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Abstract – The trade-off between observation frequency, 
geographical coverage and spatial resolution has often 
hampered the use of remote sensing for estimating crop specific 
biophysical variables at wide scales. In the framework of the 
GLOBAM project, a methodology is proposed to tackle the 
problem by working with medium resolution imagery (MODIS, 
250m) and taking special care to ensure the adequacy between 
the observation support (the pixel) and the target (the crop 
specific field). The approach is tested over the winter wheat 
season of 2007 in two large contrasted agro-ecological regions: 
northern Europe and the north China plains. The results show 
that a significant improvement over standard MODIS products 
can be achieved by focusing on the pixels whose ground 
projection corresponds almost exclusively to the target crop. 
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1. INTRODUCTION 
 

Accentuated inter-annual variability of climatic conditions will 
increase the interest in monitoring specific crops at national, 
regional and global scales. However, the trade-off between 
observation frequency, geographical coverage and spatial 
resolution has often hampered the use of remote sensing for 
estimating crop specific biophysical variables at wide scales. Most 
biophysical variable products are derived from remote sensing at 
regional or global scale which provides continuous maps at a 
resolution of 1-3 km (Baret et al. 2007; Myneni et al. 2002). 
Although this full exhaustive coverage is interesting for some 
applications, such products are optimized for all land cover types 
and for surfaces of different sizes, which is not always adequate for 
an application where a single crop is observed. 
 
For crop growth monitoring high observation frequency is 
mandatory, especially when anomalies due to climatic variability 
are to be detected. This often comes to the expense of a coarser 
spatial resolution which in turn results in measuring a signal 
originating from a larger and potentially more heterogeneous area. 
This bottleneck can be surmounted using imagery from medium 
spatial resolution sensors such as the Moderate Resolution Imaging 
Spectroradiometer (MODIS) onboard of TERRA and AQUA. 
However, in this context the adequacy between the observation 
support (the pixel) and the target (the crop specific field) must be 

assured. Indeed, the process of gridding, i.e. assigning an 
observation to a predefined system of grid, introduces a “pixel-
shift” which can be quantitatively described by the notion of 
“observation coverage” or obscov (Wolfe et al. 1998). Obscov is a 
ratio between: (1) the intersection area between the nominal 
observation and the grid cell; and (2) the nominal area of the 
observation. Tan et al. (2006) used this obscov value, which is 
provided along with MODIS reflectance products, to show the 
impact that gridding artifacts may have on compositing and band-
to-band registration of MODIS data. These problems are 
compounded by the large across-track scan angle range of MODIS 
which results in view zenith angles (VZA) that can reach 65° 
increasing dramatically the size of the observation support. 
 
The objective of this study is to explore the potential of MODIS 
250m imagery for monitoring biophysical variables of a specific 
crop at a regional scale. This research is realized in the framework 
of GLOBAM project which aims at developing crop specific 
monitoring capabilities by Earth observation over different test 
sites distributed over 3 continents. The problem of pixel/support 
adequacy is managed in both space and time by taking into account 
the sensor's spatial response and the obscov and VZA values 
provided by the products. The methodology is based on the 
assumption that in order to characterize the crop dynamics, it is 
better to focus on satellite observations which are acquired over 
almost pure pixels rather than mixed pixels. This implies that 
biophysical variable time series are produced only for the subset of 
pixels for which the spectral information comes exclusively (or 
almost exclusively) from the targeted crop. Over an area with 
homogeneous agro-climatic growing conditions and similar crop 
practices, the general growth of a specific crop can be characterized 
by a subset of such time series corresponding to the larger fields of 
the landscape. Even in regions where the mean field size is 
significantly smaller than the spatial resolution, a set of larger 
fields can effectively represent the regional growth dynamics of a 
given crop without adding a significant bias (Guissard et al. 2004). 
 

2. MAIN BODY 
 
2.1 Methodology 
The method presented here is tested on winter wheat (Triticum 
aestivum) for a single season in 2007. Two GLOBAM sites of 300 
by 300 km are selected in different agro-ecological regions: 
northern Europe (NEU) and the north China plains (NCP). The size 
of the wheat fields on the European site are of the same order of 



magnitude as the ground projection of the instantaneous field of 
view of MODIS. The landscape is also very fragmented, i.e. 
adjacent fields are often covered by different crops. Conversely, the 
Chinese site has much smaller fields but the same crop is cultivated 
on adjacent fields. 
 
To identify the medium resolution pixels for which the information 
comes almost exclusively from the target crop, a crop specific 
mask at a fine spatial resolution is necessary. In order to cover the 
large extent required to work at regional scale, wide-swath AWiFS 
imagery acquired early in the crop growing season was classified 
by maximum likelihood in order to generate a crop specific map. 
When possible, multi-temporal classification is realized. 
 
