• Home
  • Gualberto Asencio Cortés
Gualberto Asencio Cortés

Gualberto Asencio Cortés
  • Computer Science, Ph.D.
  • Professor (Associate) at University of Pablo de Olavide

Associate Professor of Computer Science

About

77
Publications
58,665
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,293
Citations
Introduction
Prof. Dr. Gualberto Asencio Cortés is associate professor of computer science and senior researcher at the School of Engineering, Pablo de Olavide University of Seville. Gualberto does research in Machine Learning, Data Mining, Artificial Intelligence, Time Series Forecasting and Bioinformatics. He is currently working on developing new transfer learning algorithms.
Current institution
University of Pablo de Olavide
Current position
  • Professor (Associate)
Additional affiliations
September 2017 - present
Pablo de Olavide University
Position
  • Professor (Associate)
April 2009 - August 2017
Pablo de Olavide University
Position
  • Lecturer
Description
  • PhD student until 2013. Researcher and partial time professor until 2017.
Education
September 2009 - September 2010
University of Seville
Field of study
April 2009 - July 2013
Pablo de Olavide University
Field of study
  • Protein Structure Prediction based on machine learning algorithms
September 2005 - March 2008
University of Seville
Field of study

Publications

Publications (77)
Article
This work presents a novel approach to forecast streaming big time series based on nearest similar patterns. This approach combines a clustering algorithm with a classifier and the nearest neighbours algorithm. It presents two separate stages: offline and online. The offline phase is for training and finding the best models for clustering, classifi...
Article
Full-text available
Purchase processes on Amazon Marketplace begin at the Buy Box, which represents the buy click process through which numerous sellers compete. This study aimed to estimate empirically the relevant seller characteristics that Amazon could consider featuring in the Buy Box. To that end, 22 product categories from Italy’s Amazon web page were studied o...
Article
Full-text available
Time series forecasting has become indispensable for multiple applications and industrial processes. Currently, a large number of algorithms have been developed to forecast time series, all of which are suitable depending on the characteristics and patterns to be inferred in each case. In this work, a new algorithm is proposed to predict both univa...
Article
Full-text available
The current genomics era is bringing an unprecedented growth in the amount of gene expression data, only comparable to the exponential growth of sequences in databases during the last decades. This data allow the design of secondary analyses that take advantage of this information to create new knowledge. One of these feasible analyses is the evalu...
Article
Full-text available
This study proposes a novel bioinspired metaheuristic simulating how the coronavirus spreads and infects healthy people. From a primary infected individual (patient zero), the coronavirus rapidly infects new victims, creating large populations of infected people who will either die or spread infection. Relevant terms such as reinfection probability...
Article
Full-text available
Predicting the occurrence of crop pests is becoming a crucial task in modern agriculture to facilitate farmers’ decision-making. One of the most significant pests is the olive fruit fly, a public concern because it causes damage that compromises oil quality, increasing acidity and altering its flavor. This paper proposes a hybrid deep learning mode...
Article
Feature selection is a widely studied technique whose goal is to reduce the dimensionality of the problem by removing irrelevant features. It has multiple benefits, such as improved efficacy, efficiency and interpretability of almost any type of machine learning model. Feature selection techniques may be divided into three main categories, dependin...
Article
Time series forecasting is a well-known deep learning application field in which previous data are used to predict the future behavior of the series. Recently, several deep learning approaches have been proposed in which several nonlinear functions are applied to the input to obtain the output. In this paper, we introduce a novel method to improve...
Article
Massive gene expression analyses are widely used to find differentially expressed genes under specific conditions. The results of these experiments are often available in public databases that are undergoing a growth similar to that of molecular sequence databases in the past. This now allows novel secondary computational tools to emerge that use s...
Chapter
Traditional time series forecasting models often use all available variables, including potentially irrelevant or noisy features, which can lead to overfitting and poor performance. Feature selection can help address this issue by selecting the most informative variables in the temporal and feature dimensions. However, selecting the right features...
