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Abstract
Explainable machine learning significantly improves the transparency of deep neural net-

works. However, existing work is constrained to explaining the behavior of individual
model predictions, and lacks the ability to transfer the explanation across various models
and tasks. This limitation results in explaining various tasks being time- and resource-
consuming. To address this problem, we introduce a Transferable Vision Explainer (TVE)
that can effectively explain various vision models in downstream tasks. Specifically, the
transferability of TVE is realized through a pre-training process on large-scale datasets
towards learning the meta-attribution. This meta-attribution leverages the versatility of
generic backbone encoders to comprehensively encode the attribution knowledge for the
input instance, which enables TVE to seamlessly transfer to explain various downstream
tasks, without the need for training on task-specific data. Empirical studies involve ex-
plaining three different architectures of vision models across three diverse downstream
datasets. The experimental results indicate TVE is effective in explaining these tasks with-
out the need for additional training on downstream data.

1 Introduction

Explainable machine learning (ML) contributes to enhancing the transparency of deep neural networks (DNNs)
for human comprehension [12]. It significantly facilitates the deployment of DNNs to high-stake scenarios where
model explanations are required, such as loan approvals [32], healthcare [2], and targeted advertisement [4T].
In these fields, explainable DNN decisions are particularly important, given the practical needs of stakeholders
and regulatory requirements, such as the General Data Protection Regulation (GDPR) [15].

To overcome the black-box nature of DNNs, existing work of explainable ML can be categorized into
two groups. The first group of work focuses on constructing local explanation based on perturbation of the
target black-box model, like LIME [29], GradCAM [31]], and Integrated Gradient [35]. These pieces of work
rely on resource-intensive procedures like sampling or backpropagation of the target black-box model [24],
leading to undesirable trade-off between the efficiency and interpretation fidelity [7]. Another group leverages
the knowledge of explanation values to train DNN-based explainers, such as FastSHAP [20], CORTX [§], and
LARA [30,[37]. Such arts capable of efficiently generating explanations for an entire batch of instances through
a single, streamlined feed-forward operation of the DNN-based explainer. However, they are constrained to
explaining individual black box models, and often lack the ability to transfer the explainer across various
models or tasks. These constraints lead to a time and resource-intensive process in practical scenarios, as they
require the development and training of separate explainers for each specific task.

To address the lack of transferability in explainers, we introduce a Transferable Vision Explainer (TVE).
The primary goal of TVE is to achieve transferability through a pre-training process on large-scale image
datasets, such that it can seamlessly explain various downstream tasks, as long as such tasks are within the
scope of pre-training data distribution. The construction of such transferable explainers introduces two non-
trivial challenges: CH1. Without task-specific exposure during the pre-training, how to ensure the universal
effectiveness of explainer for various downstream tasks? CH2. How to adapt the explainer to a specific task
without fine-tuning on the task-specific data?

Our work effectively tackles these challenges. To address CH1, we introduce a novel concept, named
meta-attribution, as a foundation for explaining various downstream tasks. Specifically, the meta-attribution
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Figure 1: Performance of TVE in explaining ViT-B, Swin-B, and Deit-B on the Cats-vs-dogs, Imagenette,
and CIFAR-10 datasets. Fidelity™ score refers to the area under Fidelity*-sparsity curve. (b) Illustration of
attribution transfer. In this framework, the backbone can be a ViT encoder; and the downstream classifiers
can be MLPs. The embedding vector comprehensively encodes the features of input image. Motivated by this,
the meta-attribution comprehensively encapsulates the importance of each input patch to each element of the
embedding vector. This enables it to seamlessly transfer for explaining various downstream tasks.

versatilely encodes the attribution knowledge for the input instance via exhaustively attributing each dimension
of instance embedding. This knowledge is reusable for explaining various downstream tasks. It guides the pre-
training of TVE on large-scale image datasets, ensuring the universal effectiveness of TVE. After the pre-training,
in response to CH2, we propose a transfer rule to adapt the meta-attribution to explaining downstream
tasks, without the need for additional training on task-specific data. Figure shows the comprehensive
performance of TVE pre-trained on the ImageNet dataset and transferred to the Cats-vs-dogs, Imagenette, and
CIFAR-10 datasets, where TVE shows competitive fidelity and efficiency compared with state-of-the-art methods.
To summarize, our work makes the following contributions:

e Attribution transfer. We propose a framework of attribution transfer, with a meta-attribution as foun-
dations, and a transfer rule for explaining the downstream tasks.

e Transferable explainer. We build a transferable explainer TVE that explains various downstream tasks
without the need for training on the task-specific data.

e Theoretical foundation. We validate the pre-training of TVE can minimize the explanation error bound
aligned with the V-information-based explanation.

e Competitive performance in explaining various downstream tasks. The pre-trained TVE shows
promising results in explaining three architectures of vision Transformer across three downstream datasets.
Significantly, the strong transferability of TVE facilitates efficient and flexible deployment to various down-
stream scenarios.

2 Notations

We introduce the notations for the problem formulation.

Target model. We focus on the explanation of vision models: X — ), in this work, where X = NWxW

denote the spatial space of W x W pixels; N denote the space of a single pixel with three channels; and )
denotes the label space. Moreover, we follow most of existing work [16] and implementation of DNNs [39] to
consider the target model as f; = H; o G, where the backbone encoder G(e): NW*W _ RD ig pre-trained on



large-scale datasets; and the classifier H;(e):RP —)); is finetuned on a specific task ¢. It maybe worth noting
that although we follow the transfer learning setting [0, 5] to freeze the backbone encoder G(e) during the fine-
tuning of f;. Our experiment results in Section further show that the proposed transferable explanation
framework also shows effectiveness in the scenario where the target model is fully fine-tuned on downstream
data.

Image Patching. We follow existing work [26] to consider the patch-wise attribution of model prediction,
i.e. the importance of each patch. Specifically, we follow existing work [, 20] to split each image @ into PxP
patches in a grid pattern, where each patch has Cx C pixels; and W= CP. Let Z(xy) = {z; ;|1 <1i,j <P}
denote the patches of an image xj € X', where a patch z € N¢X€ aligns with continuous C x C pixels of the
image. Moreover, we define N'(2) C Z(x) as the neighbors of a patch z within the grid space, because a patch
together with its neighbors have richer semantic content for model explanation. In this work, we follow the
vision transformer [I1] to split the image patches with P =14 for 224 x 224 input images from the ImageNet
dataset; and we consider A/(z) as the zero-, one-, and two-hop neighbors of the patch z.

