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ABSTRACT

Autonomous cyber-physical systems are prone to error and
failure. Verification and validation (V&V) is necessary for
their safe, secure and resilient operations. Methods to detect
faults in aerospace engineering (fault trees) and later adapted
for security (attack trees) could capture a wide array of critical
risks and we argue how stress testing could be a pragmatic
approach to evaluating the assurance of autonomous cyber-
physical systems.

Index Terms— Stress testing, Autonomous Systems, For-
mal Methods, Cyber-physical systems, Robust AI, XAI, As-
sured autonomy, Verification and Validation, V&V

1. INTRODUCTION

Cyber-physical autonomous systems are prone to failures and
are not currently tested properly. Verification and validation
(V&V) testing must fully capture both physical safety and
digital security risks, which are compounded by the inher-
ent complexity of autonomous systems. Current V&V test-
ing and proving properties can harden these systems, but they
are inadequate–it is impossible to “formally” test all failure
modes. The key idea is that these failures are not isolated. In-
stead of building provable properties, our research is a com-
plementary approach: we propose work on AI stress testing.

Stress testing is crucial for autonomous cyber-physical
systems in open environments. Image recognition systems
have been shown to be brittle and biased [1], and this is illu-
minated as a threat to humanity in the domain of self driving
cars [2]. These mistakes and errors need to become test cases,
similar to the types of stress testing that is done in consumer
vehicles, aerospace systems, and commercial aircrafts. We
discuss the merits of stress testing via a risk-based approach
to build trust and security in autonomous, cyber-physical sys-
tems. While a stress test should be customized to the system
of interest, we propose a consistent approach to evaluating
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and interpreting the results of stress tests to successfully com-
pare V&V tests across autonomous agents. Our stress test
evaluation framework is based on methods that have been in
use for decades in safety science. We provide an example for
how our stress testing framework could be employed for the
autonomous agents that comprise NASA’s future lunar habitat
- the Artemis Base Camp.

2. PRIOR WORK ON V&V FOR AUTONOMY

Safety-critical systems need appropriate testing protocols.
Human operators of machinery or personal vehicles are sub-
ject to driving tests, safety protocols, and certifications. Au-
tonomous operators should be subject to the same types of
testing.

But what do we seek to understand from these tests?
There has been work on documenting failures, but there is an
increasing need to categorize and prioritize autonomous sys-
tem needs and challenges [3]. The AI incident database [4]
was released as a means to avoid “repeated AI failures [by]
making past failures known.” We are inspired by the work
of the AI incident database to distill past failures into an
accessible testing framework. There have been many V&V
mechanisms proposed for autonomous agents[5]. Below is
a small sampling of some predominant tests for autonomous
agents, each of which have notable draw-backs.

Formal methods is among the most used V&V testing
techniques that has been employed for safety-critical sys-
tems [6, 7]. However, there are certain characteristics of
autonomous agents that are not conducive to formal methods.
For example, autonomous agents generally lack ”unambigu-
ous” requirements and specifications, they operate in semi-
known environments that may change at a moment’s notice,
and they may hand off control to a human operator at some
point in the mission thereby introducing further uncertainty
into the operating equation [8]. Additionally, there is often
incomplete information about what went into the training of
the agent and its subsequent learned behavior. The agent may
have learned “unsafe” behavior, unknown to operators [8].

There are also challenges using formal methods to eval-



uate the security of an autonomous agent. Many have tried
to remedy formal methods for autonomous applications [9,
10, 11], including work that is quite similar to our contri-
bution: using some sort of fault tree to derive verification
properties [12, 13]. But, formal methods has struggled to
gain traction in security testing communities, given the ever-
expanding state space and unpredictability of creative attack-
ers. For example, formal methods will not be able to detect
a potential issue associated with previously unseen vulnera-
bilities or exploits [14]. This is the very reason why many
security researchers still employ attack trees rather than for-
mal methods to evaluate security holes in complex systems.
Ultimately, the challenge with formal methods is that they
are generally reliant on specifications, static analysis, well-
known outcomes and determinism to develop a strong model
- whereas autonomous agents change at run-time given that
they are constantly learning and making decisions in unde-
fined environments.

Differential testing is generally engaged to make sure that
different versions of software that may have been updated
produce a consistent output [15]. It has been used for both
cyber-physical systems and information technology systems
alike. A challenge engaging this approach for autonomous
agents is that it only intends to capture changes in operation
between different versions - not identify net new risks.

Simulation testing is commonly employed in reinforce-
ment learning, where the agent training process involves se-
quential Markov decision problems which act as essentially
a series of stress tests. Algorithms that can be engaged for
this simulation include a Monte Carlo tree search or deep re-
inforcement learning[5]. Usually, these ”tests” occur in a re-
alistic, but closed-world simulation. The problems arise with
this approach when these agents transfer to real, open world
environments given their dependence on some pre-existing
domain knowledge which can be poorly defined in unknown
environments.

