A note on the cardinality of certain classes of unlabeled multipartite tournaments

Gregory Gutin
Department of Mathematics and Statistics
Brunel University
Uxbridge, Middlesex, UB8 3PH, U.K.

Abstract

A multipartite tournament is an orientation of a complete multipartite graph. Simple derivations are obtained of the numbers of unlabeled acyclic and unicyclic multipartite tournaments, and unlabeled bipartite tournaments with exactly k cycles, which are pairwise vertex-disjoint.

Keywords: Multipartite tournaments; Bipartite tournaments; Enumeration

In this note, we enumerate unlabeled acyclic and unicyclic multipartite tournaments. We partly generalize these results by counting unlabeled strictly k-cyclic bipartite tournaments, that is, bipartite tournaments with exactly k cycles, which are pairwise vertex-disjoint. Our proofs are short and simple and based on certain bijections from classes of multipartite tournaments into sets of integral sequences or other classes of multipartite tournaments; unlike the proofs in [3] for the number of unlabeled acyclic bipartite tournaments, no calculations are required in the proofs of our results.

A p-partite (multipartite) tournament [2] T is an orientation of a complete p-partite graph G. The colour classes of T are the colour classes of G, i.e., the maximal independent sets of vertices in G. An unlabeled p-partite tournament is an ordered $(p + 1)$-tuple $(T, V_1, ..., V_p)$, where T is a p-partite tournament and $(V_1, ..., V_p)$ an ordered p-tuple of its colour classes. (When $(V_1, ..., V_p)$ can be determined from the context we shall write T rather than $(T, V_1, ..., V_p)$.) If the colour classes of T are of order $n_1, ..., n_p$ respectively ($n_i > 0$, $i = 1, ..., p$), then T is called an $(n_1, ..., n_p)$-tournament. We say that unlabeled $(n_1, ..., n_p)$-tournaments $(T, V_1, ..., V_p)$ and $(M, U_1, ..., U_p)$ are equivalent if there exists an isomorphism f from T to M such that $f(V_i) = U_i$ for every $i = 1, ..., p$. Intuitively, this
means that vertices in the same colour class are interchangeable, but the colour classes themselves are not.

In what follows, \(n = n_1 + \ldots + n_p \). Let \(t_k(n_1, \ldots, n_p) \) denote the number of inequivalent unlabeled strictly \(k \)-cyclic \((n_1, \ldots, n_p)\)-tournaments \((k \geq 0)\). A sequence \(s_1, s_2, \ldots, s_n \) is called an \((n_1, \ldots, n_p)\)-sequence if it contains \(n_j \) elements equal to \(j \), for every \(j = 1, \ldots, p \), and no other elements. Clearly, the number of \((n_1, \ldots, n_p)\)-sequences equals the multinomial coefficient \((n \choose n_1, \ldots, n_p)\). The following result provides a graph-theoretical interpretation of multinomial coefficients.

Theorem 1. The number \(t_0(n_1, \ldots, n_p) \) of (inequivalent) unlabeled acyclic \((n_1, \ldots, n_p)\)-tournaments equals the number of \((n_1, \ldots, n_p)\)-sequences. Thus \(t_0(n_1, \ldots, n_p) = (n \choose n_1, \ldots, n_p) \).

Proof: Let \(T \) be an acyclic \((n_1, \ldots, n_p)\)-tournament with colour classes \(V_1, \ldots, V_p \). We can assign to \(T \) an \((n_1, \ldots, n_p)\)-sequence \(s(T) = s_1, s_2, \ldots, s_n \) as follows. The vertices of zero in-degree in \(T \) are all in the same colour class: let them be \(x_1, \ldots, x_{r_1} \), all in \(V_{j_1} \), and set \(s_1 = \ldots = s_{r_1} = j_1 \). Let the vertices of zero in-degree in \(T - \{x_1, \ldots, x_{r_1}\} \) be \(x_{r_1+1}, \ldots, x_{r_2} \), all in \(V_{j_2} \), and set \(s_{r_1+1} = \ldots = s_{r_2} = j_2 \). Continue in this way until all elements of \(s(T) = s_1, \ldots, s_n \) are defined.

Conversely, given an \((n_1, \ldots, n_p)\)-sequence \(s = s_1, s_2, \ldots, s_n \), we construct an acyclic \((n_1, \ldots, n_p)\)-tournament \(T(s) \) as follows. For every \(i = 1, 2, \ldots, n \), the \(i \)-th vertex \(x_i \) of \(T(s) \) belongs to \(V_{s_i} \), and it dominates (is dominated by) all vertices \(x_k \) not in \(V_{s_i} \) such that \(k > i \) \((i > k)\).

It is easy to see that these two constructions are inverses of each other, that is, \(T(s(T)) = T \) for each \(T \) and \(s(T(s)) = s \) for each \(s \). \(\square \)

It is easy to see that the formula in Theorem 1 is also valid when some of the cardinalities \(n_i \) are zero. This remark will be used in applications of Theorem 1.