Model Perturbation. f;(S;xy,y) represents the output of f; on class y, with a perturbed instance as the
input. The patch subset S C Z(xy) controls the perturbation. Specifically, the pixels belonging to the patches
z € Z(xy) \ S are removed and take 0, which is approximately the average value of normalized pixels. For
example, fi(N(z);x,y) defines the output of f; based on the perturbed input, where the pixels not belonging
to the neighbors of patch z take 0.

Feature Attribution. This work focuses on the feature attribution of target models f; for providing ex-
planations. The feature attribution process involves generating importance scores, denoted as ¢y, . for each
patch z € Z(xy) of the input image x) € X, to indicate its importance to the model prediction f;(Z(xy); zk, )
on class y.

3 Feature Attribution can Transfer

The motivation behind attribution transfer stems from model transfer in vision tasks [6, 17, [16]. Specifically,
it arises from the observation that a generic backbone encoder possesses the capability to capture essential
features of input images and represent them as embedding vectors. This versatility enables the backbone to
effectively adapt to a wide range of downstream tasks within the scope of pre-training data distribution. As
shown in Figure information of man, car, house encoded in the embedding vector enables the detection
of gender, car, and building in three different downstream scenarios, respectively. Despite the demonstrated
transferability of the backbone encoder, existing research has challenges in achieving ‘transferable explainer’
across different tasks. To bridge this gap and streamline the explanation process, we propose a meta-attribution
that can be applied across various tasks, resulting in a significant reduction in the cost associated with gener-
ating explanations.

The meta-attribution is defined as a tensor that versatilely encodes the reusable attribution knowledge
for explaining downstream tasks. As shown in Figure we illustrate the meta-attribution as a three-
dimensional tensor. A simple and effective method in this work is attributing the importance of input patches
to each element of the embedding vector for the meta-attribution. As shown in Figure each P xP
slice of this tensor corresponds to P x P patches within the input image, encoding their importance to a
specific dimension of the embedding vector. In this way, the meta-attribution inherits the adaptability of the
embedding vector, making it versatile enough to adapt various explanation tasks in downstream scenarios. For
instance, the meta-attribution encodes the attribution knowledge for the man and car components encoded
in the embedding vector, such that it can transfer to explain the car classification and gender detection
in downstream scenarios. The versatility of meta-attribution can effectively address the CH1 described in
Section [[l We formalize the attribution transfer in Sections [l

4 Meta-attribution Transfer

In this section, we begin with the explanation definition by following the V-information theory [40} 18] B].
Then, we introduce the definition of meta-attribution in Definition [I| Finally, we propose a transfer rule to
adapt the meta-attribution to explaining specific downstream tasks in Definition [2|



4.1 V-Information-based Explanation

The importance of a patch z € Z(xy) to downstream model f;(x) is formulated into the conditional mutual in-
formation I(N(z2);Y; | B) between N (z) and Y;, given the state of remaining patches B C Z(zy) \N(z) [
Here, Y; ~ fi(x)) denotes the variable corresponding to the model ouput. However, estimating this mutual
information accurately poses a challenge due to the unknown distribution of A(z) and B. To address this
challenge, we adopt an information-theoretic framework introduced in works by [40l [18], known to as condi-
tional V-information Iy, (N (z) — Y;). In particular, it redirects the computation of mutual information to a
certain predictive model within function space V, as defined by:

Iy(N(2) = Y3 | B) = Hy(Y: | B) — Hy(Y: | N(2), B),
where V-entropy Hy(Y: | B) takes the lowest entropy over the function space V, which is given by

Hy(Y; | B) = inf By, [~ 10g /(B y)] 1)

Note that the V-information explanation should align with a pre-trained target model f; € V and a specific
class label y. The V-entropy should take its value at f; and y, instead of the infimum expectation value, for the
explanation. Therefore, we relax the V-entropy terms Hy(Y; | B) and Hy(Y; | N(z), B) into — log fi(B; ., y)
and — log f;(N(2) U B; @y, y), respectively [14], for aligning the explanation with the target model f; € V and
class label y. In this way, the attribution of patch z aligned with class y is defined as follows:

Dry.z = EBcz(z)\W(2)[— 108 fi(B; xy, y)+log fi (N (2)UB; xk, y)]. (2)

It is impossible to enumerate the state of B over B C Z(z) \ NV'(z) in Equation (2). We follow existing
work [27] to approximate it into two antithetical states to simplify the computation [27]. These cases involve
considering the state of B to be entirely remaining patches Z(xy) \ M (2) or empty set @, narrowing down the
enumeration of B C Z(xy) \N(2) to B ~ {Z(x;,) \ N (z), @} in Equation (2). Based on our numerical studies
in Appendix [B] the approximate attribution shows positive correlation with the exact value, which indicates
the approximation does not affect the quality of attribution. To summarize, we approximate the attribution
value of patch z aligned with class y as follows:

Phyy,e ~ Epfz(@)\W(2),2} [~ 108 fi(B;xr,y) + log fi(N(2) U B; x,y))], (3)
~log fi(N(2); 1, y) —log fo(Z(zk) \N (2); Tk, y), (4)

where the terms f;(Z(xy); xk,y) and fi(F; 2, y) in Equation are constant given xy and y, thus being
omitted in Equation . Intuitively, the explanation of patch z depends on the gap of logit values, where
N(z) and background patches Z(xy) \ N (z) are taken as the input.

4.2 Definition of Meta-attribution

We introduce the concept of meta-attribution, formally defined in Deﬁnition Note that Equation (4]) relies on
the downstream target model f;, which is task-related. The purpose of meta-attribution is to disentangle the
task-specific aspect of the attribution from Equation . This disentanglement renders the meta-attribution
to be task-independent, as a foundation for explaining various tasks.

Definition 1 (Meta-attribution). Given a backbone encoder G, the meta-attribution for a patch z €
Z(xy), T, € X, is represented by two tensors gy , and hy, . as follows:

hy.. = G(Z2(z) \ N(2); zx)- (5)

Following Definition [I} the meta-attribution is defined as the input tensors of the logarithmic functions
in Equation , where the task-specific model f; is replaced into the backbone encoder G to disentangle the
meta-attribution with specific tasks. This disentanglement enables the meta-attribution to transfer across
various downstream tasks.



4.3 Transfer to Task-aligned Explanation

To explain the downstream tasks, we propose a transfer rule in Definition [2| to adapt the meta-attribution to
explaining downstream tasks. This rule-based transfer method can effectively address the CH2 described in
Section [I} without the need for additional training on task-specific data.

