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Abstract

Pendrin (SLC26A4, PDS) is an electroneutral anion

exchanger transporting I-, Cl-, HCO
3

-, OH-, SCN- and

formate. In the thyroid, pendrin is expressed at the

apical membrane of the follicular epithelium and may

be involved in mediating apical iodide efflux into the

follicle; in the inner ear, it plays a crucial role in the

conditioning of the pH and ion composition of the

endolymph; in the kidney, it may exert a role in pH

homeostasis and regulation of blood pressure.

Mutations of the pendrin gene can lead to syndromic

and non-syndromic hearing loss with EVA (enlarged

vestibular aqueduct). Functional tests of mutated

pendrin allelic variants found in patients with Pendred

syndrome or non-syndromic EVA (ns-EVA) revealed

that the pathological phenotype is due to the reduction

or loss of function of the ion transport activity. The

diagnosis of Pendred syndrome and ns-EVA can be

difficult because of the presence of phenocopies of

Pendred syndrome and benign polymorphisms

occurring in the general population. As a conse-

quence, defining whether or not an allelic variant is

pathogenic is crucial. Recently, we found that the two

parameters used so far to assess the pathogenic

potential of a mutation, i.e. low incidence in the control

population, and substitution of evolutionary conserved

amino acids, are not always reliable for predicting the

functionality of pendrin allelic variants; actually, we

identified mutations occurring with the same frequency

in the cohort of hearing impaired patients and in the

control group of normal hearing individuals. Moreover,

we identified functional polymorphisms affecting highly

conserved amino acids. As a general rule however,

we observed a complete loss of function for all

truncations and amino acid substitutions involving a

proline. In this view, clinical and radiological studies

should be combined with genetic and molecular

studies for a definitive diagnosis. In performing genetic

studies, the possibility that the mutation could affect

regions other than the pendrin coding region, such

as its promoter region and/or the coding regions of

functionally related genes (FOXI1, KCNJ10), should

be taken into account. The presence of benign

polymorphisms in the population suggests that genetic

studies should be corroborated by functional studies;

in this context, the existence of hypo-functional

variants and possible differences between the I-/Cl-
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and Cl-/HCO
3
- exchange activities should be carefully

evaluated.

Copyright © 2011 S. Karger AG, Basel

Tissue expression and physiological role

of pendrin

The pendrin protein was initially described as a gene

product that, if mutated, is responsible for the Pendred

syndrome (OMIM#274600) [1]. Human pendrin

(SCL26A4, PDS) is a 780 amino acid membrane protein

with transport function, expressed in tissues as diverse

as the thyroid gland [2], kidney [3], inner ear [4, 5],

airways [6], mammary gland [7], testis [8], placenta [9],

endometrium [10] and liver [11]. Particularly well

described is the localization and respective function of

pendrin in the thyroid gland, inner ear and kidney. In the

thyroid gland, pendrin is expressed exclusively at the

apical membrane of thyroid follicular cells [2]. Several

points of evidence indicate that the pendrin transporter is

crucially involved in follicular iodide transport, i.e. (i) its

localization, (ii) the iodide organification defect presented

by patients with Pendred syndrome [12] and (iii) a number

of functional studies in heterologous expression systems

(that will be reviewed here). In the inner ear, pendrin is

expressed in the epithelium of the endolymphatic sac and

duct [5, 13], on the apical membrane of transitional cells

in the saccule, utricle, ampulla [5], and in a variety of

diverse cell types in the cochlea (inner and outer hair

cells, Deiter’s cells, Claudius cells, spiral ligament, spiral

ganglion, spiral prominence, external sulcus cells) [5, 14-

17]. In these compartments, pendrin plays a crucial role

in conditioning endolymph pH and ion composition [18].

In the kidney, pendrin is expressed on the apical

membrane of  and non- , non-  intercalated cells of

thedistal convoluted tubule (DCT), cortical collectingduct

(CCD) and connecting tubule (CNT) [3, 19, 20] where it

exerts a role in pH homeostasis [21] and blood pressure

regulation [22, 23]. The physiological role of pendrin in

other tissues is less well understood and deserves further

investigation.