3. FAILURE TYPES AND THEIR STRESSORS

There are three failure axes for cyber-physical systems. The
system can fail due to an internal fault (in Section 3.1), or an
error that can be pinpointed to a part or connection inside the
system. Another failure mode is due to an unexpected exter-
nal factor (in Section 3.2); an attack or one-off incident from
external factors, such as weather. Finally, a less considered,
but equally important failure mode in the context of testing is
that of ethics (in Section 3.3). Autonomous agent ethics has
been robustly discussed for autonomous agents [16], but less
so in the context of testing.

For each axis, we propose a series of stressors that in-
duce the associated failures. The stressors should be individ-
ually tested for each autonomous agent. The specific tests
employed for the stressors should vary depending on the type
of agent being stress tested; however the tests should be eval-

uated in a consistent manner so that systems engineers can
compare and prioritize failures.

Importantly, the questions aim to distinguish between fail-
ures that matter in the context of autonomous agent resilience
and others that do not. Autonomous agents are inherently
complicated and will therefore be prone to failures - but not
all will be consequential. Stress tests should elucidate this
distinction between failure severity. Resilience is used as
the baseline requirement for distinguishing what failures mat-
ter because it indicates what failures an agent could tolerate
while still achieving its mission. The questions are explicitly
described further in the Stress Testing Evaluation Framework.

3.1. Internal Fault

Internal faults can be caused by stresses due to a failed com-
ponent or a failed connection between parts. One type of
local failure is a mechanical failure such as a sensor fail-
ure. This occurs when a mechanical component is obfus-
cated, misaligned, misinterpreted or malfunctions altogether.
An obfuscation example is LiDAR sensors that cannot detect
objects in the rain or snow [17]. Since sensor data is com-
monly noisy, it can be easily misinterpreted, which happens
in wireless networks, vehicles, and other smart systems. And
finally, sensors, like all subsystems can malfunction or crash.
The main commonality between these failures are that they
are local to the sensor subsystem.

Software bugs are another stress that can result in an inter-
nal fault, which can be local or between components. An ex-
ample is the NaN error in the autonomous racecar1, or the hal-
lucinating behavior of deep network networks[1], which can
be monitored with commonsense data and rules [18]. Other
communication failures can be due to network latency, incor-
rect assumptions, or other external factors, which we cover in
the next section.

3.2. External Forces

External forces on an agent could induce a variety of failures.
One such external force is that of a cyberattack. Autonomous
cyber-physical systems have a great deal of surface area that
could be subject to attack. Attackers may be particularly at-
tracted to autonomous agents given the grandeur and physical
impact of their potential failure. Attackers can target anything
from the training data set to the control system itself. Cyber-
physical autonomous agents are finely tuned where even a
slight timing attack could throw off the real-time operating
systems inherent to these agents. A timing attack to an au-
tonomous robotic arm operating in a chemical plant could
cause an explosion should chemical compounds be mixed at
the incorrect frequency. While not a fully autonomous agent,

1Autonomous racecar slams into a wall:
https://www.thedrive.com/news/37342/autonomous-race-car-starts-test-
lap-immediately-slams-into-wall



Fig. 1. Our stress test evaluation framework.

a similar cyber incident occurred at a German steel mill in
2014 causing significant damage to the plant [19].

The physical nature of cyber-physical autonomous agents
also poses the risk of physical sabotage. Drones are increas-
ingly autonomous and being employed for important tasks
such as in military surveillance and reconnaissance missions.
There have been incidents where semi-autonomous drones
have been shot down such as the Global Hawk Spy Drone
by Iran in 2019 [20].

A less considered, but equally devastating external force
is natural extreme environmental conditions, such as weather.
Many autonomous agents are designed to operate in extreme
environments so that humans do not have to be present. An
example of such an autonomous robotic agent is one used for
deep sea arctic exploration [21]. Autonomous agents have
challenges with far less extreme environments - such as in
rain, wind or fog, which have been demonstrated to induce
mission failure in autonomous vehicles [22]. Such extreme
natural conditions’ impact can become compounded in au-
tonomous agents - inciting system failure.

3.3. Ethics

An ontology of ethics stressors have been previously enumer-
ated to include: transparency, accountability, privacy, fairness
[16]. Each has the capacity to cause a failure that inhibits a
system’s mission resilience. An additional ethics stressor that

has not been as discussed is environmental impact. Specif-
ically, this could include how a system’s performance may
damage its surrounding environment while achieving its mis-
sion. For example, an autonomous robot whose mission is to
retrieve a series of artifacts from a delicate environment such
as an archaeological excavation may succeed in retrieving the
artifact at the expense of the surrounding environment that
housed the artifact - thereby inhibiting its ability to return to
retrieve further specimens. This presents an ethical failure of
the autonomous agent.