Definition 2 (Attribution Transfer). If the task-specific function is given by fi = Hy o G, then the expla-
nation of fi(xk) on class y is generated by

Bk y,= = log Hy(gy. .3 y) — log Hy(hx 25 ), (6)

where gy, . and hy . are the meta-atiribution given by Equation (@); and G and H; represent the backbone
encoder and fine-tuned classifier on task t, respectively.

Following Definition 2| we can straightforwardly achieve the solution of ¢y , . to be consistent with Equa-
tion ()f'} This alignment to ¢y, . can effectively explain downstream task ¢ following the definition of
conditional V-information Iy, (N (z) — Y; | B), as described in Section

5 Learning Meta-attribution

In this section, we introduce the details of Transferable Vision Explainer (TVE). Specifically, TVE pre-trains a
DNN-based transferable explainer F(e | §) on large-scale image dataset to comprehensively learn the knowledge
of meta-attribution. After the pre-training, TVE can transfer to various downstream tasks for end-to-end
generating task-aligned explanation. To assess its performance, we theoretically analyze the explanation error
in Theorem [

5.1 Explainer Pre-training

TVE employs a DNN-based explainer E(e | #) to generate the meta-attribution tensors. Specifically, the
explainer E(e | 6) produces two tensors for the meta-attribution, denoted as [g,,hy] = E(z; | 6), where
g = [8r. € RP|z € Z(mx)] and hy = [hy. € RP|z € Z(x)] represent collections of meta-attribution for
an instance xy. Each pair of elements (g, ., hy.) contribute to predicting the meta-attribution (8K hr.2)
defined in Definition Pursuant to this objective, TVE updates the parameters of explainer E(e | 6) to
minimize the following loss function:

‘CG(mk) :EZNZ(Z%) U |gk,z —8k,z ‘ ‘;4_ ’ ‘flk7z _hk,ZHg] ) (7)

where g, . and hy . are defined in Definition

Algorithm summarizes one epoch of pre-training the transferable explainer E(e | #). Specifically, TVE first
samples a mini-batch of image patches (lines 2); then follows Deﬁnitionto generate the meta-attribution (lines
3); finally updates the parameters of E(e | 8) to minimize the loss function given by Equation (line 4).
The iteration ends with the convergence of E(e | ). Notably, the pre-training of E(e | ) is guided by the
meta-attribution instead of specific tasks. This empowers the trained E(e | #) to remain impartial towards
specific tasks, providing the flexibility for seamless adaptation across various downstream tasks.

Algorithm 1 One epoch of TVE pre-training

Input: Pre-training dataset D.
Output: Transferable explainer E(e | 6*).

1: for x, ~ D do

2:  Sample patches z ~ Z(xy).

3:  Generate gy, , and hy . following Definition
4:  Update E(e | 0) to minimize Equation (7).

5: end for

IWe follow Definition [2] to have oy, . = log He(gy,..;y) — log He(hy 25 y) = log fo(N(2); @k, y) — log fi(Z(xk) \ N(2); 2k, y)
that is consistent with Equation .



5.2 Generating Task-aligned Explanation

TVE follows Definition [2 to generate the task-aligned explanation. Specifically, to explain the inference process
(H;oG)(xy) in task ¢, TVE first adopts the pre-trained transferable explainer to generate the meta-attribution
(&4, 0] = E(xy | 0); then takes the value of g, and hy . into Equation @ to estimate the importance of
each patch z € Z(x) to the inference result on class y. To summarize, TVE generates the attribution of a
patch z € Z(xy) by

Ohy,> = log Hy(&y.;y) — log Hy(hy 23 y). (8)

Let qgky = [ék v,z | 2 € Z(xy)] denote the P x P explanation heatmap for the image oy, indicating the
importance of all patches in x; to class Y. TVE can efficiently generate the entire heatmap (,z’)k .y for the image
xy, through a single feed forward pass : d)k y = log Hi(g},;y) — log Ht(hk, y), where g, and hy, are generated
by (&, ] = By | 6).

In particular, H;(e;y) in Equation encodes the knowledge of downstream task ¢. This knowledge
significantly enables the explanation to align with the task t without the need for additional training on the
task-specific data.

5.3 Theoretical Analysis

The theoretical analysis focuses on understanding the behavior of estimation error |¢Ekyz — Qk,y,-| during the
TVE pre-training, where ¢y, ,, . takes the V-Information-aligned explanation defined in Section Specifically,
we examine the following two distinct cases to understand how the reduction in the pre-training loss function
Lo(x,) diminishes the estimation error |¢x.,. . — dr.y.|-

Ideal Case. We ideally consider Ly(x1)—0 in this case. According to Equation (7)), we have that g, .—gy, .

and hy ,—hy .. Then, the relations % 1 and Wﬂl are established. In this context, we have
t y

|¢A>k,y,z—¢k7y7z| — 0 according to Equations @ and . This indicates ¢k,y,z exactly converges to ¢y, . in the
ideal scenario.

Practical Case. Without loss of generality, we consider Lg(x) is not reduced to zero in this case. Specifi-
cally, Equation (7)) indicates the reduction of Ly(xy) leads to g, . and hy . gradually approach g, , and hy, .,

respectively. As a result, the values of gtg’“ 2 ’j; and ﬁfx" 2V gradually converge to a narrower range around 1.
t

We formulate this trend by assuming their values to be bounded within a range of 1-e< Zt@hz) Helhyzv) o

Hy (), 2iy)’ Ht(hk R
where 0 < € < 1. Under these assumptions, we establish the upper bound of |¢k,y,z
with a detailed proof in Appendix [C] This allows us to understand the behavior of estimation error in practical
cases where Lg(xy) is not reduced to zero.

Theorem 1 (Explanation Error Bound). Given the classifier Hi(e; ) of the downstream task, if the output

of classifier Hy(gy, ,;vy) and Ht(hk 23 y) fall within the range of 1 — e < ?i: ZZ; 7 EZ" Zz; < 1+e¢, then, the
t z t\Nk, 25

upper bound of explanation error is given by

9)

EoinDiynvien 2@l Ohyz = Ohyel < 7,

where ¢y, . and ¢y are given by Equation (@ and (@), respectively; and D; denotes the downstream dataset.

Intuition of Theorem The value of € reduces as the pre-training loss function Ly () decreases. This
reduction in e explicitly lowers the estimation error bound 12_66 aligned with the V-Information-aligned ex-
planation ¢y, . on downstream tasks. This underscores the TVE pre-training can significantly enhance the

explanations for downstream tasks.