Transport properties of wild type pendrin

The thyroid

Pendrin was described as a member of the

multifunctional transporters SLC26 [24] family, and after

its discovery, it was assumed that pendrin transports

sulphate. However, later studies in over-expression

systems failed to demonstrate that pendrin can transport

sulphate or other divalent anions [25, 26]. In addition,

Kraiem et al. found that sulphate transport in thyrocytes

obtained from Pendred syndrome patients was not

defective [27]. Thereafter, it was shown that pendrin can

transport iodide [25], and could therefore be involved in

mediating apical iodide efflux from the thyroid cell into

the follicular lumen [28, 29]. As time progressed, it became

increasingly evident that pendrin acts as an electroneutral,

i.e. non-rheogenic [30] iodide/chloride (I-/Cl-) exchanger

with a 1:1 stoichiometry [31] and preference for iodide

over other anions [32, 33].

It is noteworthy that some investigators assume that

pendrin might also secrete bicarbonate into the thyroidal

follicle, since thyroid follicular transepithelial potential and

pH are reduced in pendrin knock-out mice [34]. For the

supporting evidence as well as arguments questioning the

role of pendrin in mediating iodide efflux in thyrocytes,

see the reviews by Twyffels et al. [35] and Bizhanova et

al. [36] in this Special Issue.

The kidney

Heterologous overexpression studies also

demonstrated that pendrin can function as a chloride/

hydroxide (Cl-/OH-) or chloride/bicarbonate (Cl-/HCO
3

-)

exchanger [37]. Studies using pendrin knock-out mice

led to the conclusion that one role of pendrin in the kidney

is bicarbonate secretion [3, 21]. Accordingly, pendrin

expression was significantly increased following oral

bicarbonate loading in mouse [38] and rat [39], and

downregulated during metabolic acidosis in rat [39-41]

and rabbit [42]. Patients with Pendred syndrome have

normal renal function and do not display abnormalities in

acid-base metabolism under basal conditions. This

indicates that other chloride-base exchangers compensate

for the loss of function of pendrin [43]. Recently however,

two interesting case reports of severe metabolic alkalosis

in patients with Pendred syndrome indicated that pendrin

may play a role in protecting against metabolic alkalosis

in the context of intercurrent illness [44] or

pharmacological therapy [45].

Pendrin also plays a role in chloride reabsorption,

since it is downregulated in response to high chloride

intake and upregulated in response to chloride depletion

induced by furosemide [46] or sodium chloride (NaCl)

restriction [47, 48]. Accordingly, major changes in pendrin

protein expression were found in experimental models

that are associated with altered renal chloride transport

[49].
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Recently, it was proposed that pendrin in the kidney

also plays a role in the maintaining of iodide balance,

particularly under high water intake [50]; however, the

mechanism by which pendrin drives renal iodide

reabsorption in cases of increased water intake remains

to be elucidated.

The inner ear

Similarly to the kidney, pendrin acts as a Cl-/HCO
3

-

exchanger in the inner ear, controlling the pH of the

endolymphatic fluid. Earlier studies in pendrin knock-out

mice, which are completely deaf and also display signs

of vestibular dysfunction, revealed a severe endolymphatic

dilatation after embryonic day 15, reminiscent of that seen

radiologically in deaf individuals with pendrin mutations

and EVA. Additionally, in the second postnatal week,

severe degeneration of sensory cells in the Corti organ

and vestibular maculae, and malformation of otoconia and

otoconial membrane occurred. These observations

provided important clues for understanding the cause of

deafness and vestibular dysfunction in these mice and,

possibly, in patients with Pendred syndrome [51]. Further

studied revealed that pendrin is crucial in maintaining the

endocochlear potential, albeit without being directly

involved in potassium secretion [5]. Later, Wangemann

et al. clarified that the loss of the endocochlear potential

observed in the Pendred syndrome mouse model is due

to a loss of expression of the potassium channel KCNJ10

[15]. The same group successively published a series of

detailed studies on the role of pendrin in the different

inner ear compartments using pendrin knock-out mice.

