Greg M Harris

Greg M Harris
University of Cincinnati | UC · Department of Chemical and Environmental Engineering

Doctor of Philosophy

About

23
Publications
2,349
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
332
Citations
Additional affiliations
March 2014 - January 2016
Princeton University
Position
  • PostDoc Position
August 2010 - February 2014
University of South Carolina
Position
  • PhD Student
August 2009 - July 2010
Iowa State University
Position
  • Research Assistant

Publications

Publications (23)
Article
A wide variety of environmental factors including physical and biochemical signals are responsible for stem cell behavior and function. In particular, matrix elasticity and cell shape have been shown to determine stem cell function, yet little is known about the interplay between how these physical cues control cell differentiation. For the first t...
Article
Spinal cord and peripheral nerve injuries require the regeneration of nerve fibers across the lesion site for successful recovery. Providing guidance cues and soluble factors to promote neurite outgrowth and cell survival can enhance repair. The extracellular matrix (ECM) plays a key role in tissue repair by controlling cell adhesion, motility, and...
Chapter
The ability to create cell-derived decellularized matrices in a dish gives researchers the opportunity to possess a bioactive, biocompatible material made up of fibrillar proteins and other factors that recapitulates key features of the native structure and composition of in vivo microenvironments. By using cells in a culture system to provide a na...
Article
Peripheral nerve injuries require a complex set of signals from cells, macrophages, and the extracellular matrix (ECM) to induce regeneration across injury sites and achieve functional recovery. Schwann cells (SCs), the major glial cell in the peripheral nervous system (PNS), are critical to nerve regeneration due to their inherent capacity for alt...
Article
Severe peripheral nervous system injuries currently hold limited therapeutic solutions. Existing clinical techniques such as autografts, allografts, and newer nerve guidance conduits have shown variable outcomes in functional recovery, adverse immune responses, and in some cases low or minimal availability. This can be attributed in part to the lac...
Article
Traumatic nerve injuries have limited success in achieving full functional recovery, with current clinical solutions often including implementation of nerve grafts or the use of nerve conduits to guide damaged axons across injury gaps. In search of alternative, and complimentary solutions, piezoelectric biomaterials demonstrate immense potential fo...
Article
Full-text available
Schwann cells (SCs) are a highly plastic cell type capable of undergoing phenotypic changes following injury or disease. SCs are able to upregulate genes associated with nerve regeneration and ultimately achieve functional recovery. During the regeneration process, the extracellular matrix (ECM) and cell morphology play a cooperative, critical role...
Article
Full-text available
Spinal cord injury (SCI) results in cell death, demyelination, and axonal loss. The spinal cord has a limited ability to regenerate, and current clinical therapies for SCI are not effective in helping promote neurologic recovery. We have developed a novel scaffold biomaterial that is fabricated from the biodegradable hydrogel oligo(poly(ethylene gl...
Article
Full-text available
Bioactive surfaces and materials have displayed great potential in a variety of tissue engineering applications but often struggle to completely emulate complex bodily systems. The extracellular matrix (ECM) is a crucial, bioactive component in all tissues and has recently been identified as a potential solution to be utilized in combination with b...
Article
Fucoidan, a type of sulfated polysaccharide known for its anticoagulant, anti-tumor and anti-inflammatory effects, has been reported to have strong affinity towards P-selectin. P-selectin, which plays an important role in metastasis by enhancing the adhesion of cancer cells to endothelium and activated platelets in distant organs, is overexpressed...
Article
Traumatic peripheral nervous system (PNS) injuries currently lack suitable treatments to regain full functional recovery. Schwann cells (SCs), as the major glial cells of the PNS, play a vital role in promoting PNS regeneration by dedifferentiating into a regenerative cell phenotype following injury. However, the dedifferentiated state of SCs is ch...
Preprint
Spinal cord injury (SCI) results in cell death, demyelination, and axonal loss. The spinal cord has a limited ability to regenerate and current clinical therapies for SCI are not effective in helping promote neurologic recovery. We have developed a novel scaffold biomaterial that is fabricated from the biodegradable hydrogel oligo[poly(ethylene gly...
Article
A two-step synthesis is described for activating the surface of a fully hydrated hydrogel that is of interest as a possible scaffold for neural regeneration devices. The first step exploits the water content of the hydrogel and the hydrophobicity of the reaction solvent to create a thin oxide layer on the hydrogel surface using a common titanium or...
Article
Stem cells offer a promising tool in tissue engineering strategies, as their differentiated derivatives can be used to reconstruct most biological tissues. These approaches rely on controlling the biophysical cues that tune the ultimate fate of cells. In this context, significant effort has gone to parse out the role of conflicting matrix-elicited...
Article
Current methods of treating critical size bone defects include autografts and allografts, however, both present major limitations including donor-site morbidity, risk of disease transmission, and immune rejection. Tissue engineering provides a promising alternative to circumvent these shortcomings through the use of autologous cells, three-dimensio...
Article
Full-text available
The name of the third author is incorrect. The correct name is: Greg M. Harris. The correct Citation is: Cheng Q, Blais M-O, Harris GM, Jabbarzadeh E (2013) PLGA-Carbon Nanotube Conjugates for Intercellular Delivery of Caspase-3 into Osteosarcoma Cells. PLoS ONE 8(12): e81947. doi:10.1371/journal.pone.0081947. The correct abbreviation of the thir...
Article
Full-text available
Cancer has arisen to be of the most prominent health care issues across the world in recent years. Doctors have used physiological intervention as well as chemical and radioactive therapeutics to treat cancer thus far. As an alternative to current methods, gene delivery systems with high efficiency, specificity, and safety that can reduce side effe...
Article
Full-text available
Significant effort has gone towards parsing out the effects of surrounding microenvironment on macroscopic behavior of stem cells. Many of the microenvironmental cues, however, are intertwined, and thus, further studies are warranted to identify the intricate interplay among the conflicting downstream signaling pathways that ultimately guide a cell...
Article
Studies of cell-extracellular matrix (ECM) interactions at a single cell level have drawn interest from scientists around the world. Subcellular ECM micropatterning techniques allow researchers to control cell shape, migration, and spindle orientation during mitosis potentially influencing the stem cell fate. Generally these studies have been limit...
Article
There is a profound need for orthopaedic grafting strategies due to various trauma and musculoskeletal diseases. Tissue engineering offers a promising avenue to develop viable grafts for bone repair. The transfer of bone tissue engineering strategies to clinical applications is limited by the failure to adequately vascularize scaffolds after implan...

Network

Cited By