6 Experiment Results

In this section, we conduct experiments to evaluate TVE by answering the following research questions: RQ1:
How does TVE perform compared with state-of-the-art baseline methods in terms of the fidelity? RQ2: How
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Figure 2: Fidelity " -Sparsity-AUC(1) on the Imagenette (a), Cat-vs-dogs (b), and CIFAR-10 (c) datasets. Fidelity -
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(d) Imagenette
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Sparsity-AUC(]) on the Imagenette (d), Cat-vs-dogs (e), and CIFAR-10 (f) datasets.

does TVE perform in explaining fully fine-tuned target model on down-stream datasets? RQ3: How is the
transferability of TVE across different downstream datasets?

transfer in TVE contribute to explaining downstream tasks?

6.1 Experiment Setup

ViT-B Swin-B DeiT-B
(f) CIFAR-10

RQ4: Do both pre-training and attribution

We clarify the datasets, target models, hyper-parameter settings in this section. More details about the baseline
methods, evaluation metrics and implementation details are given in Appendixes[F] [G] and [H] respectively.

Datasets. We consider the large-scale ImageNet dataset for TVE pre-training; and the Cats-vs-dogs [13],
CIFAR-10 [23], and Imagenette [19] datasets for the downstream explaining tasks. Further details about the
datasets are given in Appendix

Target Models. We comprehensively consider three architectures of vision transformers for downstream
classification tasks, including the ViT-Base [I1], Swin-Base [25], Deit-Base [306] transformers. We consider
two settings of fine-tuning target models: classifier-tuning and full-fine-tuning. More details about the target
model are given in Appendix [E]

Hyper-parameter Settings. The experiment follows the pipeline of TVE pre-training, explanation gener-
ation and evaluation on multiple downstream datasets. Specifically, TVE adopts the Mask-AutoEncoder [16]
as the backbone, followed by multiple Feed-Forward (FFN) layersﬂ to generate the meta-attribution. More
details about the explainer architecture and hyper-parameters of pre-training TVE are given in Appendix [H]
When deploying TVE to explaining downstream tasks, the explanation aligns with the prediction class given
by the target model.

2A Mask-AutoEncoder consists of a ViT encoder followed by a ViT decoder; and an FFN layer consists of Linear layers,
Layer-norm, and activation function, which are widely used in the Transformer structure. More details about the architecture are
given in Appendix@
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Figure 3: Fine-tuning loss versus epoch (a), Fidelity™ 1 versus Sparsity (b), and Fidelity~ | versus Sparsity (c) on the
Imagenette dataset. Fine-tuning loss versus epoch (d), Fidelity™ 1 versus Sparsity (e), and Fidelity~ | versus Sparsity (f)
on the cats-vs-dogs dataset.

6.2 Evaluation of Fidelity (RQ1)

In this section, we evaluate the fidelity of TVE under the classifier-tuning setting. Due to the space constraints,
we present 18 figures illustrating the Fidelity T-sparsity curve(1) and the Fidelity ~-sparsity curve(]) for ex-
plaining the ViT-Base, Swin-Base, and Deit-Base models on the Cats-vs-dogs, Imagenette, and CIFAR-10
datasets in Appendix [ To streamline our evaluation, we simplify the assessment of fidelity-sparsity curves
by calculating its Area Under the Curve (AUC) over the sparsity from zero to one, which aligns with the
average fidelity value. Intuitively, a higher Fidelity "-sparsity-AUC(?) indicates superior Fidelity™ (1) across
most sparsity levels, reflecting a more faithful explanation. Similarly, a lower Fidelity ~-sparsity-AUC({) sig-
nifies a more faithful explanation. More details about the fidelity-sparsity-AUC are given in Appendix [G}
On the Cats-vs-dogs, Imagenette, and CIFAR-10 datasets, we present the Fidelity "-sparsity-AUC(?) for
explanations in Figures [2[ (a)-(c), respectively, as well as the Fidelity ~-sparsity-AUC(/,) in Figures [2| (d)-(f),
respectively. We have the following observations:

e TVE consistently exhibits promising performance in terms of both Fidelity™ (1) and Fidelity ~ (]), outperform-
ing the majority of baseline methods. This underscores TVE faithfully explains various downstream tasks
within the scope of pre-training data distribution.

e TVE exhibits significant strengths in both Fidelity ™ (1) and Fidelity ™ (1), highlighting its effectiveness in iden-
tifying both important and non-important features. In contrast, the baseline methods fail to simultaneously
achieve high Fidelity™ and low Fidelity . For example, consider LIME’s performance when explaining the
Deit-Base model on the CIFAR-10 dataset. While LIME excels in Fidelity ™, it falls short in Fidelity .

6.3 Explaining Fully Fine-tuned Models (RQ2)

In this section, we evaluate the fidelity of TVE under the full-fine-tuning setting to demonstrate its generalization
ability. Notably, the ViT-Base classification model including both the backbone and classifier are fine-tuned



Table 1: Explanation Fidelity "-Sparsity-AUC(1) and Fidelity ~-Sparsity-AUC(]) for Deit-Base, Swin-Base,
and Deit-Base target models on the Cat-vs-dogs, Imagenette, and CIFAR-10 datasets.

| Datasets | Cats-vs-dogs \ Imagenette \ CIFAR-10
Target model | Method | Fidelity™ (1) | Fidelity™(}) | Fidelity™ (1) | Fidelity™({) | Fidelity (1) | Fidelity™(})
. ViTShaErley 0.11+0.00 0.13%0.10 0.25+0.13 0.25%0.14 0.36+0.17 0.36=%0.17
ViT-Base TVE-H, 0.1440.11 0.1040.08 0.2940.14 0.1840.10 0.3940.1s 0.3440.17
TVE 0.16:‘:(113 0.09i0.07 0.33:‘:[116 0.19i().12 0-40:|:[]V18 0.31i().16
. ViTShapley 0.09+0.05 0.1140.07 0.24=0.07 0.24=0.00 0.25%+0.11 0.28=+0.14
Swin-Base TVE‘.—flg 0.14+0.00 0.10=0.07 0.29t0.0s 0.240.07 0.26%0.12 0.27%0.13
TVE 0.1440.10 0.0940.05 0.2940.10 0.2240.06 0.3140.14 0.2440.12
. ViTShaErley 0.1240.0s 0.14-0.07 0.2240.09 0.29+0.11 0.2840.13 0.2440.13
DeiT-Base TVE-H 0.13+0.08 0.09=0.06 0.33=+0.10 0.254-0.08 0.3240.14 0.2440.13
TVE 0.15:|:UV10 0.08:&0.06 0.33:|:UV10 0-24i0.08 O.30:|:U.13 0-22i0.12
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Figure 4: Fidelity of ablation studies. Figure 5: Throughput of explaining different architectures.

