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Human growth hormone (hGH) is secreted in a pulsatile fashion, generallyAbstract
following a circadian rhythm. A number of physiological stimuli can initiate hGH
secretion, the most powerful, non-pharmacological of which are sleep and exer-
cise. hGH has many varied roles throughout life, from growth itself, including the
turnover of muscle, bone and collagen, to the regulation of selective aspects of
metabolic function including increased fat metabolism and the maintenance of a
healthier body composition in later life.

The exercise-induced growth hormone response (EIGR) is well recognised and
although the exact mechanisms remain elusive, a number of candidates have been
implicated. These include neural input, direct stimulation by catecholamines,
lactate and or nitric oxide, and changes in acid-base balance. Of these, the best
candidates appear to be afferent stimulation, nitric oxide and lactate.
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Resistance training results in a significant EIGR. Evidence suggests that load
and frequency are determining factors in the regulation of hGH secretion. Despite
the significant EIGR induced by resistance training, much of the stimulus for
protein synthesis has been attributed to insulin-like growth factor-1 with modest
contributions from the hGH-GH receptor interaction on the cell membrane.

The EIGR to endurance exercise is associated with the intensity, duration,
frequency and mode of endurance exercise. A number of studies have suggested
an intensity ‘threshold’ exists for EIGR. An exercise intensity above lactate
threshold and for a minimum of 10 minutes appears to elicit the greatest stimulus
to the secretion of hGH. Exercise training above the lactate threshold may amplify
the pulsatile release of hGH at rest, increasing 24-hour hGH secretion

The impact of chronic exercise training on the EIGR remains equivocal.
Recent evidence suggests that endurance training results in decreased resting hGH
and a blunted EIGR, which may be linked to an increased tissue sensitivity to
hGH.

Whilst the potential ergogenic effects of exogenous GH administration are
attractive to some athletes, the abuse of GH has been associated with a number of
pathologies. Identification of a training programme that will optimise the EIGR
may present a viable alternative.

Ageing is often associated with a progressive decrease in the volume and,
especially, the intensity of exercise. A growing body of evidence suggests that
higher intensity exercise is effective in eliciting beneficial health, well-being and
training outcomes. In a great many cases, the impact of some of the deleterious
effects of ageing could be reduced if exercise focused on promoting the EIGR.

This review examines the current knowledge and proposed mechanisms for the
EIGR, the physiological consequences of endurance, strength and power training
on the EIGR and its potential effects in elderly populations, including the aged
athlete.

Growth hormone (GH) in health and disease has secreted in 6–12 discreet pulses per day with the
been the focus of attention for a number of re- largest pulse being observed around 1 hour after the
views.[1-3] Limited reviews exist, however, examin- onset of night-time sleep (i.e. midnight in the major-
ing the exercise-induced growth hormone response ity of cases). A number of stimuli can initiate hGH
(EIGR). That is, the effect of exercise on GH secre- secretion, the most powerful, non-pharmacological,
tion and its subsequent effects. of which are sleep and exercise.

Human growth hormone (hGH), a peptide hor- The fact that exercise stimulates GH secretion is
mone, is one of seven hormones produced by the well known and although the exact mechanisms
anterior lobe of the pituitary gland. hGH is produced remain elusive, a number of candidates have been
throughout life, with its highest values being mea- implicated. These include neural stimulation, feed-
sured during puberty. Whilst it was believed for back from release of insulin-like growth factors
centuries that hGH played no part in the regulation (IGFs), direct stimulation by catecholamines, lactate
of growth, or any other aspect of human physiology and or nitric oxide (NO), and changes in acid-base
after puberty, recent evidence suggests that hGH has balance. Exercise stimulates the release of GH into
many varied roles throughout life.[3-5] In general, the general circulation, thereby stimulating other
hGH secretion follows a circadian rhythm and is growth factors in different tissues around the body.
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For example, it has been suggested that muscle 1.1 Physiological and Biochemical Actions
hypertrophy is one of the outcomes that may be

In the plasma, the majority of hGH is bound to a
mediated by GH as a response to exercise. In addi-

carrier protein known as GH-binding protein and is
tion to the recognised effects on growth, hGH is also

then taken up by specific GH receptors which are
believed to affect substrate utilisation during exer- located on target cells.
cise. The positive impact of administration of exog- hGH is essential for postnatal and pubertal
enous GH, upon body composition, muscle mass growth, and for normal carbohydrate, lipid, nitrogen
and metabolic function widens the potential for its and mineral metabolism. The growth-related effects
abuse from explosive to endurance athletes looking of hGH are primarily mediated by IGF-1 and to a
for illicit ways to improve performance in sport. lesser extent IGF-2, both members of the insulin-
However, in all likelihood, the same adaptations that like gene family. Production of IGF-1 is generally
are beneficial to performance can be accomplished mediated by hepatic GH receptors.
by the application of appropriate specific physical
training which will promote hGH release during 1.2 Growth Hormone and
exercise and at rest. Growth Regulation

