the number of network layers continues to increase, the accuracy
will decline rapidly (He et al., 2016). Even if the network does not
learn compelling data features in layers L and L-1, the network can
still retain the features and gradients learned in layer L-2.

Inception-temporal convolutional networks

The inception module (Szegedy et al., 2015) is a multiscale feature
extraction structure (Figure 5). It contains multiple convolution cores

of different scales. The output is the superposition
of multiple convolution layers in the depth direc-
tion, which is helpful for extracting the features of
different scales. The existing literature shows that
combining the inception module and dilated con-
volution can improve the model’s accuracy
(Fawaz et al., 2020; Kang et al., 2020). Inspired
by this, we use the inception module to improve
the performance of TCN. In deep learning, multi-
ple modules often are superimposed repeatedly to
improve network performance. To obtain the best
model, we conduct a series of tests on different
combinations of modules.
First, we keep the number of inception mod-

ules at one and gradually increase the number of
TCN modules to obtain a series of different net-
works. The networks are trained by the same data

and then used to classify 32 groups of test data. There are more than
74,000 samples in the training set, and the test data are from Hui-
dong County, Sichuan Province and Qiaojia County, Yunnan Prov-
ince. Details will be introduced subsequently. The experimental
results are plotted as two curves, as shown in Figure 6. Obviously,
with the increase of the number of TCN modules, the training time
is significantly increased, but the average accuracy is not signifi-
cantly improved. The highest average accuracy is 96.2%.
Second, we keep the number of TCN modules unchanged and

then gradually increase the number of inception modules. As shown
in Figure 7, with the increase of the number of inception modules,
the average accuracy gradually increases, but the time consumption
also increases significantly. The highest average accuracy reaches
96.7%. In general, more network layers (modules) mean better

Figure 3. The structure of residual block.

Figure 4. Schematic diagram of DCC.

Figure 5. Sketch map of inception block.
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nonlinear expression ability, so that more complex features can be
learned. However, with the increase of network layers, the number
of parameters also will increase dramatically, resulting in a signifi-
cant increase in time consumption.
Finally, according to the ratio of inception to TCN of 1:2, we

form a new module inception-TCN-TCN and gradually increase
its number. The experimental results are shown in Figure 8. When
the number of inception-TCN-TCN modules is five, the average
accuracy reaches 96.5%, and the training takes only 1666.9 s.
Although its average accuracy is slightly lower than the highest

accuracy of 96.7% shown in Figure 7, its training time is signifi-
cantly less than that of the network corresponding to the same level
of accuracy shown in Figure 7. Considering the accuracy and effi-
ciency, we finally choose the network consisting of five inception
modules and 10 TCN modules.
Next, we will introduce the specific structure of the network.

Meanwhile, we show the network structures of CNN and ResNet,
which are currently the most commonly used and advanced deep-
learning classification methods. As shown in Figure 9a, the com-
monly used CNN is composed of nine layers of five types, including

Figure 6. Curves of average accuracy (purple line, left scale) and time consumption (green line, right scale) when the number of TCN modules
increases.

Figure 7. Curves of average accuracy (purple line, left scale) and time consumption (green line, right scale) when the number of inception
modules increases.
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Figure 8. Curves of average accuracy (purple line, left scale) and time consumption (green line, right scale) when the number of inception-
TCN-TCN modules increases.

Figure 9. The architectures of four deep-learning networks. (a) CNN, (b) ResNet, (c) TCN, and (d) IncepTCN.
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input layer, convolution layer, maximum pooling layer, dense layer,
and output layer. It is simple and performs well in earthquake
classification, MT data identification, and many other fields
(Zhang et al., 2021). ResNet (Figure 9b) is another commonly used
deep-learning classification algorithm. The difference between
ResNet and CNN is that several residual blocks are added. It uses
1D convolution residual blocks to extract time series features. The
number of convolution cores in the network increases gradually, and
the size of convolution cores decreases in turn. It is one of the state-
of-the-art models. As shown in Figure 9c, the nonimproved TCN
network is composed of five TCN blocks. It gradually reduces the
number of convolution cores (64, 32, 32, 16, and 6, respectively)
and does not use a pooling operation to minimize the data length.
The improved TCN network (Figure 9d) first extracts the spatial
features by the inception block and then stacks two TCN blocks
to extract the timing features of the signal. The improved TCN
is consists of five inception blocks and 10 TCN blocks and we
called it IncepTCN network.