Due to the point spread function (PSF), the observation encoded in 
a pixel originates from a surface which is larger than its rectangular 
ground projection (Huang et al, 2002). Therefore this whole surface 
must be considered when determining whether a MODIS pixel can 
be considered as “pure”. To do so, a model of the sensor PSF is 
constructed using information provided by the MODIS 
Characterization Support Team (MCST). This model is convolved 
over the fine resolution crop mask. The resulting image maps the 
purity (with respect to the target crop) of the theoretical 
observation of the medium resolution sensor. This information is 
then upscaled to the MODIS grid in order to assign to every cell an 
estimation of the percent of the surface of the target crop which 
contributes to the reflectance value encoded in the pixel. In this 
study, a threshold of 90% of land cover purity is used to define the 
pixels that must be monitored. 
 
Time series of NIR and RED reflectances are then compiled for 
each of the 250 m accepted pixels. The collection 5 daily products 
from both MODIS AQUA and TERRA are used jointly. Values of 
obscov and VZA are retained for each measurement. The best 
reflectance measurements are expected to have high obscov values 
and low VZA. Both VZA and obscov are independent of time. 
Figure 1 illustrates the influence of these observation parameters on 
the NIR band for all the measurements: an increasing obscov tends 
to reduce the reflectance whereas the inverse is observed with 
VZA. Furthermore, the variance of the reflectance is also reduced 
when obscov is high and VZA low. 

 
Figure 1. Influence of (a) obscov and (b) VZA on the NIR 

reflectance. The density plots are based on the entire 90% pure 
time series of the NEU site during the first 200 days of 2007. 

 
Biophysical variables are derived from the time-series using the 
algorithm developed for the CYCLOPES products (Baret et al., 
2007). This algorithm is based on the inversion of a radiative 
transfer model (SAIL model developed by Verhoef (1984)) using a 
neural network approach. The use of a radiative transfer model 
helps the methodology to be applicable in different agro-ecological 

contexts. Indeed, the biophysical variable retrieval is based on 
physics rather than locally adjusted empirical relationships. Using a 
neural network to achieve the inversion procedure helps rendering 
the approach computationally efficient. Both these characteristics 
are interesting in an operational monitoring perspective. The output 
biophysical variables are leaf area index (LAI), fraction of 
absorbed photosynthetically active radiation (FAPAR) and 
vegetation cover fraction (FCOVER). 
 
The biophysical variables are derived for every single observation 
at every 90% pure pixel. On one hand, a better estimation of these 
variables can be expected for the input observations with higher 
obscov and lower VZA. On the other hand, limiting the biophysical 
variable time series only to estimations of high quality may 
jeopardize the temporal coverage. In order to take full advantage of 
all the data, the time series of biophysical variables are smoothed 
using a polynomial regression filter which favours high obscov and 
low VZA but still uses all available observations. The weighting 
functions are shown on Figure 2. In this paper, a first order 
polynomial is used and the variance of the Gaussian kernel along 
the temporal axis is 50. 

 
Figure 2. Weighting functions of the polynomial regression filter 

for (a) obscov and (b) VZA. 
 
2.2 Results 
An example of the resulting smoothed time series for each 
biophysical variable on a single 90% pure pixel is shown, for both 
NEU and NCP sites, on Figure 3. The temporal profile of the NEU 
site, which is representative of the whole dataset, reveals the severe 
lack of data during long time periods due to overcast weather. Data 
availability is not an issue for site NCP but early values might be 
affected by snow undetected by the MODIS quality flags. 
 
Ground LAI measurements are used to validate the biophysical 
variable estimates over the NEU and NCP sites (see Figure 4). On 
the NEU site, the LAI was measured using a LiCor LAI-2000. 
Measurements were performed on large fields which correspond to 
90% pure MODIS pixels around anthesis (onset of flowering) when 
the LAI values are expected to be highest. For the NCP site, the 
ground LAI values are available along the whole season. These are 
obtained by measuring the length and width of a representative 
sample of leaves. This measuring method, unlike that of the LAI-
2000, accounts for stacked leaves resulting in higher values. On the 
other hand, the LAI-2000 measures do not distinguish between 
leaves, stems or other organs and should therefore be considered as 
a plant area index (PAI). 
 
The estimated LAI is also compared to the standard LAI MODIS 
product (see Figure 5) which is calculated by inverting the radiative 
transfer problem using a look-up table (Myneni et al. 2002). 
However, the spatial resolution of this product is 1km. 



   
Figure 3. Smoothed time series for the biophysical variables of interest for the NEU site (on the left) and for the NCP site (in the right). 