The reported potential for limiting ageing, or at The currently accepted hypothesis on growth in-
least some of the believed physiological conse- volving GH is known as the Somatomedin Hypo-
quences of ageing, has been suggested for exoge- thesis.[12] This hypothesis states that in the liver and
nous administration of GH[6,7] as it has for aspects of other target cells, through interaction with its recep-
‘fitness’ maintenance and improvement.[8] Indeed, tor, hGH induces the production of somatomedins,
exercise may slow ageing via hGH secretion.[9]

or IGFs (IGF-1 and IGF-2). IGFs are produced by
most tissues of the body, although IGF-1 is predom-The EIGR has a positive role to play, from op-
inantly produced by the liver, and they are found intimising training adaptation in elite athletes, and
plasma bound to a family of proteins called IGF-reducing the incidence of GH abuse in sport, to
binding proteins. Being so widely distributed it isimproving the quality of life in an ageing popula-
understandable that IGFs have the potential to acttion. Further studies are needed to identify the opti-
via endocrine, autocrine and paracrine mechanisms.mal training programme to elicit the greatest EIGR.

IGF-1 released from the liver in response to hGH
is involved in two negative feedback loops. One

1. Physiological Consequences of directly affects the somatotrope cells of the anterior
Human Growth Hormone pituitary, itself inhibiting further release of hGH,
(hGH) Secretion whilst the other affects GH releasing hormone and

somatostatin release from the hypothalamus to re-
hGH affects the action of a number of tissues and duce the secretion of hGH. However, during exer-

organs throughout the body, often initiating a cas- cise, Kanaley et al.[13] demonstrated that the exercise
cade of reactions throughout many physiological stimulus counteracts most other negative feedback
systems. The use of exogenous administration of to ensure that hGH secretion continues to occur.
GH for anything other than linear growth (e.g. for They found that repeated bouts of exercise resulted
treating short stature in dwarfism) is an area that is in an exercise-induced hGH response to each acute
still expanding. Sacca et al.[10] demonstrated that exercise episode, thereby increasing the 24-hour
supplemental GH has beneficial effects on the exer- secretion of hGH. Thus, it would appear that exer-
cise capacity of patients with dilated cardiomy- cise counters negative feedback and so hGH secre-
opathy. More recently, Hütler et al.[11] have shown tion is maintained or increased.
that GH treatment improves exercise tolerance in Although most of the anabolic actions of hGH are
children with cystic fibrosis. mediated by the somatomedins (IGFs), some actions
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are mediated in individual cells by pathways initiat- main actions of IGF-1 seem to concern protein syn-
ed by direct activation by hGH via the GH receptor thesis.[21]

interacting with ‘JAK2’, a tyrosine kinase. This
1.3.3 Lipid Metabolismcomplex initiates the growth processes of that cell
hGH promotes the release of free fatty acids andvia an intracellular cascade of growth and transcrip-

glycerol from the adipose tissue, increases circulat-tion factors.[14]

ing free fatty acids and their oxidation in the liver.[22]
Studies administering recombinant hGH (rhGH)

A number of studies have also demonstrated thatand exogenous IGF-1 in combination to healthy
free fatty acids can, in turn, physiologically regulatehuman subjects[15] or to AIDS patients with muscle
hGH release via a negative feedback.[23-28]

wasting[5] have demonstrated far greater anabolic
Of the known metabolic functions of hGH, it haseffects than the administration of rhGH or exoge-

been suggested that the most important of these is itsnous IGF-1 in isolation. Findings of this type could
stimulation of lipolysis in adipose tissue.[29] Al-form the basis for the suggestion that some sports
though fatty acid mobilisation from adipose tissue ispeople are abusing a ‘cocktail’ of hGH in combina-
known to be under nervous control, certain lipolytiction with IGF-1.
hormones also increase the activity of triacylglycer-
ol lipase and hence the release of free fatty acids.

1.3 Growth Hormone and Metabolism GH does this in the presence of glucocorticoids.[29]

The mechanism by which a peptide hormone initi-
ates changes in lipolysis is as a result of the hormone1.3.1 Protein Synthesis
binding to β-receptors on the outer surface of theBrahm et al.[16] demonstrated that GH is taken up
adipose tissue cell. These hormones either activateby human skeletal muscle during dynamic exercise.
(lypolytic hormones) or inhibit (antilipolytic hor-In this study, the arteriovenous hGH concentration
mones) adenlyate cyclase to alter the intracellulardifference was examined in exercising thigh muscle
concentration of cyclic AMP and hence Ca2+ con-and a significant uptake (3.1 mU/min, or 1.21 µg/
centration, which in turn affects the activity of themin) found during exercise with a release of IGF-1
triacylglycerol lipase enzyme.[30]

at the cessation of exercise. A number of studies by
Fryburg and various coworkers[17-19] have shown 1.3.4 Mineral Metabolism
that GH acutely stimulates muscle protein synthesis hGH and IGF-1 promote a positive calcium,
in healthy human adults. magnesium and phosphate balance and cause the

retention of sodium, potassium and chloride ions.
1.3.2 Carbohydrate Metabolism The effect on calcium, magnesium and phosphate
hGH generally antagonises the effects of insulin. probably relates directly to the hGH action in bone,