Establishment of training sets

The intent of supervised machine learning is to learn features
from a given pattern (training set) and then use that to predict
an unknown pattern. Therefore, a given pattern largely determines
the performance of machine learning. Due to the filtering effect of
the earth system, the CSEM data observed at different locations are
obviously different, and the cultural noise in different regions has
different characteristics. It is a challenging task to accurately clas-
sify the observation data collected in different regions using the
model trained from limited samples. We divide the observed signal
into time series segments with a length of one cycle and label them
to make samples. According to the requirements of secondary clas-
sification, the sample library contains noisy samples and relatively
high-quality samples. The current research results (Li et al., 2021a)
show that SISC can probably achieve high-precision signal-to-noise
separation when the signal-to-noise ratio (S/N) is higher than 0 dB
(i.e., the ratio of noise to signal amplitude is equal to one). In other
words, SISC can reconstruct the remaining weak-noise segments
with high precision as long as we use deep learning to eliminate
the segments with S/N lower than 0 dB. To be conservative, we
set this threshold to 0.75. That is, the basis for judging a noisy seg-
ment is that the amplitude of the noise reaches 0.75 times or more of
the signal. There are essential differences between signal and noise,
but the boundary between strong-noise segment and weak-noise
segment is relatively fuzzy. Therefore, the classification standard
described in this section increases the difficulty of machine-learning
recognition. This is particularly difficult for unsupervised machine
learning because it cannot learn rules from a given pattern.
To be closer to the actual situation, the samples are mainly se-

lected from the measured data, which are collected in Huidong
County, Sichuan Province. In addition, some theoretical samples
are generated through numerical simulation, which makes the types
of samples more abundant and diverse. The ratio of measured sam-
ples to simulated samples is approximately 6:1. To balance the ratio
of strong-noise samples to weak-noise samples and compensate for
the shortage of training samples, this paper uses the method of data
expansion to increase the number of samples. In computer vision,
the commonly used data augmentation methods include shift, mir-
roring, adding Gaussian white noise, and clipping (Zhang et al.,
2021). Because the controlled-source signal is a 1D time series,

we use the shift method to expand the samples. That is, in the time
series, different samples are intercepted by sliding with a certain
length of the window, and there is some overlap of time series be-
tween adjacent samples. This is similar to SISC dictionary learning.
They make use of the invariance of shift. Because the effective signals
collected at different sites have different amplitudes, we uniformly
normalize the samples. The purpose of normalization is to limit the
preprocessed data to a certain range (such as [0, 1] or [−1, 1]), so as to
reduce the adverse effects caused by singular sample data. Our nor-
malization method is as follows. Let X = {x1, x2, : : : , xM} be the
sample to be normalized, M represents the length of the sample, xm
represents the mth element in the sample, and m ∈ ½1;M�. The
normalized element xm-norm is

xm−norm ¼ xm −minðXÞ
maxðXÞ −minðXÞ : (7)

The normalized sample is Xnorm = {x1-norm, x2-norm, : : : , xM-norm} and
xm−norm ∈ ½0; 1�. For signals in different frequency bands, we have
established different sample libraries (i.e., training sets). The training
set for the 7-2 signal (group 2 of pseudorandom 7 frequency wave)
contains 74,882 samples, including 54,305 high-quality samples and
20,577 noisy samples. The training set for the 7-3 signal (group 3 of
pseudorandom 7 frequency wave) consists of 37,989 high-quality
samples and 36,446 noisy samples, with a total of 74,435 samples.
The controlled source used in WFEM is pseudorandom multifre-
quency signal. The main frequencies of the 7-2 signal are 1 Hz, 2 Hz,
4 Hz, 8 Hz, 16 Hz, 32 Hz, and 64 Hz. The sample length is 1200
sampling points when the sampling rate is 1200 Hz. The main
frequencies of the 7-3 signal are 0.75 Hz, 1.5 Hz, 3 Hz, 6 Hz, 12 Hz,
24 Hz, and 48 Hz, and the sample length is 1600 at the sampling rate
of 1200 Hz.
Figure 10 shows 16 typical samples in the sample library. The

measured sample shown in Figure 10m is a high-quality sample
because it is very similar to the simulated noise-free models (see
Figure 10k and 10o). We cannot obtain ideal samples such as Fig-
ure 10c, 10g, 10k, and 10o without any noise because the earth sys-
tem is equivalent to a filter (usually a low-pass filter). However,
these ideal samples are indispensable because the observed signal
may be infinitely close to the ideal situation when the transmitter-
receiver distance is very small and there is no cultural noise. In fact,
we find through testing that the existence of ideal samples makes
the model more flexible when facing unfamiliar data sets. The high-
quality samples (or weak-noise samples) described in this paper are
relative. As long as the amplitude of the noise is not greater than
0.75 times the effective signal, we will judge it as a relatively high-
quality sample. For example, the samples shown in Figure 10e and
10i are polluted by random noise and harmonic noise, respectively.
Even so, the noise amplitude has not reached 0.75 times the effec-
tive signal, so we classify them into weak-noise samples. In fact,
retaining as many samples as possible is beneficial to ensure the
accuracy of subsequent dictionary learning. The sample shown
in Figure 10d also is polluted by random noise but is defined as
a noisy sample because its noise intensity obviously exceeds
0.75 times the effective signal. It can be seen from the typical sam-
ple diagram that the noise in the CSEM data includes random noise
(such as Figure 10a, 10d, and 10e), harmonic noise (such as Fig-
ure 10i and 10j), square-wave noise (such as Figure 10f and 10p),
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impulse noise (such as Figure 10b, 10j, 10l, and 10n), baseline-drift
noise (Figure 10h), and many other types.