Chapter
This paper proposes a novel approach that combines an association rule algorithm with a deep learning model to enhance the interpretability of prediction outcomes. The study aims to gain insights into the patterns that were learned correctly or incorrectly by the model. To identify these scenarios, an association rule algorithm is applied to extrac...
Chapter
Full-text available
This paper proposes an application of the Automated Deep Learning model to predict the presence of olive flies in crops. Compared to baseline algorithms such as Random Forest or K-Nearest Neighbor, our Automated Deep Learning model demonstrates superior performance. Explainable Artificial Intelligence techniques such as Local Interpretable Model-Ag...
Conference Paper
The year 2022 was the driest year in Portugal since 1931 with 97% of territory in severe drought. Water is especially important for the agricultural sector in Portugal, as it represents 78% total consumption according to the Water Footprint report published in 2010. Reference evapotranspiration is essential due to its importance in optimal irrigati...
Article
Full-text available
Ensuring the optimal performance of power transformers is a laborious task in which the insulation system plays a vital role in decreasing their deterioration. The insulation system uses insulating oil to control temperature, as high temperatures can reduce the lifetime of the transformers and lead to expensive maintenance. Deep learning architectu...
Article
Full-text available
Time series is one of the most common data types in the industry nowadays. Forecasting the future of a time series behavior can be useful in planning ahead, saving time, resources, and helping avoid undesired scenarios. To make the forecasting, historical data is utilized due to the causal nature of the time series. Several deep learning algorithms...
Chapter
Neural networks have proven to be a good alternative in application fields such as healthcare, time-series forecasting and artificial vision, among others, for tasks like regression or classification. Their potential has been particularly remarkable in unstructured data, but recently developed architectures or their ensemble with other classical me...
Chapter
Full-text available
A new methodology has been applied to improve the prediction accuracy on the olive phenology forecasting problem, applying deep learning with hyperparameter optimization to handle with imbalanced data. The application of hyperparameter optimization to optimize the architecture of the deep neural network along with both class balancing preprocessing...
Article
The agricultural sector has been, and still is, the most important economic sector in many countries. Due to advances in technology, the amount and variety of available data have been increasing over the years. However, compared to other economic sectors, there is not always enough quality data for one particular domain (crops, plantations, plots)...
Chapter
Time series forecasting is a well-known application area for deep learning, in which the historical data are used to predict the future behavior of the series. Several deep learning methods have been proposed in this context, but they usually try to generate the output from the input, with no data transformation. In this paper, we introduce a novel...
Chapter
Full-text available
Predicting the magnitude of earthquakes is of vital importance and, at the same time, of extreme complexity, where each attribute contributes differently in the process, even introducing noise. Preprocessing using attribute selection techniques helps to alleviate this drawback. In this work, this is demonstrated through an extensive comparison of 4...
Chapter
Full-text available
A new transfer learning strategy is proposed for classification in this work, based on fully connected neural networks. The transfer learning process consists in a training phase of the neural network on a source dataset. Then, the last two layers are retrained using a different small target dataset. Clustering techniques are also applied in order...
Conference Paper
Full-text available
This work presents a new forecasting algorithm for streaming electricity time series. This algorithm is based on a combination of the K-means clustering algorithm along with both the Naive Bayes clas-sifier and the K nearest neighbors algorithm for regression. In its offline phase it firstly divide data into clusters. Then, the nearest neighbors al...
Conference Paper
Full-text available
A new transfer learning strategy is proposed for image classification in this work, based on an 8-layer convolutional neural network. The transfer learning process consists in a training phase of the neural network on a source dataset of images. Then, the last two layers are retrained using a different small target dataset of images. A preliminary...
Chapter
A new transfer learning strategy is proposed for image classification in this work, based on an 8-layer convolutional neural network. The transfer learning process consists in a training phase of the neural network on a source dataset of images. Then, the last two layers are retrained using a different small target dataset of images. A preliminary...