The administration of rhGH results in hypergly- where it promotes the growth of long bones at the
caemia as the combined result of decreased peri- epiphysial plates in growing children and apposi-
pheral utilisation of glucose and increased hepatic tional or acral growth in adults.[22]

production via gluconeogenesis.[3] In the liver, hGH
increases liver glycogen derived from amino 2. Proposed Stimuli for Increased hGH
acids.[3] Impairment of glycolysis may occur at a Secretion in Exercise
number of steps, and the mobilisation of free fatty
acids from triacylglycerol stores may also contribute The exact mechanism for the increased secretion
to the inhibition of glycolysis in muscle. The mech- of hGH in response to exercise is unknown and it is
anisms responsible for the effect of hGH on carbo- unlikely that any one factor acts as the exercise-
hydrate metabolism remain to be fully elucidated; related stimulus, although a number of candidates
however, it is clear that IGF-1 is not involved.[20] have been suggested. These include: direct neural
Consistent with the somatomedin hypothesis, the input to the anterior pituitary, facilitation via secre-
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tion of NO, the increase in circulating catecho- tive origin from muscle spindles and/or Golgi ten-
lamines and lactate, and decrease in pH, that rou- don organs. This may imply a role for increased
tinely accompany exercise at or beyond lactate muscle fibre tension, causing greater muscle spindle
threshold. Although ingestion of amino acids has activity resulting in greater afferent traffic to the
been suggested to promote hGH secretion in ath- CNS and ultimately stimulating increased secretion
letes, this is beyond the scope of the present review. of hGH.
For a recent review in this area refer to Chromiak The greater effect here would appear to be from
and Antonio.[31]

afferents originating in fast twitch motor units. In a
previous study Gosselink et al.[38] reported that

2.1 Neural Stimuli 15-minute bouts of electrical stimulation of the
proximal ends of severed nerves innervating pre-

Thompson et al.[32] studied the effects of a cholin-
dominantly fast twitch muscle fibres increased theergic agonist and an opioid receptor antagonist on
bioassayable GH release in anaesthetised rats.hGH secretion during and after a moderate-intensity

McCall et al.[39] examined the effect ofexercise bout. They found that resting serum hGH
microgravity (spaceflight) on the release of hGH inconcentrations in response to both drugs was not
response to the same standardised exercise test thatsignificantly different from the baseline values. Dur-
they had applied at normal gravity.[34] They founding exercise, and during recovery from exercise, the
that the BhGH response to exercise was suppressedopioid antagonist did not significantly affect hGH
during spaceflight indicating that some minimumconcentration. In contrast, the cholinergic agonist
level of chronic neuromuscular activity and/or load-caused a significant increase in the hGH concentra-
ing is necessary to maintain a normal exercise-tion during and post-exercise, but did not affect the
induced BhGH release. These findings appear topeak hGH concentration. They concluded that the
support the hypothesis that there is a muscle affer-enhanced cholinergic tone potentiates the hGH re-
ent-pituitary axis that modulates BhGH release dur-sponse to moderate-intensity exercise as seen by
ing exercise. A more recent study by McCall et al.[41]enhanced integrated and mean hGH concentrations
provides convincing evidence for afferent regulationduring the exercise and recovery periods. Opioids
of BhGH in humans. This study applied 10 minutesappear to have only a minor role in hGH release;
of vibration at 100Hz to intact muscle in situ. Tibial-however, further investigation is indicated.
is anterior (TA) and Soleus (Sol) were vibrated onA number of papers examining the role of affer-
different days in random order. Vibration of theseent input in hGH secretion have found that the
muscles at 100Hz resulted in a 94% increase inneural response appears to be related, in particular,
plasma BhGH from TA and a 22% decrease result-to bioassayable subfractions of hGH (BhGH) that
ing from Sol vibration. Since both comprise pre-are not detectable by immunoassay. These subfrac-
dominantly slow twitch muscle fibres, the authorstions are typically 60–80kD in size and have been
speculate that the differential regulation of BhGHfound in a number of human studies.[33,34] A number
must be due to the flexor versus extensor functionsof papers[35-37] have suggested a heterogeneity of
of the muscles. Immunoassay hGH were similar forhGH fragments appearing in the circulation and a
both TA and Sol. The authors concluded that agrowing number of researchers are examining the
muscle afferent-pituitary axis modulates the releaserole of BhGH.[34,38-40]

of BhGH but not immunoassayable hGH in humans,Gosselink et al.[40] demonstrated that, in rats,
and further that the release of BhGH is muscleregulation of the release of bioassayable GH can be
specific.differentially mediated through low-threshold affer-