The larger dots indicate favourable obscov values while the darker dots indicate favourable VZA. 
 
 
 

 
 

Figure 4. The relationship between estimated LAI and field 
measurements for (a) NEU site and (b) NCP site. 

 

 
 

Figure 5. Comparison of the LAI estimates by the method 
presented in this paper with the MODIS Collection 5 product for 

both sites 

Therefore, this comparison is done for indicative purposes only as 
the MODIS LAI pixels do not necessarily cover a single crop 
whereas the 250m pixels used in the approach presented here have 
been selected to ensure 90% purity. 
 
The validation of the proposed methodology against ground truth is 
resumed in Table A using the Root Mean Square Error (RMSE) 
and the coefficient of determination (R²). For comparison purposes, 
the validation was also performed: (i) on punctual (i.e. non-
smoothed) LAI estimates; (ii) on LAI smoothed using a polynomial 
regression filter with the same characteristics as the one used 
earlier except that it is not weighted by obscov and VZA; and (iii) 
on the MODIS collection 5 products.  
 

Table A. Validation results with respect to the ground measured 
LAI. N is the number of validation samples. 

 

Site N Product R² RMSE 
(detrended) 

18 Raw estimates 0.059 2.998 
27 Simple smoothing 0.433 1.347 
20 Weighted smoothing 0.581 1.015 

NEU 

17 MODIS Collection 5 0.125 2.107 
59 Raw estimates 0.468 2.497 (0.768) 
61 Simple smoothing 0.796 2.452 (0.273) 
61 Weighted smoothing 0.787 2.558 (0.273) 

NCP 

45 MODIS Collection 5 0.269 3.818 (0.428) 
 



Since the reference for the NCP site is planimetric LAI, a 
significant bias is observed in all products (especially for the higher 
LAI values) which affects the RMSE. The RMSE is therefore 
recalculated for this site after removing the trend which is modelled 
by a second order polynomial. 
 
Note that the number of validation samples is variable between the 
product types. The raw LAI estimates were selected when they 
were located within ±3 days of the field measurement. For the NEU 
site where cloud coverage was an issue, this reduced significantly 
the number of usable samples. The number of validation samples is 
not constant for the filtering techniques because unrealistic 
estimations (above LAI=6) where removed from the dataset. Such 
high estimations may occur if the smoothing was too close to badly 
estimated LAI values. For the MODIS LAI Collection 5 products, 
which are provided every 8 days, linear interpolation is used to find 
the value corresponding to the field measurement. However this is 
not done when values in the time series are missing, resulting in a 
reduced number of validation samples. 
 
2.3 Discussion 
The number of ground measurements is limited and might not be 
enough to fully characterize the performances of the different 
products. Nevertheless, inter-comparing the different products 
listed in table A do help to evaluate the method presented in this 
paper. 
 
As expected, the non-smoothed LAI estimates perform poorly due 
to the variable quality of the input reflectances. Figures 2 and 3 
illustrate how variable the estimations can be. Smoothing the LAI 
estimates significantly improves the performance. 
 
The comparison of the results of the two smoothing methods 
reveals that taking into account the quality by means of the weights 
improves the performance only for the NEU site. The best 
explanation relies on the structure of the agricultural landscapes. 
Since the NEU is much more fragmented, pixel purity is threatened 
when the observations are done with higher VZA and when the 
obscov is low. In the Chinese landscape, if the observation support 
is larger than expected (due to high VZA and low obscov), the 
impact on the reflectance is reduced because areas surrounding the 
support are very likely covered by the same canopy. 
 
For both sites, the RMSE and the R² indicate that the LAI 
estimated by the present approach is closer to ground truth than the 
MODIS standard product. The comparison of the retrieval methods 
has shown that NNT does perform better than the MODIS look-up 
table (Weiss et al. 2007). However, in this case the NNT method is 
favoured by the input data of purer observations which is filtered 
both in the spatial and temporal domains. Furthermore, the scale of 
the products is different (250 m vs. 1 km). 
 

3. CONCLUSIONS 
 
Time series of biophysical variables for a specific crop were 
successfully retrieved from MODIS data. By focusing the attention 
to purer crop specific pixels, the resulting product performs better 
than the standard LAI MODIS product. Further research is 
necessary to comfort these conclusions since they could be affected 
by the choices in the pixel purity tolerance (in this case 90%), in 
the description of quality (weighting functions for obscov and 
VZA) and in the characteristics of the filter (size, order). 

Nevertheless, the results presented in this paper do show that to 
monitor winter wheat over the studied landscapes, it is worthwhile 
to rely on a method taking into account the adequacy between the 
observation support (the pixel) and the target crop specific field. 
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