Chapter
Full-text available
This work presents a new forecasting algorithm for streaming electricity time series. This algorithm is based on a combination of the K-means clustering algorithm along with both the Naive Bayes classifier and the K nearest neighbors algorithm for regression. In its offline phase it firstly divide data into clusters. Then, the nearest neighbors alg...
Preprint
Full-text available
The current genomics era is bringing an unprecedented growth in the amount of gene expression data, only comparable to the exponential growth of sequences in databases during the last decades. This data now allows the design of secondary analyses that take advantage of this information to create new knowledge through specific computational approach...
Article
This work proposes a novel algorithm to forecast big data time series. Based on the well-established Pattern Sequence-based Forecasting algorithm, this new approach has two major contributions to the literature. First, the improvement of the original algorithm with respect to the accuracy of predictions, and second, its transformation into the big...
Preprint
Full-text available
A novel bioinspired metaheuristic is proposed in this work, simulating how the Coronavirus spreads and infects healthy people. From an initial individual (the patient zero), the coronavirus infects new patients at known rates, creating new populations of infected people. Every individual can either die or infect and, afterwards, be sent to the reco...
Article
Full-text available
The use of electric vehicle across the world has become one of the most challenging issues for environmental policies. The galloping climate change and the expected running out of fossil fuels turns the use of such non-polluting cars into a priority for most developed countries. However, such a use has led to major concerns to power companies, sinc...
Chapter
Full-text available
The continuous evaluation allows for the assessment of the progressive assimilation of concepts and the competences that must be achieved in a course. There are several ways to implement such continuous evaluation system. We propose auto-evaluation tests as a valuable tool for the student to judge his level of knowledge. Furthermore, these tests ar...
Article
Full-text available
The forecasting of future values is a very challenging task. In almost all scientific disciplines, the analysis of time series provides useful information and even economic benefits. In this context, this paper proposes a novel hybrid algorithm to forecast functional time series with arbitrary prediction horizons. It integrates a well-known cluster...
Article
Monsoons have been widely studied in the literature due to their climatic impact related to precipitation and temperature over different regions around the world. In this work, data mining techniques, namely imbalanced classification techniques, are proposed in order to check the capability of climate indices to capture and forecast the evolution o...
Article
Full-text available
Surface ozone (O3) is considered an hazard to human health, affecting vegetation crops and ecosystems. Accurate time and location O3 forecasting can help to protect citizens to unhealthy exposures when high levels are expected. Usually, forecasting models use numerous O3 precursors as predictors, limiting the reproducibility of these models to the...
Article
Full-text available
Missing observations are common in time series data and several methods are available to impute these values prior to analysis. Variation in statistical characteristics of univariate time series can have a profound effect on characteristics of missing observations and, therefore, the accuracy of different imputation methods. The imputeTestbench pac...
Article
Full-text available
Microseismic sensing taking advantage of sensors can remotely monitor seismic activities and evaluate seismic hazard. Compared with experts’ seismic event clusters, clustering algorithms are more objective, and they can handle many seismic events. Many methods have been proposed for seismic event clustering and the K-means clustering technique has...
Article
Full-text available
A novel methodology is introduced in this research study to detect seismic precursors. Based on an existing approach, the new methodology searches for patterns in the historical data. Such patterns may contain statistical or soil dynamics information. It improves the former version in several aspects. First, new seismicity indicators have been used...
Preprint
Full-text available
Monsoons have been widely studied in the literature due to their climatic impact related to precipitation and temperature over different regions around the world. In this work, data mining techniques, namely imbalanced classification techniques, are proposed in order to check the capability of climate indices to capture and forecast the evolution o...
Article
Full-text available
Earthquake magnitude prediction is a challenging problem that has been widely studied during the last decades. Statistical, geophysical and machine learning approaches can be found in literature, with no particularly satisfactory results. In recent years, powerful computational techniques to analyze big data have emerged, making possible the analys...