In contrast, one study failed to show an exercise-ent inputs from fast or slow twitch skeletal muscle
induced BhGH response. Hymer et al.[42] examinedmotor units. These appeared to be from type I and II
the effects of an acute heavy resistance exerciseafferent fibres suggesting inputs were of propriocep-
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protocol on the molecular nature of secreted hGH in acute exercise on the regulation of NO formation in
women. Blood samples were fractionated into healthy humans. They determined the relationship
>60kD (fraction A), 30–60kD (fraction B) and between peak work rate and resting levels of nitrate
<30kD (fraction C). However, although large (2- to (a stable metabolite of NO) in plasma and urine of
4-fold) increases in circulating immunoassayable individuals of differing levels of physical fitness.
hGH were observed (in fractions B and C), these Plasma nitrate was found to be higher in the resting
were reported as non-significant. The differences samples of athletic individuals compared with a
seen between the findings of McCall et al.[41] and non-athletic control group, demonstrating a greater
Hymer et al.[42] could be due to sex differences but turnover of NO and suggesting a greater general
this is speculation that is yet to be confirmed. ‘readiness’ for the huge hyperaemia observed at the

onset of exercise. They also reported that those with
a lower work capacity (i.e. less physically ‘fit’) have2.2 Nitric Oxide
a lower correlation between ‘fitness’ and excretion

NO has been shown to enhance glucose transport of nitrate at rest, further suggesting a training effect
in the skeletal muscle of rats[43] and has been identi- on NO and that acute physical exercise increases
fied as an important intra- and intercellular transmit- plasma nitrate levels in both athletic and non-athlet-
ter involved in the control of the hypothalamic- ic individuals.
pituitary axis. This has been supported by the dis- The suggestion that NO is involved in the EIGR
covery of NO synthase in pituitary cells.[44,45] The is a highly attractive proposition and many studies
role of NO in the modulation of GH secretion re- have reported a diverse range of roles for NO in
mains unclear; however, Pinilla et al.[46] were able to areas that are quite obviously related to exercise. NO
show that NO stimulates GH secretion in vitro and has also recently been proposed to be involved in the
further, that this occurred through a specific calci- post-tetanic relaxation process in skeletal muscle[52]

um-cGMP-independent mechanism. and so is perhaps antagonistic to the lactate ion’s
A number of studies have examined the role of interference with post-tetanic relaxation,[53] which is

NO during exercise. At the onset of exercise there is discussed later.
a huge (30-fold) increase in blood flow to working Whilst NO may not act as the primary stimulus
muscle. This requires massive vasodilatation in the for the EIGR, it may have a role in facilitating hGH
arteries and arterioles leading to muscle capillary secretion. However, this facilitatory role is likely to
beds to allow the attendant substantial increase in operate under all conditions for hGH secretion and
muscle blood perfusion. The secretion of NO from is unlikely to be limited to exercise.
the tunica intima of the vascular wall has a key role
in the observed vasodilation.

2.3 CatecholaminesKusnar and Kaminski[47] found that NO synthase
is concentrated at the skeletal muscle endplate. They
suggest that NO may help facilitate the excitability The relationship between catecholamines and
of the sarcolemma as a result of incoming acetylcho- EIGR has received limited attention. Kinderman et
line from the motor endplate. The presence of NO al.[54] examined the catecholamine, hGH, cortisol,
has also been shown to enhance the decrease in heart insulin and sex hormone response to aerobic versus
rate associated with vagus nerve stimulation.[48] This anaerobic exercise. Plasma hGH concentration was
facilitatory role for NO has also been suggested as a significantly higher in the aerobic test whilst adren-
mechanism for the release of hormones into the aline and noradrenaline were significantly higher in
general circulation.[49,50] the anaerobic test. The difference in the exercise

Whilst the majority of studies examining the role duration between the two conditions may account
of NO have employed animal models, Jungersten et for the observed difference in EIGR making direct
al.[51] examined the effects of physical fitness and comparisons difficult. However, these results sug-

 Adis Data Information BV 2003. All rights reserved. Sports Med 2003; 33 (8)



Exercise-Induced Growth Hormone Response in Athletes 605

gest little or no likely contribution of catecho- et al.[13] have reported a high correlation between
lamines in the EIGR. blood hGH and blood lactate concentrations, in

agreement with the previously cited work ofIn contrast, Chwalbinska-Moneta et al.[55] em-
Chwalbinska-Moneta et al.[55]ployed a progressive multistage exercise protocol on

a cycle ergometer with endurance-trained study par- There appears to be a paucity of studies demon-
ticipants (marathon runners). Stages were a duration strating any causal relationship between circulating
of 3 minutes with a 50W increment until volitional lactate concentration and exercise-induced hGH se-
exhaustion. The investigators described a threshold cretion, further work is warranted.
rise in plasma hGH concentration which followed

2.5 Summary of Factors Affecting hGHthe patterns of plasma catecholamines and blood
Secretion During Exerciselactate concentration.