Let \(T \) be a strictly \(k \)-cyclic multipartite tournament and let \(C_1, \ldots, C_k \) be its cycles. Contracting every cycle \(C_i \) into a single vertex \(w_i \) gives an acyclic digraph \(T' \). Let \(T^*(C_1, \ldots, C_k) \) denote the digraph obtained from \(T' \) by deleting all arcs between pairs of vertices in \(\{w_1, \ldots, w_k\} \).

Now we obtain a simple formula for \(t_k(n_1, n_2) \), \(k \geq 0 \). The problem to obtain a compact formula for \(t_k(n_1, \ldots, n_p) \) \((p \geq 3)\) for every \(k \geq 0 \) seems to be much more difficult. We prove a relatively compact formula for \(t_k(n_1, \ldots, n_p) \) in Theorem 3.

Theorem 2. For every integer \(k \) such that \(0 \leq k \leq \frac{1}{2} \min\{n_1, n_2\} \), \(t_k(n_1, n_2) = \)
\[
\binom{n-3k}{(n_1-2k,n_2-2k,k)}.
\]

Proof: For \(k = 0 \), the formula follows from Theorem 1. Thus we may assume that \(k \geq 1 \). Let \(T \) be a strictly \(k \)-cyclic \((n_1,n_2)\)-tournament, and let \(C_1,\ldots,C_k \) be the cycles of \(T \). Every cycle \(C_i \) is of length four, since otherwise the chord joining two vertices distance 3 apart around \(C_i \) would complete another cycle. Thus, the cycles are ‘interchangeable’. Therefore, \(t_k(n_1,n_2) \) equals \(t_0(n_1-2k,n_2-2k,k) \), the number of unlabeled acyclic \((n_1-2k,n_2-2k,k)\)-tournaments of the form \(T^*(C_1,\ldots,C_k) \). The result now follows by Theorem 1. \(\square \)

Let \(S(p,k) \) denote the set of all unordered \(k \)-subsets of \(\{1,\ldots,p\} \). In what follows, we assume that \(\binom{m}{m_1,\ldots,m_p} = 0 \) if one of the integers \(m_i \) is negative. Note that
\[
\binom{m}{m_1,\ldots,m_p,1} = m\binom{m-1}{m_1,\ldots,m_p}
\]
if \(m_1 + \ldots + m_p = m-1 \).

Theorem 3. The number of unlabeled unicyclic \((n_1,\ldots,n_p)\)-tournaments \((p \geq 3)\) is
\[
t_1(n_1,\ldots,n_p) = (n-3) \sum_{\pi \in S(p,2)} \binom{n-4}{n_2^*\pi,n_3^*\pi} + 2(n-2) \sum_{\pi \in S(p,3)} \binom{n-3}{n_1^*\pi,n_2^*\pi,n_3^*\pi},
\]
where \(n_j^*\pi = n_j - c \) if \(j \in \pi \), and \(n_j^*\pi = n_j \) otherwise.

Proof: Let \(T \) be a unicyclic \((n_1,\ldots,n_p)\)-tournament with colour classes \(V_1,\ldots,V_p \) and let \(C \) be the unique cycle in \(T \). Two vertices of \(C \) that are not consecutive in \(C \) must be in the same colour class, since otherwise the chord between them would complete another cycle. Thus \(C \) is of length three, or of length four with vertices from two alternating colour classes.

Let us first assume that \(C \) has four vertices from \(V_i \) and \(V_j \), \(i < j \), and \(\pi = \{i,j\} \). Then the number of unlabeled unicyclic \((n_1,\ldots,n_p)\)-tournaments containing \(C \) equals the number of unlabeled acyclic \((n_1,\ldots,n_{i-1},n_i-2,n_{i+1},\ldots,n_{j-1},n_j-2,n_{j+1},\ldots,n_p,1)\)-tournaments of the form \(T^*(C) \), which is \(t_0(n_1^2(\pi),\ldots,n_p^2(\pi),1) \). By Theorem 1 and (1), this gives the first term in the formula for \(t_1(n_1,\ldots,n_p) \).

Now let \(C \) be a cycle with three vertices from classes \(V_i, V_j \) and \(V_k \), respectively, and in this order. Let also \(\pi = \{i,j,k\} \). Then the number of unlabeled unicyclic \((n_1,\ldots,n_p)\)-tournaments containing \(C \) equals \(t_0(n_1^2(\pi),\ldots,n_p^2(\pi),1) \). This fact and the possibility to have two unlabeled triangles \(C \) with vertices from classes \(V_i, V_j \) and \(V_k \) (in this order and in the opposite one) gives the second term in the formula for \(t_1(n_1,\ldots,n_p) \). \(\square \)
Acknowledgement. I would like to thank Douglas Woodall, Anders Yeo, and the referees for numerous helpful remarks and suggestions.

References