Model training

When the total number of samples in the library is large, the pro-
portion of verification sets can be appropriately reduced so that more
samples can be used for training. The total number of samples in our
library exceeds 74,000. It is sufficient to use 10% of the samples as
the validation set. We randomly divide the samples in the library into
90% for the training set and 10% for the validation set to train CNN,
ResNet, TCN, and IncepTCN to obtain high-precision classification
models. In classification tasks of deep learning, accuracy and loss
often are used to evaluate the training results. The accuracy directly
illustrates the proportion of accurate classification, that is, the higher
the better. The loss value represents the degree of inconsistency be-
tween the predicted category and the true category, that is, the smaller
the better. Categorical cross-entropy (CCE) is a loss function com-
monly used in classification tasks. Suppose the training set consists of
N pairs: {(X1, t1), (X2, t2), : : : , (XN , tN)}, where Xi denotes the ith
input sample, ti ∈ RC is the corresponding category label, and yi ∈
RC is its output. The input sample Xi is classified as one of C
categories. CCE is then defined as (Rusiecki, 2019)

ECC ¼ −
1

N

XN
i¼1

XC
c¼1

ðPic logðyicÞÞ; (8)

where Pic is a binary indicator function; it indicates whether the yi
belongs to the cth category. The target Pic can be interpreted as true,

and output yic as predicted probability distribution for yi belonging to
cth category. It can be seen from equation 8 that when yic ¼ 1, then
ECC = 0.
As shown in Figure 11, with the increase of epochs, the training

accuracy of the four networks rises rapidly, and the loss value
drops sharply. The accuracy increase shows that the model learns
suitable weight parameters, and the extracted features are closer
to the distinguishable time-series features. The decline of loss
value implies that the model’s adaptability to the data is increas-
ing, and the error of the model is decreasing. Finally, all of them
reach the convergence state, but the convergence speed of ResNet
and IncepTCN is significantly faster than that of TCN and CNN.
This indicates that ResNet and IncepTCN are likely to have better
adaptability. The validation accuracy of CNN, ResNet, TCN, and
IncepTCN is 0.951, 0.961, 0.955, and 0.965, respectively; the
validation loss is 0.147, 0.125, 0.140, and 0.115, respectively.
The validation accuracy of IncepTCN is 0.014, 0.004, and 0.010
higher than that of CNN, ResNet, and TCN, respectively; its loss
value is 0.032, 0.010, and 0.025 lower than that of CNN, ResNet,
and TCN, respectively. It is worth noting that IncepTCN has the
highest accuracy and the lowest loss, which implies that it is prob-
ably the best model. During training, the batch size of the models
is set to 128, the optimizer is Adam, the loss function is CCE, and
the initial learning rate is set to 1 × 10−5. In addition, the learning
rate attenuation strategy is adopted: when the validation loss in-
creases, the learning rate becomes half of the current learning rate;
when the validation loss continues to decline, the learning rate
remains unchanged. This strategy contributes to the convergence
of the model.
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Figure 10. Typical samples in the library. (a, e, i, and m) Measured relatively high-quality samples, (b, f, j, and n) measured noisy samples,
(c, g, k, and o) simulated noise-free samples, and (d, h, l, and p) simulated noisy samples, respectively. (a–h) The 7-2 samples, with a length of
1200 sampling points. (i–p) The 7-3 samples, with a length of 1600 sampling points.

E114 Li et al.

D
ow

nl
oa

de
d 

06
/0

9/
23

 to
 2

20
.1

76
.9

9.
22

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

22
-0

31
7.

1



Our training platform is an ordinary computer with an i9-10900K
CPU, a 32 GB memory, and a 6 GB independent graphics card. The
training time of CNN for the 7-2 and 7-3 data sets is 241.5 s and
301.2 s, respectively. The training time of ResNet
for the 7-2 and 7-3 data sets is 485.1 s and
594.8 s, respectively. The training time of TCN
for the 7-2 and 7-3 data sets is 778.3 s and
964.1 s, respectively. The training time of
IncepTCN for the 7-2 and 7-3 data sets is
1648.2 s and 1685.6 s, respectively. Although
the training of IncepTCN takes approximately
half an hour, in practical application, it only takes
less than 2 s to process a data set with a length of
460,800 sampling points, which will be shown
subsequently.