There are perhaps a number of areas of overlap
2.4 Acid-Base Balance and Lactate and or interaction between many of the proposed

stimuli for the EIGR. Of these, three stand out: NO,It has been suggested that the abrupt decrease in
afferent stimulation and lactate.blood pH, together with the increasing catecho-

NO, whilst the most recently identified candi-lamine concentrations during exercise act as humor-
date, remains equivocal in the light of limited study.al signals for a nonlinear increase in hGH secretion
Currently, its role in EIGR seems limited to facilita-during exercise.[55]

tion of hGH secretion. The use of bioassay hasGordon et al.[56] examined the impact of bicarbo-
revealed the existence of what appear to be largernate ingestion on the hGH response to 90 seconds of
‘fragments’ of GH with strong evidence suggestingmaximal effort exercise. They found that whole
this results from afferent stimulation. Blood lactateblood pH was significantly lower in the control
is the one stimulus which has been suggested, fallengroup compared with the bicarbonate group at all
out of favour and returned as a popular candidatetime points except baseline. Serum hGH concentra-
more than once in the last 30 years. Clearly, furthertions were significantly increased above baseline at
research is necessary to fully elucidate the role of10, 15, 20 and 30 minutes post-exercise in the con-
these candidates in the EIGR. Table I lists the candi-trol group but only at 20 and 30 minutes in the
dates suggested for the EIGR, summarises theirbicarbonate group. The authors proposed that an
proposed roles and lists relevant researchers.increase in the hydrogen ion concentration may be

partly responsible for the hGH response to high- 3. hGH in Sport and Exercise
intensity, predominantly anaerobic, exercise.

In contrast, however, Elias et al.,[57] concluded Since exercise itself is a powerful stimulus of
that the pH reduction with exercise may not be the endogenous hGH secretion, specific training regi-
mechanism for changes in serum hGH. The authors mens may also elicit training adaptation mediated by
used both pre-exercise ingestion and continuous in- hGH. Whilst the potential ergogenic effects of rhGH
fusion of bicarbonate during a progressive incre- administration are attractive to athletes who wish to
mental cycle test and found no significant difference gain an unfair advantage, the abuse of GH has been
in the peak hGH concentration between treatments. associated with an increased incidence of arthralgia,

A number of studies have reported a high correla- arthritis, cardiomegaly, muscle weakness, hyper-
tion between lactate threshold and what has been lipidaemia, impaired glucose regulation, and the risk
suggested as an hGH threshold in response to pro- of type 1 diabetes mellitus and impotence.[59] Identi-
gressive incremental exercise.[55] A stimulatory ef- fication of a training programme that will optimise
fect of lactate on hGH secretion was first suggested the EIGR reducing/eliminating the presentation of
by Sutton et al.[58] Since that time, a number of clinical complications in those who might otherwise
studies have supported this observation. Kozlowski abuse rhGH presents a viable alternative. However,
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Table I. The main candidates proposed for mediation of exercise-induced human growth hormone secretion, the proposed role and major
associated studies for each

Main candidates for EIGR Proposed role Prominent research studies

Neural stimulation Direct afferent stimulation (e.g. from muscle spindles) Ellis et al.,[33] McCall et al.,[34] Gosselink et
of the pituitary resulting from muscle contraction has al.,[38] McCall et al.,[39] Gosselink et al.[40]

been suggested to result in the EIGR

Nitric oxide Discovery of nitric oxide in pituitary cells and Brann et al.,[44] Nelson et al.,[45] Pinilla et al.[46]

evidence for the mechanism by which nitric oxide
could be directly involved in secretion at the gland
suggest a role in the EIGR

Catecholamines A correlation has been noted between the rise in Kinderman et al.,[54] Chwalbinska-Moneta et
catecholamines and the rise in hGH concentration al.[55]

with increasing exercise intensity suggesting that
circulating catecholamines may directly result in the
EIGR

Acid-base changes Changes in the pH as a result of exercise and Gordon et al., [56] Chwalbinska-Moneta et al.,[55]

associated with muscle, blood and cerebrospinal fluid Elias et al.[57]

may directly effect the EIGR

Lactate A strong correlation has been observed between the Sutton et al.,[58] Kozlowski et al.,[13]

rise in blood lactate and blood hGH concentration Chwalbinska-Moneta et al.[55]

during incremental exercise suggesting a role for
lactate in the EIGR

EIGR = exercise-induced growth hormone response; hGH = human growth hormone.

this issue is best reviewed in the light of the EIGR in muscle groups compared with adult females. Exam-
strength and power, endurance and high-intensity ination of power differences between male and fe-
exercise. male Olympic weight-lifters have shown a 33%

greater power per kilogram in males.[64] These
strength and power differences appearing post-pu-3.1 Muscle Mass, Resistance Exercise,
berty initially led to speculation that the sex hor-Strength and Power
mones, the male androgens, in particular testoster-
one, were involved. A number of studies[65-69] haveThe role of GH in strength has been the focus for
also examined the suggestion that hGH may play ascientists since the late nineteenth century. In 1889,
role in the muscle hypertrophy that attends the laterBrown-Séquard[60] recorded that the strength of his
stages of increased strength development.forearm flexor muscles had decreased with increas-

ing age. Following auto-injection of anterior pituita- Kraemer et al.[66] demonstrated that heavy resis-
ry extract, he reported a significant increase in tance training, i.e. high volume (49kJ and 59kJ per
strength. resistance training session) and high intensity, utilis-