on downstream data, which are not available to TVE pre-training. The explanation considers three methods:
learning from scratch (LFScratch), TVE pre-training (TVE-PT), and TVE fine-tuning (TVE-FT). To adapt to the
fully fine-tuned target model, LFScratch trains the explainer on the downstream dataset for one epoch; TVE-PT
simply transfers the pre-trained explainer to explaining the down-stream tasks; TVE-FT follows Algorithm
to fine-tune the explainer using the fine-tuned backbone encoder on the downstream dataset for one epoch.
Here, we consider the Imagenette and Cat-vs-dogs datasets for the downstream tasks. Further details about
fine-tuning the target models and explainers are given in Appendixes [E] and [H] respectively. The loss value of
LFScratch and TVE-FT versus the fine-tuning steps are shown in Figures 3| (a) and (d). The fidelity-sparsity
curves of all methods are given in Figures 3| (b), (c), (e), and (f). We have the following observations:

e TVE pre-training provides a good initial explainer for adaption to fully fine-tuned encoders. According to
Figures [3| (a,d), the TVE pre-trained explainer shows lower training loss than learning from scratch in the
early epochs. This indicates the pre-training provides a good initial explainer for explaining downstream
tasks.

o TVE-PT can effectively explain the fully fine-tuned target model, even without fine-tuning the explainer on
downstream datasets. According to Figures 3] (b,c,e,f), TVE-PT shows competitive fidelity when comparing
with TVE-FT and other baseline methods, and a significant improvement over LFScratch. This indicates
the strong generalization ability of TVE, acquired through pre-training on the large-scale ImageNet dataset.

e The pre-training of transferable explainer and fine-tuning of backbone encoder can be executed independently
and parallelly. Specifically, TVE pre-trains the transferable explainer based on open-sourced pre-trained
backbone encoders and large-scale ImageNet dataset; meanwhile, the encoder can be fine-tuned in parallel
on downstream datasets. This can significantly improve the efficiency and flexibility of deploying TVE to
practical scenarios.

6.4 Evaluation of Transferability (RQ3)

We evaluate the transferability of TVE compared with ViT-Shapley [9], a state-of-the-art DNN-based explainer
for vision models. Specifically, ViT-Shapley pre-trains the explainer on the large-scale ImageNet dataset, and
deploys it to the Cat-vs-dogs, Imagenette, and CIFAR-10 datasets to generate the explanations. Different
from ViT-Shapley, TVE transfers the explainer to downstream datasets via taking the task-specific classifier
H; into Equation . Moreover, we also consider a TVE-H, method to study whether the pre-training of TVE
contributes to explaining downstream tasks. Different from TVE, TVE-H, takes a general classifier (pre-trained
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Figure 6: Visualization of explanation on the Cats-vs-dogs (a)-(c), Imagenette (d)-(f), and CIFAR-10 (g)-(i) datasets.
From the left to the right, each heatmap explains the inference of the Swin-Base, Deit-Base, and ViT-Base models,
respectively.

on the ImageNet dataset) into Equation to generate the explanation. We follow Section to adopt
the fidelity-sparsity AUC to evaluate the average fidelity. Table [I] illustrates the fidelity for explaining the
ViT-Base, Swin-Base, and Deit-Base models on the Cat-vs-dogs, Imagenette, and CIFAR-10 datasets. We
have the following insights:

e TVE has stronger transferability than ViT-Shapley. Both TVE and ViT-Shapley are pre-trained on the large-
scale ImageNet dataset, and transferred to the downstream datasets without additional training. Table
shows TVE has higher Fidelity " (1) and lower Fidelity ™ ({) than ViT-Shapley.

o The pre-training of TVE significantly contributes to explaining downstream tasks. TVE-H, adopts the generally
pre-trained explainer and classifier to explain downstream tasks, and achieves a reasonable fidelity on most
of the datasets. This indicates the pre-training of TVE captures the transferable features across various
datasets for explaining downstream tasks.

o [t is more faithful to explain downstream tasks based on the task-specific classifiers. TVE outperforms TVE-H,
on most architectures and datasets, which indicates the attribution transfer had better take the classifier
aligned with the downstream task for H; in Definition

6.5 Ablation Studies (RQ4)

We ablatedly study the contribution of the key steps in TVE to explaining downstream tasks, including the
pre-training of transferable explainer and attribution transfer aligned to each task. For our evaluation, we
consider three methods: TVE w/o Pre-training (PT), TVE w/o H;, and TVE. Specifically, for TVE w/o PT, the
explainer is randomly initialized without pre-training, and attribution transfer follows Definition [2 For TVE
w/o H, the transferable explainer is pre-trained following Algorithm [I} and the explanation for each task
is generated by ¢ = log H(g;y) — log Hg(flk;y), where H, takes a general classifier pre-trained on the
ImageNet datasets, instead of being fine-tuned corresponding to the task. Figure El illustrates the results of
Fidelity *-Sparsity-AUC(?) and Fidelity ~-Sparsity-AUC(/) for each method, where the fidelity score represents
the averaged value on the Cats-vs-dogs, Imagenette, and CIFAR-10 datasets. Other configurations remain
consistent with Appendix [H] Overall, we have the following observations:

o TVE pre-training significantly contributes to explaining the downstream tasks. This can be verified by the
fidelity degradation observed from TVE w/o PT in Figure [4]

e The classifier Hy for attribution transfer should align with the explaining task t. It is observed in Figure [4]
that TVE outperforms TVE w/o H;. This indicates the task-aligned H; is better than general classifiers for
the attribution transfer to a specific task .
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6.6 Evaluation of Latency

In this section, we evaluate the latency of TVE compared with baseline methods. Specifically, we adopt the
metric Throughput = M=t (1) to evaluate the explanation latency, where Ny takes the number of testing
instances and T signifies the total time consumed during the explanation process. Details about our computa-
tional infrastructure are given in Appendix [J] Figure [5] shows the throughput of different methods explaining
the ViT-Base/Large, Swin-Base/Large, Deit-Base, and ResNet-101/152 models on the ImageNet dataset. Overall,
we observe:

e TVE is more efficient than state-of-the-art baseline methods, by generating explanations through a single
feed-forward pass of the explainer. In contrast, the baseline methods rely on intensive samplings of the
forward or backward passes of the target model, resulting in a considerably slower explanation process.
For example, although KernelSHAP exhibits comparable Fidelity™ (|) with TVE, as shown in Figure [2} its
significantly lower throughput limits its practicality in real-world scenarios.

o TVE exhibits the most negligible decrease in throughput as the size of the target model grows, as seen when
transitioning from ViT-Base to ViT-Large. This advantage stems from the fact that TVE’s latency is
contingent upon the explainer’s model size, rather than the target model. In contrast, the baseline methods
suffer from notable performance slowdown as the size of the target model increases, due to the necessity of
sampling the target model to generate explanations.