These studies revealed a reduction in pH and utricular

endolymphatic potential, and an increase in the endolymph

calcium concentration, possibly due to the inhibition of

pH-sensitive transient receptorpotentialvanilloid (TRPV)

5 and TRPV6 cation channels [52]. These findings might

explain the vestibular dysfunction observed in Pendred

syndrome patients. A similar mechanism could induce the

observed cochlear sensory hair cell degeneration, which,

as a consequence, leads to deafness [18]. It was also

hypothesized that a loss of bicarbonate secretion could

hamper fluid reabsorption in the endolymphatic sac, an

event eventually leading to cochlear enlargement and

again, deafness [53]. All of the described functional

derangements observed in the inner ear of pendrin knock-

out mice would hence be associated with a decrease in

endolymphatic bicarbonate secretion. Beside pendrin

knock-out mice, also the use of genetically modified mice

bearing pendrin mutations is a powerful tool in

understanding the etiology of the pathological conditions

related to pendrin malfunction. The Slc26a4loop mouse,

that was generated by N-ethyl N-nitrosourea (ENU)

mutagenesis bearing the homozygous loss of function

mutation S408F, led to the discovery of new inner ear

pathology that has complemented the work on the

Slc26a4 knock-out mouse with its novel phenotypic

variation. Recently, we found dramatic changes in the

composition, size, and shape of otoliths within the utricle

and saccule of Slc26a4 loop mouse, possibly as a

consequence of the deregulation of the endolymphatic

pH [54].

The airways

Predominant pendrin expression in the airways was

not discovered until 2005, when Kuperman et al. described

upregulation of the transporter mRNA in the lungs of 3

separate murine asthma models [55]. Since the initial

observation of pendrin expression in the bronchial

epithelium, a multitude of studies have followed in which

the transporter has been associated with increased

antimicrobial activity in the airway surface liquid (ASL)

[6], mucus production [56] and regulation of the ASL

thickness [57]. These recent data underscore a role for

pendrin in respiratory distresses including allergy,

rhinovirus infection, bronchial asthma and chronic

obstructive pulmonary disease (COPD). For more

detailed information regarding pendrin and the airways,

see the Review by Nofziger et al. in this Special Issue

[58].

The role of pendrin in human pathology

Diseases linked to pendrin malfunction

Mutation of the pendrin gene can lead to syndromic

and non-syndromic hearing loss with enlarged vestibular

aqueduct (EVA) [59]. Pendred syndrome, the most

common form of syndromic deafness [60], was originally

described more than one century ago as a combination

of deafness and goiter unrelated to environmental factors

[61]. Pendred syndrome is an autosomal recessive disease

characterized by bilateral sensorineural deafness and a

partial iodide organification defect disclosed by a positive

perchlorate discharge test [62], even in the absence of

overt goiter. Deafness in Pendred syndrome is usually

severe to profound with an early onset, or fluctuating and

progressive, and seldom occurring later in life or after

head trauma [63]. Deafness is associated with a

malformation of the inner ear, i.e. an EVA, accompanied

by an enlarged endolymphatic sac and duct, or Mondini

Functionality of Pendrin Mutants Cell Physiol Biochem 2011;28:451-466
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Fig. 1. Nomenclature used in this review; ns-EVA could be

found in individuals with zero, one, or two (as homozygous or

compound heterozygous) mutations of the pendrin gene, or in

individuals bearing mutations in the pendrin gene and another

functionally related gene (double heterozygous). Pendred

syndrome could only be found in individuals with two (as

homozygous or compound heterozygous) mutations of the

pendrin gene or in individuals bearing mutations in the pendrin

gene and another functionally related gene (double

heterozygous).