Evaluation index of model

For the binary classification problem, there may
be four kinds of results. First, noisy samples are
mistakenly labeled as high-quality samples, which
are called false-positive cases and recorded as PF;
second, noisy samples are identified as noisy sam-
ples, which are called true-negative cases and
marked with NT ; third, high-quality samples are
mistakenly identified as noisy samples, which are
called false-negative cases and recorded as NF;
and fourth, high-quality samples are recognized
as high-quality samples, which are called true-
positive cases and recorded as PT . Based on the
preceding concepts, this paper comprehensively
evaluates the model’s performance through
classification accuracy (A), precision (P), recall
rate (R), and F1-SCORE. These evaluation indicators
are defined as follows (Huang et al., 2012; Ma
et al., 2021):

A ¼ PT þ NT

PT þ NT þ PF þ NF
; (9)

P ¼ PT

PT þ PF
; (10)

R ¼ PT

PT þ NF
; (11)

F1−score ¼
2 × P × R
Pþ R

: (12)

It can be seen from these equations that the higher
the A, the higher the proportion of accurately iden-
tified samples. The higher the P, the less noisy
samples are included in the high-quality sample
set output by the model. If P = 1, the identified
high-quality sample set does not include noisy
samples. Here, R is used to measure the ability

of the model to identify true-positive cases. A high recall rate means
a low false recognition probability of high-quality fragments. If R = 1,
all high-quality samples are accurately recognized. The F1-SCORE is the

a) b) c) d)

e) f) g) h)

Figure 11. Accuracy curves of (a) CNN, (b) ResNet, (c) TCN, and (d) IncepTCN in
training. (e–h) The loss curve corresponding to each model.
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Figure 12. Noise elimination results from different methods. (a) Noisy signal,
(b) denoised by MMF, (c) denoised by soft-threshold wavelet filtering (Wavelet),
(d) denoised by K-SVD dictionary learning, (e) denoised by SISC dictionary learning,
(f) denoised by the proposed IncepTCN-SISC method, and (g) noise-free data.
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weighted average of P and R. Ideally, the preceding indicators are
equal to one. For the problem described in this paper, our primary
goal is to discard the strong-noise segments and second to retain

high-quality segments as much as possible. Therefore, P is the most
important, followed by R.

SYNTHETIC DATA ANALYSIS

To test the performance of the proposed method,
we add square-wave noise, impulse noise, and
Gaussian noise to the noise-free data and then
try to eliminate the noise via MMF, wavelet, K-
SVD dictionary learning, SISC dictionary, and In-
cepTCN-SISC. Figure 12 shows the denoising ef-
fects of different methods when the noisy signal is
5 dB. MMF effectively removes Gaussian noise
and impulse noise, but it fails to remove square-
wave noise; wavelet only effectively eliminates
Gaussian noise; K-SVD eliminates square-wave
noise, but the removal effect of Gaussian noise
and impulse noise is unsatisfactory; SISC accu-
rately eliminates Gaussian noise and impulse
noise, but the square-wave noise is not removed
completely; and only the proposed IncepTCN-
SISC method accurately eliminates all types of
noise and obtains almost perfect recovery signal
(see Figure 12g). After calculation with the
noise-free signal, the S/N of the preceding five
methods is 5.5 dB, 5.6 dB, 7.9 dB, 13.4 dB,
and 31.9 dB, respectively. Our new scheme has
great advantages.
To test the performance of different methods

more comprehensively, we change the amplitude
of noise and obtain the noisy signals under differ-
ent S/Ns. Then, the preceding five methods are

Figure 13. The (a) S/N, (b) MSE, (c) NCC, and (d) recovery error (E) of the signals
recovered by different methods at different S/Ns.

Table 1. Classification accuracy of data sets collected in
Huidong County, Sichuan Province.

Methods

FCM CNN ResNet TCN IncepTCN

1 59.9% 94.8% 96.4% 95.1% 96.1%

2 75.8% 97.4% 98.4% 98.2% 99.2%

3 59.1% 98.4% 98.7% 98.7% 99.0%

4 89.6% 93.8% 96.1% 93.5% 97.4%

5 53.9% 90.2% 96.1% 96.5% 98.4%

6 88.5% 98.2% 98.7% 98.2% 98.2%

7 85.9% 95.8% 98.4% 96.6% 98.4%

8 82.0% 97.4% 98.2% 97.4% 99.2%

9 82.8% 96.9% 99.0% 98.4% 98.4%

10 71.9% 1 1 1 1

11 66.7% 85.4% 92.7% 90.6% 93.8%

12 63.5% 96.9% 99.5% 98.4% 99.0%

13 78.8% 88.2% 97.9% 91.0% 98.3%

14 51.4% 99.3% 99.3% 99.0% 99.3%

15 60.4% 93.8% 98.6% 95.5% 98.3%

16 80.9% 86.1% 98.3% 94.4% 97.2%

Average 71.9% 94.5% 97.9% 96.3% 98.1%

Table 2. Classification accuracy of data sets collected in
Qiaojia County, Yunan Province.