6.7 Case Studies

In this section, we visualize the explanations generated by TVE, demonstrating its power in helping human
users understand vision models. Specifically, we randomly sample three instances from the Cats-vs-dogs,
Imagenette, and CIFAR-10 datasets, and visualize the explanations of Swin-Base, Deit-Base, and ViT-Base
models in Figure[6] where sub-figures (a)-(c), (d)-(f), and (g)-(i) correspond to the Cats-vs-dogs, Imagenette,
and CIFAR-10 datasets, respectively. In each sub-figure, from the left-side to the right-side, the three heatmaps
explain the inference of the Swin-Base, Deit-Base, and ViT-Base model, respectively. Notably, TVE generates
the explanation heatmap in an end-to-end manner without pre- or post-processing. More case studies on the
ImageNet dataset are shown in Appendix E According to the case study, we observe:

o The salient patches emphasized by TVE’s explanation reveal semantically meaningful patterns. For example,
as depicted in Figures |§| (d), (e), and (g), the Swin-Base model concentrates on the tower, canopy and bow,
respectively, to identify a church, parachute, and ship.

e TVE does not rely on pre-processing of the image or post-processing of the explanation heatmap. In contrast,
existing work EAC [33] requires SAM [21] to segment the input image before explaining, which is less flexible
than TVE.

o Different model architectures make predictions based on distinct image elements. For instance, as illustrated
in Figure |§| (g), the Swin-Base and Deit-Base models primarily emphasize the ship’s bow for identification.
In contrast, the ViT-Base model takes into account the ship’s keel for its prediction.

7 Conclution

In this work, we propose a framework of attribution transfer, incorporating a meta-attribution to extract the
foundation knowledge and a transfer rule to utilize this knowledge for explaining various downstream tasks.
Building upon this framework, we introduce TVE, a transferable explainer pre-trained on large-scale image
datasets. Notably, TVE shows strong transferability to effectively explain various downstream tasks without
the need for training on task-specific data. Experiment results validate the promising performance of TVE
in explaining three architectures of vision Transformer across three downstream datasets. Significantly, the
strong transferability of TVE facilitates efficient and flexible deployment to various downstream scenarios.
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Appendix
A Related Work

Explainable machine learning (ML) has made significant advancements, leading to model transparency and
better human understanding of deep neural networks (DNNs) [12]. Specifically, existing work of explainable
ML can be categorized into two groups: local explainers and DNN-based explainers [7].

Local Explainer. Local explainer focuses on constructing local explanation based on perturbation of the
target black-box model, like KernelSHAP [26], LIME [29], GradCAM [31], and Integrated Gradient [35].
Specifically, KernelSHAP approximates the Shapleyvalue by learning an explainable surrogate (linear) model
based on the DNN output of reference input for each feature; LIME generates the explanation by sampling
points around the input instance and using DNN output at these points to learn a surrogate (linear) model;
Integrated Gradients estimates the explanation by the integral of the gradients of DNN output with respect to
the inputs, along the pathway from specified references to the inputs. These pieces of work rely on resource-
intensive procedures like sampling or backpropagation of the target black-box model [24], leading to undesirable
trade-off between the efficiency and interpretation fidelity [7].

DNN-based Explainer. This branch of work leverages the training process to acquire proficiency in con-
structing a DNN-based explainer, utilizing explanation values as training labels [7]. This innovative strategy
empowers the simultaneous generation of explanations for an entire batch of instances through a single, stream-
lined feedforward operation of the DNN-based explainer. Exemplifying this progress are innovative approaches
like FastSHAP [20], ViT-Shapley [9], CORTX [8], LARA [30, [37], and HarsanyiNet [4]. To be concrete, Fast-
SHAP and ViT-Shapley adopt a DNN as the explainer to learn the Shapley value, which relies on task-specific
training and cannot be transferred across different tasks; and CoRTX arguments the training of DNN-based
explainer through a contrastive pre-training framework, and adopt the true Shapley value to fine-tune the
explainer. The DNN-based explainer have played a pivotal role in significantly streamlining the deployment of
DNN explanations within real-time applications. However, they are constrained to explaining individual black
box models, and they lack the ability to transfer the explanation across various models and tasks. This limita-
tion results in the explanation of various tasks in practical scenarios becoming time- and resource-consuming
due to the necessity of training different explainers for each task.

B Approximation of Attribution

We conduct experiments to study the relationship between the approximate attribution Eg{z @, )\ (2),2} [ -]
and its exact value Ep.gubset of Z(z)\N(2) [--] on the ImageNet dataset, where --- is the abbreviation of
—log fi(B;xy,y) + log fi(N(z) U B;xy, y). Specifically, we collect the samples of Ep.{z(a,)\N(2),2} ] - -] and
EB~subset of Z(z)\N(2)[ - |, Where @} take 100 instances randomly sampled from the ImageNet dataset; and
the target models f; take the ViT-Base(a, d), Swin-Base(b, €), and Deit-Base(c, f) models trained on the
ImageNet dataset. The samples of Ep.gubset of (@) \W(z)[ ] Versus Ep iz(a, )\ (z),2}[ -] is plotted in
Figure|7} It is observed that the value of Ep.(z(z,)\A(z),2}[ - -] after the approximation shows positive linear
correlation with Ep.gubset of 2 (@ )\W () - -]. This indicates the approximate value Ep{z(a,)\N(2),2}[ -] can
take the place of Ep subset of z(zy)\N(2)[ - -] for the function of attribution.

C Proof of Theorem [1

We prove Theorem [1|in this section.

Theorem 1 (Explanation Error Bound). Given the classifier Hi(®) of the downstream task, if the output of

. 5 7 41 Hi (8,25 Hy(hg, =52
classifier Hy(8y, .;y) and Hy(hy 2;y) fall within the range of 1 —e < Htggi:z;z;’ H:Eh:zﬁ < 1+e¢, then, the

upper bound of explanation error is given by

2e
)
—€

Ewk""Dmy"’ytvaZ(wk)|¢kvyvz - ¢k’,y,z| < 1 (10)

where (;Aﬁkvy,z and ¢, y,. are given by Equation (@) and @, respectively; and D; denotes the downstream dataset.
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—log fi(B;xk,y) + log ft(N(z) U B;xy,y); and f; takes the trained ViT-Base(a, d), Swin-Base(b, e), and
Deit-Base(c, f) models on the ImageNet dataset. The sampling number of B ~ Subset of Z(xx) \ M(z) is 16
and 32 for Sub-figures (a)-(c) and (d)-(f), respectively.