cochlea, and can be diagnosed by computed tomography

(CT) or magnetic resonance imaging (MRI) of the

temporal bone [64]. By definition, ns-EVA is a condition

where deafness due to inner ear malformations is not

associated with thyroid dysfunction (the perchlorate

discharge test in these patients is negative), and can be

found in patients with zero, one [65, 66] or two mutations

in the pendrin gene [67-69]. Whether or not ns-EVA can

be associated with two mutations of the pendrin gene is a

matter of debate. Pryor et al. found a strong correlation

between Pendred syndrome and two mutant SLC26A4

alleles, while ns-EVA correlated with zero or one mutant

SLC26A4 alleles. [65]. This study therefore suggests that

biallelic SLC26A4 mutations are consistently associated

with a positive perchlorate test, and hence, with Pendred

syndrome. As mentioned earlier, other studies indeed

suggested that ns-EVA can be associated with two

mutations of the pendrin gene [67-69]. Nevertheless, it is

noteworthy that in the study of Azaiez et al. there was no

definitive assessment of the thyroid phenotype, that was

defined as “palpable goiter or abnormal perchlorate

discharge test” [67]. Albert et al. reported several cases

of biallelic SLC26A4 mutations with a normal perchlorate

discharge test [68]. Unfortunately, these Authors did not

specify the exact cut-off value for considering the test as

positive. Tsukamoto et al. reported several cases of ns-

EVA with biallelic SLC26A4 mutations; once again, the

criterion for the assessment of the thyroid phenotype was

not precisely described. These Authors defined patients

with Pendred syndrome as “those having either a palpable

goiter or abnormal perchlorate discharge test” [69]. In

conclusion, these studies seem to indicate that although

biallelic SLC26A4 mutations are often associated with

Pendred syndrome, cases of ns-EVA associated with

biallelic SLC26A4 mutations can also occasionally be

found.

Thyroid dysfunction in Pendred syndrome is

variable, as is the presence and dimension of goiter [70].

Patients are usually euthyroid, or may present modestly

elevated serum levels of thyroid stimulating hormone

(TSH); often thyroglobulin (TG) is significantly increased

[71] and occasionally hypothyroidism may develop [72].

Pendred syndrome is typically linked to biallelic mutations

(as homozygosity in inbred families, or as compound

heterozygosity, Fig. 1) occurring in the pendrin coding

region. In addition, cases of Pendred syndrome/non-

syndromic EVA have been reported with mutations

occurring in the consensus binding region for the

transcription factor forkhead box (FOX) I1 (present in

the promoter region of pendrin) [73], and double

heterozygous mutations in the FOXI1 coding region or in

the potassium channel KCNJ10, which participates in the

generation of the endocochlear potential [74] (Fig. 1).

Pendrin hyper-function and blockers

As previously mentioned, chloride reabsorption via

pendrin at the level of the kidney could contribute to the

pathogenesis of hypertension. Indeed, expression and

activity of the transporter are upregulated by aldosterone

analogues [75] and angiotensin II [76]. Accordingly,

pendrin knock-out mice are protected against aldosterone

analogue -induced hypertension [75]. Pendrin may thus

represent a potential target for blood pressure control [22].

In the airways, pendrin has been associated with mucus

production [56] and is upregulated upon stimulation with

pro-inflammatory cytokines [6, 56, 57, 77, 78]. The

chloride reabsorption via pendrin could reduce the airway

surface liquid thickness [57], exacerbating, together with

Dossena/Nofziger/Tamma/Bernardinelli/Vanoni/Nowak/Grabmayer/

Kössler/Stephan/Patsch/Paulmichl
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mucus overproduction, the symptoms of asthma and

COPD [77]. In such pathological conditions, blocking or

reducing pendrin activity with the use of selective drugs

could be beneficial. Moreover, very recently pendrin allelic

variants with a modest, but significant, gain of function

have been identified [79]. These hyperfunctional mutants

could be genetic modifiers contributing to the severity of

the phenotype of hypertension, asthma and COPD. A

considerable effort has been devoted in characterizing

the pharmacological profile of this transporter;

nevertheless, no selective, potent, non-toxic inhibitors have

been identified so far. Pendrin shows an unusual inhibitor

profile when compared to other anion exchangers. In

some heterologous overexpression systems, pendrin

seems to be scarcely sensitive [25] or even resistant [32]