Since that time, resistance training has been com- ing large muscle groups, resulted in a significant
monly and successfully used to elicit muscle hyper- EIGR. Vanhelder et al.[65] reported a similar re-
trophy and to increase strength. A systematic, pro- sponse using a low volume (28kJ per resistance
gressive programme of weight training results first training session) resistance programme. These re-
in improvements of strength, independent of muscle sults suggested that the load and frequency of an
hypertrophy, through improvements in neuromuscu- exercise are determinant factors in the regulation of
lar facilitation.[61] After several weeks of progres- plasma hGH concentration. Both of these studies
sive stimuli, muscle hypertrophy is observed[61] and further conclude that in comparative training ses-
this response is similar in men and women.[62,63] In sions, with total work constant, it is the greater
general, males have a larger muscle mass due to the demand on anaerobic glycolysis that stimulates se-
increased secretion of androgens at puberty and for rum hGH elevations. Kraemer et al.[66,67] observed
this reason adult males are 40–50% stronger in most acute increases in hGH, following heavy resistance
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exercise, but the pattern of response of IGF-1 did not and IGF-1 in combination produce the greatest re-
sponses, as previously suggested in work with AIDSconsistently follow that of hGH. This finding sug-
patients, where treatment with a combination ofgests that the greatest stimulus to hypertrophy and
rhGH and exogenous IGF-1 helped to minimiseimprovement in muscle strength and power occurs
muscle wastage.[5,15] To date, no data exist examin-via local production of IGF-1, i.e. in skeletal muscle.
ing this hypothesis regarding exercise in humans. InIn other words, IGF-1 secretion can be stimulated by
rats, however, it has been demonstrated that GH orboth muscle contraction per se, i.e. locally, or by
exercise in isolation have a minimal effect in main-hGH stimulating IGF-1 secretion, from the liver. In
taining muscle mass of unloaded muscle but GH anda more recent study, Kraemer et al.[68] found that a
exercise together exert a strong positive effect ofhigh-intensity, high-load bout of resistance exercise
maintenance of muscle mass.[78] Similarly, Gross-increased circulating hGH, without affecting IGF-1
man et al.[79] demonstrated that the phenotype of ratconcentrations during the subsequent 24-hour re-
medial gastrocnemius muscle was only minimallycovery period in moderately strength-trained young
affected by GH, IGF-1 or exercise. The combina-males. These studies perhaps indicate that exercise
tion, however, of GH or IGF-1 plus exercise resultedof the appropriate modality, intensity and duration,
in an increase in the size of all fibre types present.can stimulate increased release of IGF-1 in a way

that has a parallel in muscle contraction per se,
3.2 Endurance Exercisefacilitating the uptake of glucose into muscle inde-

pendently of insulin.[70,71]

It appears to be a combination of the intensity,[80]

Much of the stimulus for protein synthesis seems duration,[81] frequency[82] and mode[54] of exercise
to occur through IGF-1 with just modest contribu- that determines the EIGR. A number of studies have
tions from GH-GH receptor interaction on the cell examined the effect of exercise intensity and dura-
membrane leading to increased intracellular protein tion on the EIGR. Felsing et al.[81] noted that there
synthesis. This must raise doubts over the ability of was a non-significant elevation in hGH above base-
exogenous GH alone to maintain muscle mass in line (an elevation of 1.5 ± 2.0 µg/L) after 10 minutes
older individuals (as has been suggested in the popu- of low intensity (below lactate threshold) exercise.
lar press) and to increase muscle mass in younger With high intensity exercise (above lactate thres-
elite athletes. A 1994 review by Yarasheski[72] con- hold) significant elevation in hGH was only ob-
firms that it is doubtful that the nitrogen retention served after 10 minutes of exercise (mean increase
associated with daily hGH administration results in above baseline of 7.7 ± 2.4 µg/L, p < 0.05). Thus, an
an increase in contractile protein, improved muscle exercise intensity above threshold and for a mini-
function, strength and athletic performance. More mum duration of 10 minutes would seem to be a
recently, in agreement with previous work, significant stimulus to the secretion of hGH.
Zachwieja and Yarasheski[73] have suggested that Cappon et al.[83] examined the effect of exercis-
the evidence for hGH alone to increase human skel- ing for 10 minutes at 50% of the difference between
etal muscle protein and maximum voluntary force is lactate threshold and maximum oxygen consump-
weak. Even when administration of hGH was added tion (V̇O2max). They reported small increases in
to a progressive resistance exercise programme, no circulating IGF-1 which were independent of circu-
further enhancement of training-induced adaptations lating hGH. In discussing their findings, the authors
were seen.[74]

note that there is considerable discrepancy between
A number of studies using a rat model have various studies in the statistical significance of GH

shown that GH is not essential for exercise-induced and IGF-1 appearance (i.e. the magnitude of the rise
muscle hypertrophy or an improved cardiorespirato- above baseline). Their view is that this discrepancy
ry response to training;[75-77] however, this does not arises from two main factors. Firstly, the intensity of
mean that GH has no role to play. It may be that GH exercise is often determined from a percentage of
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V̇O2max, this often being extrapolated from con- sistent measure of exercise intensity when asso-
ciated with the hGH surge.stant-power tests rather than a measured value. This