Article
Full-text available
Increasing attention has been paid to the prediction of earthquakes with data mining techniques during the last decade. Several works have already proposed the use of certain features serving as inputs for supervised classifiers. However, they have been successfully used without any further transformation so far. In this work, the use of principal...
Article
Full-text available
The prediction of earthquakes is a task of utmost diffi culty that has been addressed in many diff�erent ways. However, an initial de finition of the area of interest is needed, with adequate catalogs. In this work, di�fferent seismogenic zones proposals in the Republic of Croatia are studied, in terms of predictability. Such zones have been charac...
Article
Seismical parameters of five seismogenic zonings for the Iberian Peninsula have been determined in this work. For that purpose, this research has two key goals. The first is to generate a seismic catalog. The second to calculate the seismical parameters of all the zones of the seismogenic zonings selected. The first key goal has been the creation o...
Article
Full-text available
This work presents a novel methodology to predict large magnitude earthquakes with horizon of prediction of five days. For the first time, imbalanced classification techniques are applied in this field by attempting to deal with the infrequent occurrence of such events. So far, classical classifiers were not able to properly mine these kind of data...
Article
Full-text available
This work evaluates artificial neural networks’ accuracy when used to predict earthquakes magnitude in Tokyo. Several seismicity indicators have been retrieved from the literature and used as input for the networks. Some of them have been improved and parameterized in order to extract more valuable knowledge from datasets. The experimental set-up i...
Article
Full-text available
This paper discusses about an R package that implements the Pattern Sequence based Forecasting (PSF) algorithm, which was developed for univariate time series forecasting. This algorithm has been successfully applied to many different fields. The PSF algorithm consists of two major parts: clustering and prediction. The clustering part includes sele...
Article
Full-text available
Urban traffic congestion prediction is a very hot topic due to the environmental and economical impacts that currently implies. In this sense, to be able to predict bottlenecks and to provide alternatives to the circulation of vehicles becomes an essential task for traffic management. A novel methodology, based on ensembles of machine learning algo...
Article
Full-text available
The prediction of protein structures is a current issue of great significance in structural bioinformatics. More specifically, the prediction of the tertiary structure of a protein con- sists in determining its three-dimensional conformation based solely on its amino acid sequence. This study proposes a method in which protein fragments are assembl...
Preprint
Full-text available
This paper discusses about an R package that implements the Pattern Sequence based Forecasting (PSF) algorithm, which was developed for univariate time series forecasting. This algorithm has been successfully applied to many different fields. The PSF algorithm consists of two major parts: clustering and prediction. The clustering part includes sele...
Article
The use of different seismicity indicators as input for systems to predict earthquakes is becoming increasingly popular. Nevertheless, the values of these indicators have not been systematically obtained so far. This is mainly due to the gap of knowledge existing between seismologists and data mining experts. In this work, the effect of using diffe...
Article
Full-text available
Data mining has become an essential tool during the last decade to analyze large sets of data. The variety of techniques it includes and the successful results obtained in many application fields, make this family of approaches powerful and widely used. In particular, this work explores the application of these techniques to time series forecasting...
Article
Full-text available
Data mining has become an essential tool during the last decade to analyze large sets of data. The variety of techniques it includes and the successful results obtained in many application fields, make this family of approaches powerful and widely used. In particular, this work explores the application of these techniques to time series forecasting...
Article
Full-text available
Increasing attention has been paid to the prediction of earthquakes with data mining techniques during the last decade. Several works have already proposed the use of certain features serving as inputs for supervised classi ers. However, they have been successfully used without any further transformation so far. In this work, the use of principal c...
Article
A variety of approaches for protein inter-residue contact prediction have been developed in recent years. However, this problem is far from being solved yet. In this article, we present an efficient nearest neighbor (NN) approach, called PKK-PCP, and an application for the protein inter-residue contact prediction. The great strength of using this a...