Methods

FCM CNN ResNet TCN IncepTCN

1 68.8% 94.3% 92.7% 96.4% 94.8%

2 83.9% 94.0% 97.1% 94.5% 97.9%

3 75.0% 85.4% 86.5% 91.3% 96.1%

4 79.9% 93.2% 96.3% 94.5% 98.2%

5 70.3% 87.5% 87.0% 88.5% 93.8%

6 75.0% 78.1% 88.0% 90.2% 90.1%

7 55.7% 96.4% 97.9% 94.8% 97.9%

8 61.5% 96.9% 98.4% 96.4% 99.0%

9 58.3% 95.8% 91.7% 87.5% 94.4%

10 70.1% 95.1% 89.6% 91.7% 93.8%

11 73.6% 88.9% 94.4% 93.8% 95.8%

12 69.4% 93.4% 81.9% 89.6% 82.3%

13 51.4% 96.9% 95.5% 94.4% 97.2%

14 68.4% 92.4% 97.2% 95.8% 96.5%

15 79.5% 92.7% 97.6% 93.1% 99.0%

16 79.7% 92.7% 93.2% 90.6% 91.7%

Average 70.0% 92.1% 92.8% 92.7% 94.9%
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used to denoise it, and the results are evaluated by four indexes (Li
et al., 2021a): S/N, mean-square error (MSE), normalized crosscor-
relation (NCC), and recovery error (E). As shown in Figure 13, with
the increase of noise amplitude, the denoising effect of all methods
becomes worse as the S/N and NCC of their reconstructed signal
gradually decrease, and the MSE and E increase progressively. How-
ever, the performance of IncepTCN-SISC decreases more slowly.
When the S/N of the noisy signal is no less than 20 dB, SISC
and IncepTCN-SISC perform almost the same and are significantly
better than the other methods. Between 20 dB and 0 dB, IncepTCN-
SISC has apparent advantages over SISC, but the effect of SISC is
still considerably better than the other methods. When the S/N of the
noisy signal is lower than 0 dB, the result of SISC is slightly worse
than that of K-SVD, but IncepTCN-SISC is still the best among all
methods. When the S/N of the noisy signal is −5.0 dB, the S/N of the
signal reconstructed by IncepTCN-SISC still reaches 3.1 dB, and the
NCC between the recovered signal and noise-free signal is as high as
0.81. As shown in Figure 13c and 13d, IncepTCN-SISC has obvious
advantages in NCC and recovery error, indicating that its results are
more reliable. If we regard the S/N of the reconstructed signal higher

than 10 dB as the basis for successful reconstruction, the breakdown
point of SISC is approximately 3 dB (see the dashed red line in
Figure 13a). When the S/N of the noisy signal is lower than
3 dB, SISC reconstruction will fail. The breakdown point of In-
cepTCN-SISC is below 0 dB, which indicates that the introduction
of IncepTCN reduces the lower limit of SISC denoising and solves
the problem of poor performance of existing methods under low S/N
to a certain extent.
It should be noted that different data have different breakdown

points, which are related to the components of noise. Nevertheless,
the conclusion that IncepTCN improves the adaptability of SISC
will not change. Next, we will illustrate the advantages of the pro-
posed method through practical cases.

REAL CASE STUDIES

Classification experiments with different methods

To test the performance of IncepTCN in practical application, we
first apply the trained CNN, ResNet, TCN, and IncepTCNmodels and

FCM-based method (Li et al., 2021b) to the CSEM
data collected in Huidong County, Sichuan Prov-
ince. To ensure the random performance of the
models, a total of 16 data sets collected in different
stations and dates are tested in this experiment, in-
cluding eight 7-2 data sets and eight 7-3 data sets.
As shown in Table 1, FCM has the lowest average
classification accuracy. CNN, ResNet, TCN, and
IncepTCN all achieve good signal-to-noise recog-
nition performance, and their average classification
accuracy of the 16 data sets is 94.5%, 97.9%, 96
.3%, and 98.1%, respectively. Obviously, In-
cepTCN has the highest accuracy.
To test the generalization ability of the models,

we apply the preceding five methods to the
CSEM data collected in Qiaojia County, Yunnan
Province, and show the results of 16 data sets.
Because there are no samples from Qiaojia in
the training set, and the data collected in Qiaojia
are more seriously polluted by cultural noise, this
is a challenging task for the models. As shown in
Table 2, in the face of data sets in unfamiliar
areas, the accuracy of all methods has decreased.
The average accuracy of FCM, CNN, ResNet,
TCN, and IncepTCN is 70.0%, 92.1%, 92.8%,
92.7%, and 94.9%, respectively. IncepTCN is
still the model with the highest accuracy.