Proof. To achieve the explanation error bound, we first have the upper bound of (ng,y,z — Qky,. given by

Py — Ohy,= = log Hy(&y, .;y) — log Hi(gy, .3 y) + log Hy(hy -5 y) — log Hy(hy =5 y), (11)
Hi (g} .; Hi(hy ; Hi(g}. .; Hyi(hyg .;
_ IOg t(gk,z y) +1lo t(Ak,z;y) < t(gk,z y) 14 M - 1’ (12)
Hi(gk .5 y) Hi(hy .;y) ~ He(8r.y) Hi(hy,.;y)
H(&p,.; Hy(hy .;
< t(8k,23Y) I t(Ak, Y) 1 <e+te (13)
Hi(g,::y) Hy(hy2;y)
Then, we have the lower bound of ¢, . — dp..- as follows,
n H 29 H fl Z) H 29 H fl Z)
¢k,y,z — ¢k7y72 = _log Ht(%k’ y) — log t( k, .y) >1- M +1— M7 (14)
t(8k,23Y) Hy(hy ;) Hi(&,.:9) Hy(hy.;y)
Hi(gy .; H,(hy .; 1 1 -2
o < t(%k, y) ¢ (hy, y)> S _ _ 2 (15)
Hi(&r,25y)  Hi(hy;y) l—e 1-e 1-e
Combining Equations and , we achieve the upper bound of estimation error given by
. 2¢ 2e
|¢k7y,z - ¢k,y,z| < max {267 1_ } = 1_¢ (16)
O

D Details about the Datasets

We consider the large-scale ImageNet dataset [10] for TVE pre-training; and the Cats-vs-dogs [13], CIFAR-10 [23],
and Imagenette [I9] datasets for the downstream task of explanation. ImageNet [I0]: A large scale image
dataset which has over one million color images covering 1000 categories, where each image has 224 x 224
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pixels. Cats-vs-dogs [I3]: A dataset of cats and dogs images. It has 25000 training instances and 12500
testing instances. CIFAR-10 [23]: An image dataset with 60,000 color images in 10 different classes, where
each image has 32 x 32 pixels. Imagenette [I9): A benchmark dataset of explainable machine learning for
vision models. It contains 10 classes of the images from the Imagenet.

E Details about Target Models for Downstream Classification.

E.1 Setup of Fine-tuning the Target Models

For downstream classification tasks, we comprehensively consider three architectures of vision transformers
as the backbone encoders, including the ViT-Base/Large [I1], Swin-Base/Large [25], Deit-Base [36] trans-
formers. The classification models (to be explained) consist of one of the backbone encoders with ImageNet
pre-trained weights and a linear classifier. For the task-specific fine-tuning of target models, we consider
two mechanisms: classifier-tuning and full-fine-tuning. Specifically, the classifier-tuning follows the transfer
learning setting [6l [I7, 5] to freeze the parameters of backbone encoder during the fine-tuning; and the full-
fine-tuning updates all parameters during the finetuning. Note that the classifier-tuning can not only be more
efficient but also prevent the over-fitting problem on downstream data due to fewer trainable parameters [34].
We consider the classifier-tuning for most of our experiments including Sections and and
consider the full-fine-tuning in Section [6.3} while these two mechanisms yield the same result for Section [6.6}
The hyper-parameters of task-specific fine-tuning are given in Appendix

E.2 Hyper-parameter Setting of Fine-tuning the Target Models on Downstream
Tasks

The downstream classification models consist of the backbones of ViT-Base/Large, Swin-Base/Large, Deit-Base
transformers, and a linear classifier. The hyper-parameters of fine-tuning the classification models on the
Cats-vs-dogs, CIFAR-10, and Imagenette datasets are given in Table [2] After the fine-tuning, the classifica-
tion accuracy on each downstream dataset is given in Table

Table 2: Hyper-parameters of fine-tuning the target model on downstream datasets.

Datasets Cats-vs-dogs CIFAR-10 Imagenette
Target backbone ViT-Base, Swin-Base, and Deit-Base
Classifier Linear classifier
Fine-tuning mechanism classifier-tuning and full-fine-tuning
Optimizer ADAM

Learning rate 2 x 1074

Mini-batch size 256

Scheduler Linear

Warm-up-ratio 0.05

Weight-decay 0.05

Epoch 5

Table 3: Accuracy of the target model on downstream datasets.
Model Architecture ‘ ViT-Base ‘ Swin-Base ‘ Deit-Base

Tunable parameters‘ On QH,Gg‘ O 9H,9g‘ O 0,0

Cats-vs-dogs 99.6% 99.5% | 99.6% 99.7% | 99.4% 98.1%
Imagenette 99.3% 99.3% | 99.8% 99.7% | 99.8%  99.4%
CIFAR-10 92.2% 98.9% | 97.0% 98.6% | 94.2% 98.1%
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F Details about the Baseline Methods

We consider seven baseline methods for comparison, which include general explanation methods: LIME [29],
IG [35], RISE [28], and DeepLift [I]; Shapley explanation methods: KernelSHAP (KS) [26], and GradShap [26];
and DNN-based explainer: ViT-Shapley [9] in our experiment.

ViT-Shapley: This work adopts vision transformers as the explainer to learn the Shapley value. This
work requires task-specific data to train the explainer. RISE: RISE randomly perturbs the input, and average
all the masks weighted by the perturbed DNN output for the final saliency map. The sampling number takes
the default value 50. IG: Integrated Gradients estimates the explanation by the integral of the gradients of
DNN output with respect to the inputs, along the pathway from specified references to the inputs. DeepLift:
DeepLift generates the explanation by decomposing DNN output on a specific input by backpropagating the
contributions of all neurons in the network to every feature of the input. KernelSHAP: KernelSHAP ap-
proximates the Shapley value by learning an explainable surrogate (linear) model based on the DNN output of
reference input for each feature. The sampling number takes the default value 25 for each instance according to
the captum.ai [22]. GradShap: GradShap estimates the importance features by computing the expectations
of gradients by randomly sampling from the distribution of references. LIME [29]: LIME generates the expla-
nation by sampling points around the input instance and using DNN output at these points to learn a surrogate
(linear) model. The sampling number takes the default value 25 according to the captum.ai. For implementa-
tion, we take the IG, DeepLift, and GradShap algorithms on the captum.ai, where the multiply by_inputs
factor takes false to achieve the local attribution for each instance.