can lead to a sample population in which some One study, however, contradicts the suggestion
individuals exercise above lactate threshold and of an exercise intensity-related threshold with re-
others exercise below it. This is a point well made as spect to circulating hGH concentration. Pritzlaff et
hormonal and metabolic responses to exercise are al.[90] examined five different exercise intensities
often not related to exercise intensity in a simple corresponding to 25, 75, 100, 125 and 175% of the
linear manner. Secondly, as reported in their own exercise intensity associated with lactate threshold
study and supported by the work of Bang et al.[84] it (viz. 26, 47, 62, 76 and 90% of V̇O2max). Their
appears that the IGF-1 response is rapid, peaking findings suggested that serum hGH increases linear-
about 10 minutes after the onset of exercise. There- ly with exercise intensity expressed either as a per-
fore, the IGF-1 response may not be detectable with centage of lactate threshold or as a percentage of
a longer sampling interval. In the study by Cappon V̇O2max. This evidence, however, fails to address
et al.,[83] many of these areas of potential discrepan- the fact that significant hGH elevations above base-
cy appear to have been well controlled hence their line are observed only above lactate threshold.
findings of no link between GH and IGF-1 appears Exercise may also affect hGH release at rest.
sound. They argue that a GH-dependant mechanism Weltman et al.[91] showed that exercise training
for an increase in IGF-1 with exercise might require above the lactate threshold amplified the pulsatile
GH-stimulated synthesis of IGF-1 and its subse- release of hGH at rest, while exercise below the
quent transport to the circulation. The time required lactate threshold didn’t. Training in this study was
for synthesis would, however, be greater than the 10 for a duration of 1 year with training volume gradu-
minutes reported for the appearance of IGF-1 and ally increasing each week. Training at lactate thres-
this reaffirms the suggestion that appearance of hold was compared with training above lactate
IGF-1 is independent of GH. threshold. Training above lactate threshold was re-

ported to be the more effective for increasing theSome studies have suggested an intensity ‘thres-
total volume of hGH secreted in 24 hours.hold’ exits for EIGR. Pooled data from 29 studies

suggest that the threshold for hGH secretion occurs In addition to intensity-mediated differences, fre-
on average above 40% V̇O2max.[85] The majority of quency of exercise appears to play a role in the
authors, however, suggest that for a consistent pulsatile secretion of hGH. Repeated bouts of aero-
EIGR, an exercise intensity above 60% V̇O2max is bic exercise on the same day (three 30-minute bouts
required.[86-88] It has been suggested that the thres- at 70% V̇O2max) appear to significantly increase the
hold for the exercise-induced hGH surge is consis- daytime integrated hGH concentration without sig-
tent with lactate threshold. The differences in the nificant change in nocturnal concentrations com-
percentage of V̇O2max at which the EIGR has been pared with control conditions. The increase in hGH
observed to occur may reflect the heterogeneity in secretion with repeated bouts was related to an in-
the percentage of V̇O2max at which lactate (anaerob- crease in hGH pulse amplitude and the mass of hGH
ic) threshold generally occurs in any exercising pop- secreted per pulse.[82] The authors conclude that
ulation. According to Wasserman et al.,[89] the point high-intensity aerobic exercise is a potent stimulus
at which metabolic acidosis becomes evident can of hGH secretion that is able to overcome hGH auto-
range from 40–80% of V̇O2max in normal individu- negative feedback. Therefore, repeated bouts of ex-
als. Accordingly, in hormonal studies in general, ercise on the same day are able to consistently
and those that examine hGH in particular, it may not stimulate hGH secretion without attenuation of the
be appropriate to use percentage of V̇O2max as the hGH response. Thus, this type of exercise regimen
index of relative exercise intensity. Rather, lactate may suit both increases in muscle mass and meta-
threshold itself may be a more appropriate and con- bolic adaptations that could aid improvements in
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endurance performance. The pulsatile release of 4. Exercise and the Ageing Athlete
hGH is more effective than continuous administra-

Many believe that one of the natural conse-tion in inducing certain specific tissue responses to
quences of ageing is that males lose muscle masshGH in muscle, bone and liver.[92,93] Therefore, if
and tone and deposit more visceral and subcutane-the aim is to optimise hGH secretion, training should
ous fat. In short, older males tend to have a bodyoccur a number of times per day with each exercise
composition that is similar to that of young women.session being of a duration greater than 10 minutes
Since hGH has been found to decrease body fat,at an intensity above lactate threshold.[82,94]

increase muscle mass and reverse the reduction inThe literature expresses a mixed view regarding
skin thickness in the elderly[101] it has been suggest-the effect of chronic exercise training. Those studies
ed that administration of rhGH may help to limit thethat have examined training suggested that training
impact of ageing generally. Neely and Rosen-blunts,[95,96] increases,[97] or does not affect[98] the
field[102] reported a 7% rise in lean body mass, a 14%hGH response to acute exercise. Weltman et al.[94]

reduction in fat mass and a 7% increase in fastingdemonstrated that 3 and 6 weeks of endurance train-
blood glucose concentration following hGH admin-ing resulted in a reduced hGH response to a 20-min-
istration. However, they also reported severe distur-ute, high-intensity, constant load exercise test.
bances in glucose homeostasis indicative of a pre-These findings reinforce those of studies that have
clinical diabetic state.[102]reported a blunted hGH response to acute exercise