4. STRESS TESTING EVALUATION FRAMEWORK

We propose a hierarchical tree structure that serves to aid
systems engineers to evaluate each agent’s stressors across
an autonomous system. This hierarchy employs the frame-
work established for fault tree analysis (originally developed
for the aerospace community in the 1960s) [23], which has
been used extensively in the field of safety science and then
later adapted by the security community in the form of attack
trees [24]. Tree structures have been used to enumerate risk
for automotive reliability and safety studies[25]. Generally
these tree structures do not have significant structural require-
ments beyond enumerating subsequent detail as one descends
the tree on how a component failed or is attacked. However,
by furnishing each tree “branch” level with a series of ques-
tions about the failure, the systems engineer can more easily



compare and prioritize the failures for each agent. Establish-
ing further structure for the tree hierarchy has been previously
demonstrated [26].

5. EXAMPLE SCENARIO

To demonstrate how the stress testing evaluation framework
could be employed, a sample is illustrated in Figure 1 con-
cerning NASA’s future autonomous lunar habitat. The sce-
nario illustrates an autonomous agent that has been stress
tested for each stressor for each autonomous agent described
in Section 3. The framework would have been completed
by a systems engineer after the stress test for each agent. A
systems engineer could use any level of the tree hierarchy
(question) as their prioritization filter; however, the failures
that affect mission resilience should be addressed first.

The lunar habitat will be composed of a series of au-
tonomous control system agents that will be required to work
together with other agents and humans. In some cases agents
will be acting with humans present and co-operated, while
at other times the agents will be acting without the physical
presence of humans. In all cases, the agents will be work-
ing towards the mission of establishing a sustained habitable
environment that enables scientific exploration on the lunar
surface. Agents that compose the autonomous lunar habitat
may include, but is not limited to: resource (water, energy,
materials, etc.) harvesting, resource (water, energy, materi-
als, etc.) management (storage, allocation, discharge, etc.),
vehicle control, vehicle maintenance, climate control, atmo-
spheric regulation, access control, and waste management.
The success of the mission will be reliant on the accomplish-
ment of each agent’s operations as well as their interactions.
For example, a vehicular control system will be dependent
on the resource management system given a lunar rover will
require proper energy storage, allocation and distribution.
The lunar habitat will exist in an inherently extreme envi-
ronment with considerable failure risks from external forces.
Given the complexity of the autonomous agents, there are
also many internal faults that can possibly occur. The nec-
essary agent-human and agent-environment interaction also
poses the opportunity for ethical failures. Each stressor must
be evaluated in the context of the operating parameters of the
autonomous agent at any given time. Evaluating NASA’s fu-
ture lunar habitat is an especially interesting and critical case
for stress testing given the lack of physical access to devices,
extreme costs associated with repairs and the delicate nature
of the overall mission. One autonomous agent’s failure could
ostensibly cause the lunar habitat to fail.

6. DISCUSSION AND FUTURE WORK

Although there has been previous work on documenting and
classifying failure cases, there has been little work on what in-
formation is sought when a system fails. In this paper we have

shown a proof-of-concept stress testing framework for cyber-
physical autonomous agents. This is especially important for
assured autonomy and building trust in our autonomous coun-
terparts.

As autonomous agents take control of operation that was
previously entrusted to humans, it is necessary to test these
mechanisms in the same way that human operators are tested.
With the increasing number of connections, parts, and com-
plexity of these systems, the state space has evolved making
it challenging to fully address using formal methods. Un-
like other V&V frameworks, our approach offers a means for
flagging issues without extensive data or quantitative analy-
sis (which may be unavailable). The stress testing framework
can customized to prioritize stressors and their associated fail-
ures to help ensure the autonomous agent’s assurance. While
some existing V&V methods are useful for static systems, it
is time for the community to expand how autonomous agents
are evaluated and stress testing will be a critical aspect of this.
Now, it is imperative that we start testing and refining stress
test evaluation frameworks such as the one proposed to help
build trust in autonomous agents.

7. CONCLUSION

In this paper, we have revisited themes from classical fault
diagnostics to chart a path forward for stress testing au-
tonomous cyber-physical systems. Our stress testing frame-
work enables end users to determine what they should be
testing for (given each system is unique), while leaving it up
to the systems engineers to devise sufficient tests for their
systems. We do not believe that the stress testing framework
proposed is comprehensive and we encourage the community
to build on this to propose new questions critical to mis-
sion resilience and system assurance. Fundamentally, there
is merit to strategically breaking the autonomous agent and
methodically questioning and documenting what went wrong.
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