a) b) c) d)

e) f) g) h)

i) j) k) l)

Figure 14. Confusion matrix of different models. The abscissa is the result of deep-learn-
ing prediction, and the ordinate is the result of manual marking. A label equal to zero
indicates high quality and a label equal to one indicates noisy. Then, the upper-left,
upper-right, lower-left, and lower-right parts of each subgraph represent the number of
true-positive (PT ) samples, false-negative (NF) samples, false-positive (PF) samples,
and true-negative (NT ) samples, respectively. The darker the color, the larger the value.
The darker the color of the main diagonal, the higher the classification accuracy of the
model. The cases are (a–d) signal dominated, (e–h) signal-noise balanced, and (i–l) noise
dominated, respectively. The classification results are for (a, e, and i) CNN, (b, f, and j)
ResNet, (c, g, and k) TCN, and (d, h, and i) IncepTCN, respectively.

Table 3. Statistics of classification results of each model under different noise conditions.

Signal dominated Balanced Noise dominated

Methods Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

CNN 99.6% 99.6% 99.6% 87.3% 99.2% 92.9% 82.4% 1 90.4%

ResNet 99.6% 99.6% 99.6% 93.8% 97.6% 95.7% 89.0% 96.4% 92.6%

TCN 99.3% 99.6% 99.4% 94.2% 91.2% 92.7% 84.0% 1 91.3%

IncepTCN 98.9% 1 99.4% 95.3% 96.8% 96.0% 93.2% 97.6% 95.3%

CSEM data denoising by improved TCN E117
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Among the 32 groups of data tested, the
average classification accuracy of FCM, CNN,
ResNet, TCN, and IncepTCN is 71.0%, 93.3%,
95.4%, 94.5%, and 96.5%, respectively. The
accuracy of IncepTCN is 25.5%, 3.2%, 1.1%,
and 2.0% higher than that of FCM, CNN,
ResNet, and TCN, respectively. Although the
average accuracy of IncepTCN is only 1.1%
higher than that of ResNet, its performance in
unfamiliar data sets is obviously better than
ResNet. The advantage over ResNet in dealing
with unfamiliar data sets has expanded from
0.2% of familiar data (data of Huidong) to
2.1% of unfamiliar data (data of Qiaojia). In
practical application, an advantage of 2.1%
may have a great impact. The experiment shows
that IncepTCN has the best generalization ability
and can calmly deal with fresh data sets. It should
be noted that FCM is an unsupervised machine-
learning algorithm. It has no training set and
just aggregates the data into two categories,
and the subsequent judgment is completed man-
ually. In addition, some weak-noise samples are
labeled as high quality in our training set, partly
accounting for the low accuracy of FCM.
In the experiment, the length of a single

data set is 460,800 sampling points (384 s).
The time consumption of a single 7-2 and 7-3
data set in FCM processing is approximately
40 s and 74 s, respectively. TCN and IncepTCN
are batch processing of 16 data sets. The time
consumption of CNN in processing 7-2 and 7-3
data sets is 9.3 s and 11.8 s, respectively; the time
consumption of ResNet is 12.1 s and 16.0 s,
respectively; the time consumption of TCN is
11.9 s and 15.6 s, respectively; and the time
consumption of IncepTCN is 23.0 s and 27.8 s,
respectively. The average time consumption of
IncepTCN for a single data set is no more than
2 s, which can significantly promote the practical
application of the method.
To more accurately evaluate the performance

of CNN, ResNet, TCN, and IncepTCN, we test
the models with three measured data sets with
different degrees of noise pollution and evaluate
the results with precision, recall rate, F1-SCORE, and
confusion matrix. The ratios of noisy samples to
weak-noise samples in the selected three data
sets are 17/271 (signal dominated), 163/125 (sig-
nal-noise balanced), and 204/84 (noise domi-
nated), respectively. A confusion matrix, also
known as an error matrix, is a visual classification
performance display tool, which can display the
distribution of PT , PF, NT , and NF. The darker
color of the main diagonal of the confusion ma-
trix, the higher the accuracy (A) of the model. In
addition, the accuracy, precision, recall rate, and
F1-SCORE can be quickly calculated according to
the confusion matrix. According to the confusion
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Figure 15. Field data sets of HD L1-3 (Ey) and HD L1-5 (Ey) collected in Huidong
County, Sichuan Province. (a and b) The original time series, (c and d) the time series
processed by SISC, and (e and f) the time series processed by IncepTCN-SISC, respectively.
(a, c, and e) Data sets from station HD L1-3 and (b, d, and f) data sets from station HD L1-5.
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matrix shown in Figure 14, we obtain the quantitative statistical re-
sults shown in Table 3.
For the case in which high-quality samples are dominant, all four