Ageing is often associated with a progressiveafter a number of weeks of training. Chronic exer-
decrease in the volume of exercise and very oftencise training may blunt the acute hGH response to
associated with a decrease in the intensity of exer-exercise for a number of reasons. Chronic exercise
cise. The evidence for beneficial health adaptationsmay induce an increased sensitivity to hGH in a
resulting from modest levels of low- to moderate-similar way as the increased sensitivity to insulin
intensity exercise are now overwhelming and formwhich occurs with several weeks of training result-
the basis of many exercise guidelines for improvinging in an increase in one of the glucose transport
health.[103,104] However, a growing body of evidenceproteins regulated by insulin.[99,100] Alternatively,
suggests that higher intensity exercise, than wasthe chronic increase in hGH seen with a few weeks
previously believed to be efficacious, may be moreof increased exercise will continually feed back to
effective in eliciting beneficial health, well-beingthe pituitary and hypothalamus, which may cause an
and training outcomes. This has been shown inadaptation such that a reduced hGH surge is seen in
insulin sensitivity,[105-107] and in positive effects onresponse to a given exercise stimulus.
mood state and analgesia associated increases in
circulating beta-endorphin which is seen after exer-3.3 High Intensity, Brief and Sprint Exercise
cise above 60% V̇O2max.[108-112] In addition, it has
been demonstrated that individuals in their ninetiesLimited data are available examining the EIGR
can improve muscle strength and size by a similarto high intensity activity. Nevill et al.[80] examined
relative percentage as those individuals in theirthe EIGR to treadmill sprinting in endurance-trained
twenties.[113]and sprint-trained subjects. Results demonstrated

serum hGH was higher in the sprint-trained group, Häkkinen and Pakarinen[114] examined the hGH
with 82% of the variation in the serum peak hGH response to heavy resistance exercise in men and
concentration between the two groups explained by women in three age categories: ‘young’ (23–29
peak power and peak blood lactate response. The years), ‘middle-aged’ (44–51 years) and ‘elderly’
authors suggested that training at higher intensities (65–71 years). They found that at the same relative
(close to, or at maximum) will result in the greatest workload, plasma GH concentrations were greatly
peak in EIGR, although no data were presented on reduced with increasing age in both men and wo-
24-hour hGH secretion. men. Nicklas et al.[115] examined a group of 55- to
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70-year-old men performing 14 different resistance appear to be afferent stimulation, NO and lactate,
exercises, three times per week on a number of and further work should aim to identify any individ-
machines, encompassing most muscle groups, car- ual or combined role that they play in the EIGR.
ried out for 16 weeks. The training programme Exercise-induced hGH secretion has been widely
resulted in a 37% increase in upper body strength studied, particularly in response to resistance exer-
and a 39% increase in lower body strength. An cise. The exact roles of, and relationship between
18-fold increase in hGH was observed in response to hGH and the other candidate for increased protein
a single bout of resistance training but 24-hour hGH synthesis resulting from strength training, IGF-1,
secretion was unaffected by the 16-week training remains unclear. Further work is warranted examin-
programme. These studies demonstrate that the ing the combined effects of hGH and IGF-1 in the
acute response to heavy resistance exercise is re- EIGR upon alterations in muscle mass.
duced with ageing but that a chronic resistance The EIGR to endurance exercise has received
exercise programme can cause increases in the acute less attention; however, interest in this area is grow-
EIGR alongside increases in strength. This EIGR ing. In general, scientific findings suggest that exer-
may contribute to the beneficial responses to exer- cise duration of more than 10 minutes at an intensity
cise seen across the whole population with particular above threshold results in a significant elevation in
importance in the maintenance of quality of life in hGH secretion from baseline. Several discreet train-
the elderly. ing sessions per day will significantly increase the

In a great many cases, the impact of some of the 24-hour secretion of hGH with exercise overriding
deleterious effects of ageing could be significantly the normal circadian rhythm with respect to hGH
reduced if individuals remained active, promoting release. Future work should focus on the impact of
the EIGR. Often this will require exercise at a higher intensity, duration and frequency of exercise on the
intensity than is currently common in elderly popu- EIGR.
lations. The EIGR has a positive role to play in optimis-

ing training adaptation in elite athletes, and reducing
5. Conclusions the incidence of rhGH abuse in sport, to improving

the quality of life in an ageing population. In order
hGH is a peptide hormone which is synthesised, to identify the optimal training programme to elicit

stored and released in a pulsatile manner in response the greatest EIGR, further work is indicated. Further
to a number of stimuli, from the anterior pituitary. longitudinal studies are indicated to examine the
The most potent physiological stimuli for hGH se- effects of training on the acute EIGR, resting hGH
cretion are sleep and exercise. GH has been found to and the relationship between EIGR and training
have a plethera of roles, from growth itself, includ- adaptations.
ing the turnover of muscle, bone and collagen
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