Article
Full-text available
Protein structure prediction is currently one of the main open challenges in Bioinformatics. The protein contact map is an useful, and commonly used, representation for protein 3D structure and represents binary proximities (contact or non-contact) between each pair of amino acids of a protein. In this work, we propose a multi-objective evolutionar...
Conference Paper
We present a multi-objective evolutionary approach to predict protein contact maps. The algorithm provides a set of rules, inferring whether there is contact between a pair of residues or not. Such rules are based on a set of specific amino acid properties. These properties determine the particular features of each amino acid represented in the rul...
Conference Paper
Full-text available
Protein structure prediction consists in determining the thre-e-dimensional conformation of a protein based only on its amino acid sequence. This is currently a difficult and significant challenge in structural bioinformatics because these structures are necessary for drug designing. This work proposes a method that reconstructs protein structures...
Conference Paper
Full-text available
In this paper, we focus on protein contact map prediction, one of the most important intermediate steps of the protein folding problem. The objective of this research is to know how short-range interactions can contribute to a system based on decision trees to learn about the correlation among the covalent structures of a protein residues. We propo...
Conference Paper
Full-text available
The Protein Structure Prediction (PSP) problem consists of predicting the structure of a protein from its amino acids sequence, and have received much attention lately. In fact, being able to predict the structure of a protein, would allow to know the function of the protein. In this paper, we propose a multi-objective evolutionary algorithm for th...
Article
Full-text available
The prediction of protein structures is a current issue of great significance in structural bioinformatics. More specifically, the prediction of the tertiary structure of a protein consists in determining its three-dimensional conformation based solely on its amino acid sequence. This study proposes a method in which protein fragments are assembled...
Conference Paper
In this study, we present a residue-residue contact prediction approach based on evolutionary computation. Some amino acid properties are employed according to their importance in the folding process: hydrophobicity, polarity, charge and residue size. Our evolutionary algorithm provides a set of rules which determine different cases where two amino...
Conference Paper
Full-text available
Protein tertiary structure prediction consists of determining the three-dimensional conformation of a protein based solely on its amino acid sequence. This study proposes a method in which protein fragments are assembled according to their physicochemical similarities, using information extracted from known protein structures. Several existing prot...
Conference Paper
Full-text available
In this paper, we focus on protein contact map prediction. We describe a method where contact maps are predicted using decision tree-based model. The algorithm includes the subsequence information between the couple of analyzed amino acids. In order to evaluate the method generalization capabilities, we carry out an experiment using 173 non-homolog...
Conference Paper
Full-text available
In this study, a novel residue-residue contacts prediction approach based on evolutionary computation is presented. The prediction is based on four amino acids properties. In particular, we consider the hydrophobicity, the polarity, the charge and residues size. The prediction model consists of a set of rules that identifies contacts between amino...
Conference Paper
Full-text available
The prediction of protein structures is a current issue of great significance in structural bioinformatics. More specifically, the prediction of the tertiary structure of a protein consists of determining its three-dimensional conformation based solely on its amino acid sequence. This study proposes a method in which protein fragments are assembled...
Conference Paper
Full-text available
Multiple approaches have been developed in order to predict the protein secondary structure. In this paper, we propose an approach to such a problem based on evolutionary computation. The proposed approach considers various amino acids properties in order to predict the secondary structure of a protein. In particular, we will consider the hydrophob...
Article
Full-text available
Resumen La predicción de estructuras de proteínas es actualmente un importante campo de investigación dentro de la bioinformática. En esta área, existen numerosos estudios realizados en los que se ha usado la información de la separación entre los aminoácidos de una cadena para predecir la estructura de las proteínas, utilizándose en otros trabajos...
Article
Full-text available
Resumen. En este trabajo, centrado en el área del aprendizaje supervisado, pretendemos extender la información que proporcionan los datos etiquetados. Basándonos en la técnica de los vecinos más cercanos, se amplía la información contenida en las etiquetas discretas de las instancias, fortaleciendo su semántica y perfeccionando una clasificación po...

Network

Cited By