models have achieved excellent performance, with the F1-SCORE sur-
passing 0.99. When the number of high-quality samples and noisy
samples is balanced, IncepTCN and ResNet are the two best models
because their F1-SCORE is obviously higher than the other two models.
Although the recall rate of IncepTCN is slightly lower than ResNet,
when determining precision, which is the most important indicator,
IncepTCN is better than ResNet. When the noisy samples are dom-
inant, the precision obtained by CNN and TCN is no more than
84.0%. This shows that the high-quality sample sets identified
by CNN or TCN contain many noisy segments, which is unaccept-
able, especially when the observation data are polluted by intense
noise. In contrast, IncepTCN still performs well in this case and
achieves the highest precision of 93.2%. The F1-SCORE of IncepTCN
is obviously higher than the other three models. The experiment
shows that the IncepTCN has good robustness and obtains high pre-
cision and recall rate in different cases. Therefore, it once again val-
idates that the IncepTCN network is an excellent model to solve the
problems described in this paper.

Time series analysis

In the previous section, we experimentally demonstrate the
excellent performance of the IncepTCN model. This section will
combine the IncepTCN model and SISC to achieve a complete
denoising process. As shown in Figure 15, these data sets, HD
L1-3 (Ey) and HD L1-5 (Ey), suffer from very strong cultural noise.
The amplitude of some noise reaches dozens of times that of the
effective signal. Obviously, the S/N of these
two data sets is lower than 0 dB. In these cases,
it is difficult to obtain good results by wavelet,
MMF, K-SVD, SISC, or other sparse decompo-
sition methods. As shown in Figure 15c and 15d,
SISC only attenuates some strong noise, which is
not representative of high-precision noise separa-
tion. Usually, SISC should extract the effective
signal first. In this case, SISC reconstruction
fails due to the large-amplitude noises. After
the processing of the proposed IncepTCN-SISC
method (see Figure 15e and 15f), strong noise
and weak noise are removed with high precision.
Although the data length becomes shorter, a
high-quality effective signal is finally obtained.
The experimental results show that when the
S/N of the observed data is significantly lower
than 0 dB, the proposed IncepTCN-SISC method
can still achieve high-precision signal-to-noise
separation, which solves the problem that the
existing method has difficulty with low S/N data
below 0 dB.
As shown in Figure 16, the preprocessed

signal is still polluted by strong spikes, regular
impulsive noise, and random noise. After
IncepTCN selection, the large spikes disappear,
but the steady impulsive noise and random noise
are still evident. After further processing with
SISC, regular impulsive noise and random noise
are accurately removed.

The data set QJ L1-12 (Ex) (see Figure 17) is polluted by a large
number of strong impulse noise, harmonic noise, and some other
random noise. After IncepTCN treatment, the fragments corrupted
by strong impulse noise are discarded. Although there is still
random noise and harmonic-like noise in the residual signal, their
amplitude is relatively weak, and SISC can accurately remove
these noises. As shown in Figure 17f, the resulting signal is very
similar to the sample shown in Figure 10m. It shows that the data
quality has been dramatically improved after IncepTCN-SISC
processing.

Analysis of sounding curves

We calculate the WFEM apparent resistivity (He, 2018) and U/I
curve with the raw time series, the time series processed by SISC,
and the time series processed by IncepTCN-SISC and display the
results of some data sets with serious interference. As shown in
Figure 18, the WFEM apparent resistivity and U/I curves calculated
by the raw data are seriously distorted, especially in the low-
frequency part below 10 Hz. After being processed by SISC or
IncepTCN-SISC, all the curves have improved greatly. However,
it can be found that the curves of station HD L1-6 (Ey) still have
a noticeable distortion after being processed by SISC, whereas the
curves obtained by our new scheme are continuous and smooth. In
the curves below 10 Hz of station HD L1-5 (Ey), SISC also is not as
good as our method, especially approximately 8 Hz and 1 Hz. At
1 Hz of the station HD L1-6 (Ex), our process also shows apparent
advantages. This proves that the introduction of deep learning dra-
matically improves the adaptability and noise suppression effect of
SISC.
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Figure 17. The same as Figure 16 but for field data set QJ L1-12 (Ex), collected in
Qiaojia County, Yunnan Province.
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CONCLUSION AND SUGGESTIONS

Deep learning has outstanding performance in identification,
and dictionary learning has unparalleled advantages in sparse
signal denoising. Based on the periodicity of CSEM data and
the ingenious combination of deep learning and dictionary learning,
this paper proposes a new noise elimination method called
IncepTCN-SISC. In addition, we use the inception block to opti-
mize TCN and propose a novel deep-learning network called
IncepTCN. After a series of synthetic and field data processing
experiments, the following understanding is obtained.