G Evaluation Metrics

Fidelity-sparsity Curve: We consider the fidelity to evaluate the explanation following existing work [42] [§].
Specifically, the fidelity evaluates the explanation via removing the important or trivial patches from the input
instance and collecting the prediction difference of the target model f;. These two perspectives of evluation are
formalized into Fidelity™ and Fidelity ", respectively. Specifically, provided a subset of patches S* C Z(xy)
that are important to the target model f; by an explanation method, the Fidelity™ and Fidelity ™ evaluates
the explanation following

I 1 .
1 Fidelity " = > HE @) mey) — fio(Z(@) \ S @10y),
|Dtask‘ zeD
task
e 1 .
| Fidelity ™ = [ Z fo(Z(@k);en, y) — fulS™ @, y).
bkl e Dyas

Higher Fidelity ' indicates a better explanation for prediction v, since the truly important patches of image @y,
have been removed, leading to a significant difference of model prediction. Moreover, lower Fidelity ™ implies
a better explanation for prediction y, since the truly important patches have been preserved in S* to keep the
prediction similar to the original one. The fidelity should be compared at the same level of sparsity |S*|/|U].
Consequently, we consider the evaluation of fidelity versus the sparsity in most cases.

Fidelity-sparsity-AUC Metric To streamline our evaluation, we simplify the assessment of fidelity-sparsity
curves by calculating its Area Under the Curve (AUC) over the sparsity from zero to one, which aligns with
the average fidelity value. In the last paragraph, we have shown that higher Fidelity™ and lower Fidelity~
at the same level of sparsity indicate more faithful explanation. To streamline the evaluation, the assessment
of fidelity-sparsity curves can be simplified into its Area Under the Curve (AUC) over the sparsity from zero
to one, as shown in Figures (a) and (b). The Fidelity-sparsity-AUC aligns with the average fidelity value.
Specifically, a higher Fidelity™ -sparsity-AUC (1) indicates better Fidelity™ performance across most sparsity
levels, reflecting a more faithful explanation. Similarly, a lower Fidelity ~-sparsity-AUC signifies a more faithful
explanation For the given example in Figures 8| (a) and (b), explanation A is more faithful than B.
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Figure 8: Illustration of Fidelity t-sparsity-AUC (a) and Fidelity ~-sparsity-AUC (b)

H Implementation Details about TVE

Architecture of Generic Explainer. The architecture of the transferable explainer is shown in Fig-
ure |§| (a). Specifically, the explainer takes the Mask-AutoEncoder-Base [16] for the backbone. As shown
in Figure the Mask-AutoEncoder-Base architecture is a pipeline of 12-layer ViT encoder and 8-layer ViT
decoder, where the input and output shape are [BS, 3,224, 224] and [BS, P, P, 768], respectively. More details
about the Mask-AutoEncoder-Base can be referred to its source cod

Since the output shape of the Mask-AutoEncoder-Base is [BS,P x P, 768] is not matched with that of the
meta-attribution [BS, P x P, D], where BS denotes the mini-batch size. We adopt nx FFN-layers as explainer
heads to map the output tensor of the Mask-AutoEncoder-Base into meta-attribution, where we found n = 17
enables the expalainer to have strong generalization ability to explain various downstream tasks. The structure
of an explainer head is given in Figure |§| (b). The first explainer head does not have the skip connection due
to the mismatch of tensor shapes. The last explainer head does not have the GELU activation.

Backbone Encoder. We comprehensively consider three backbone encoders for during the pre-training of
transferable explainer, including the ViT-Base/Large, Swin-Base/Large, Deit-Base transformers. Their pre-
trained weights are loaded from the HuggingFace library [38]. The hyper-parameter setting of TVE pre-training
is given in Table [

Table 4: Hyper-parameters of TVE pre-training on the ImageNet dataset.

Target Encoder ViT-Base Swin-Base DeiT-Base
Explainer Architecture Figure

Pixel # per image W x W 224 x 224

Patch # per image P x P 14 x 14

Pixel # per patch C x C 16 x 16

Shape of g, and hy, 14 x 14 x 768 14 x 14 x 1024 14 x 14 x 768
Optimizer ADAM

Learning rate 1x1073

Mini-batch size 64 per GPU x 4 GPUs

Scheduler CosineAnnealingLR
Warm-up-ratio 0.05

Weight-decay 0.05

Training steps 2 x 10°

Neighbor patches 0-, 1-, 2-hop neighbor patches

3https ://github.com/huggingface/transformers/blob/main/src/transformers/models/vit_mae/modeling_vit_mae.py:
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Figure 9: Transferable explainer architecture. (a) Explainer architecture. (b) FFN-layers for the explainer
head.
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Figure 10: Structure of Mask-Autoencoder.
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Figure 11:  Fidelity "-sparsity curve for explaining ViT-Base on Cats-vs-dogs (a), Imagenette (a), and
CIFAR-10 (c¢). Fidelity ~-sparsity curve of ViT-Base on Cats-vs-dogs (d), Imagenette (e), and CIFAR-10 (f).
Fidelity *-sparsity curve of Swin-Base on Cats-vs—dogs (g), Imagenette (h), and CIFAR-10 (i). Fidelity -
sparsity curve of Swin-Base on Cats-vs-dogs (j), Imagenette (k), and CIFAR-10 (1). Fidelity " -sparsity
curve of Deit-Base on Cats-vs-dogs (m), Imagenette (n), and CIFAR-10 (o). Fidelity -sparsity curve of
Deit-Base on Cats-vs-dogs (p), Imagenette (q), and CIFAR-10 (r).
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I Fidelity-Sparsity Curve of Section [6.2

We show the fidelity-sparsity curve for explaining ViT-Base, Swin-Base, and Deit-Base on the Cats-vs-dogs,
Imagenette, and CIFAR-10 datasets in Figures[11] (a)-(r). It is observed that TVE consistently exhibits promis-
ing performance in terms of both Fidelity™ (1) and Fidelity (), surpassing the majority of baseline methods.
This indicates TVE’s ability to faithfully explain various downstream tasks.

J Computational Infrastructure

The computational infrastructure information is given in Table

Table 5: Computing infrastructure for the experiments.

Device Attribute Value
Computing Infrastructure GPU
GPU Model NVIDIA-A5000
GPU Memory 24564MB
GPU Number 8
CUDA Version 12.1

CPU Memory 512GB
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K More Case Studies

We give more explanation heatmaps of ViT-Base on the ImageNet dataset in Figure [I2] which are generated
by TVE.

LT 1T

Figure 12: Explanation heatmaps of ViT-Base on the ImageNet dataset.
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