The proposed IncepTCN-SISC method makes full use of the re-
spective advantages of deep learning and dictionary learning and
solves the problem that the existing methods are difficult to use
for noisy signals below 0 dB. It can improve the S/N of CSEM data
from −5.0 dB to 3.1 dB or from 5.0 dB to 31.9 dB. Its performance
is significantly better than soft-threshold wavelet filtering, MMF,
K-SVD dictionary learning, and SISC dictionary learning. After In-
cepTCN-SISC processing, the initially distorted apparent resistivity
curves will be corrected, become smooth and continuous, and the
processing effect will be better than that of SISC. The proposed
method is an intelligent method without any manual intervention

Figure 18. Apparent resistivity and U/I curves. The red curves with the upward-pointing triangle represent the results calculated from the noisy
raw data, the green curves with the downward-pointing triangle represent the results obtained by our method, and the dotted blue lines indicate
the results processed by the comparative SISC method.

E120 Li et al.

D
ow

nl
oa

de
d 

06
/0

9/
23

 to
 2

20
.1

76
.9

9.
22

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

22
-0

31
7.

1



and is suitable for batch processing of CSEM data. This method can
be directly transferred to any other periodic signal processing. In
addition, with a little modification, it can be used to process other
regular signals. For example, if IncepTCN is used to identify noisy
signals, then SISC is used to improve the S/N of noisy segments
instead of discarding them. Our method can be applied to GPR data
denoising and even MT data denoising. Compared to shallow ma-
chine learning, deep learning has apparent advantages in accuracy
and efficiency. The average recognition accuracy of IncepTCN is
25.5% higher than that of FCM, and the time consumption de-
creases from no less than tens of seconds for FCM to only a few
seconds for IncepTCN. The average accuracy of IncepTCN is 3.2%,
1.1%, and 2.0% higher than that of the CNN, ResNet, and TCN
network, and its comparative advantage is more apparent when
dealing with unfamiliar data. This shows that the introduction of
the inception block significantly improves the accuracy, robustness,
and generalization ability of TCN. Our training set does not include
samples of Qiaojia County, but the proposed method has achieved
excellent results in Huidong and Qiaojia data sets, which shows that
our method has good universality. It is foreseeable that as we con-
tinue to expand the sample library, the accuracy and adaptability of
our method will continue to increase.
The length of data is shorter than that before IncepTCN-SISC

processing. Usually, this will not cause adverse consequences be-
cause CSEM data are periodic. However, reducing the amount of
geophysical data is a relative loss. Deep learning also has a good
performance in signal-to-noise separation. Next, we will study the
signal-to-noise separation of CSEM data based on deep learning,
that is, to realize the mapping from noisy time series to high-quality
time series. In addition, we will attempt to reconstruct the missing
data using the deep-learning network.
Similar to LSTM, TCN is a recently proposed DNN for sequence

modeling, including time series identification and prediction, but its
application in geophysics is rarely reported. In addition, the results
of this paper have proven that the introduction of the Inception mod-
ule can significantly improve the accuracy, robustness, and gener-
alization ability of TCN. Therefore, the algorithms presented in this
paper have potential significance for other related applications, such
as geophysics and biomedicine.
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NOMENCLATURE

DNN = Deep neural network
CNN = Convolutional neural network
LSTM = Long short-term memory network
BP = Back propagation
DAE = Deep denoising autoencoder
RNN = Recurrent neural network
TCN = Temporal convolutional network
ResNet = Residual network
DCC = Dilated causal convolution
CCE = Categorical cross-entropy
MMF = Mathematical morphological filtering
FCM = Fuzzy C-means clustering
SVD = Singular-value decomposition
K-SVD = K-singular-value decomposition
SISC = Shift-invariant sparse coding
FFT = Fast Fourier transform
EMD = Empirical-mode decomposition
CEEMD = Complementary ensemble empirical-mode

decomposition
CSEM = Controlled-source electromagnetic method
MCSEM = Marine controlled-source electromagnetic method
WFEM = Wide-field electromagnetic method
CSAMT = Controlled-source audio magnetotelluric method
TEM = Transient electromagnetic method
ATEM = Airborne transient electromagnetic method
IP = Induced polarization method
GPR = Ground-penetrating radar
S/N = Signal-to-noise ratio
MSE = Mean-square error
NCC = Normalized crosscorrelation
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