to the addition of DIDS (4,4'-Diisothiocyano-2,2'-

stilbenedisulfonic acid), a well-known blocker of Cl-/

HCO
3
- exchangers [80]. Similarly, other inhibitors, such

as furosemide and probenecid, only showed a partial

effect, even at high concentrations [25]. In contrast,

pendrin mediated chloride transport is sensitive to the

chloride channel blocker NPPB (5-Nitro-2-(3-

phenylpropylamino)benzoic acid) [32]. Interestingly, the

most potent pendrin inhibitor at present seems to be the

nonsteroidal anti-inflammatory drug niflumic acid, which,

at the concentration of 10-4 M, was able to reduce pendrin

associated chloride uptake by ~70% [32]. Accordingly,

Pedemonte et al. screened a multiple compounds library

and found that only niflumic acid blocked pendrin

associated anion transport [6]. The identification of potent

and selective inhibitors of pendrin deserves further

investigation.

Molecular and functional characterization

of pendrin allelic variants

Functional tests

More than 170 mutations within the pendrin gene

have been identified so far (http://

www.healthcare.uiowa.edu/labs/pendredandbor/

slcMutations.htm). The majority (~64%) of these

mutations are single nucleotide changes leading to amino

acid substitutions, followed by ~16% leading to amino

acid insertions or deletions, ~13% affecting splicing sites,

and ~6% leading to premature truncations of the protein.

Functional tests of pendrin mutations identified as allelic

variants in patients with Pendred syndrome or ns-EVA

revealed that the pathological phenotype is the

consequence of a reduction or loss of function of pendrin-

driven ion transport [81]. In the first study aimed at

determining the transport activity of pendrin mutants, Scott

et. al. measured the uptake of radiolabeled iodide and

chloride in Xenopus laevis oocytes injected with wild-

type (WT) or mutated pendrin cRNA [81]. Taylor et al.

successively measured the activity of mutated pendrin

using radiolabeled iodide efflux assays in human cells

transfected with WT and mutated pendrin [82]. The use

of human cells instead of a non-mammalian system for

chloride uptake [32] and iodide efflux [83-85] studies was

a considerable improvement, since they provided a more

physiologically relevant environment to determine pendrin

activity. A further improvement was the use of polarized

mammalian cells by Gillam et al. These authors developed

a functional test with polarized Madin-Darby canine

kidney (MDCK) cells loaded with radiolabeled iodide by

means of the Na+/I- symporter (NIS) in a double-chamber

system, allowing the measurement of iodide efflux via

WT pendrin [29]. Determination of pendrin transport

activity using radioisotopes is advantageous since

radiolabeled iodide can be used at relatively low

concentrations (close to the micromolar concentration

present in the cytoplasm of the thyrocyte); however, these

studies are simultaneously burdened by the use of

radioactivity. In 2006, we described a non-radioactive,

fluorescence-based assay suitable for the measurement

of pendrin function [31, 54, 70, 86]. A further improvement

of this technique was acquired with the use of an

enhanced yellow fluorescent protein (EYFP) isoform

(EYFP H148Q/I152L) that is more sensitive to the

intracellular iodide concentration when compared to

chloride, although not specific (pKa for iodide and chloride

3 and 88 mM respectively, at pH 7.5) [87]. In addition,

the Cl-/HCO
3

- and Cl-/OH- exchange activity of WT

pendrin and its mutants can be measured by means of

the pH
i
-sentitive dye BCECF [88]. It is worth to note

that very few studies compared the I-/Cl- and the Cl-/

HCO
3

- exchange activity of the same mutants [79, 89-

91]. Besides in heterologous overexpression systems, the

activity (iodide efflux) of the mutated pendrin has been

characterized in primary thyrocyte cultures from a patient

with Pendred syndrome [92]. This model mimics the in

vivo situation most adequately, however, this approach

can only be seldom applied. Table 1 shows all pendrin

mutations identified so far in patients with Pendred

syndrome or ns-EVA for which a functional test or the

determination of the subcellular localization has been

reported. The topology of the mutations for which a

functional characterization has been performed is also

indicated on the putative model of pendrin (Fig. 2) that

Cell Physiol Biochem 2011;28:451-466
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we recently suggested [93]. It is noteworthy that this

model is very different from other predictions and that

there are no experimental data proving any of the

suggested models aside from findings suggesting that both

the amino and the carboxyl termini are intracellular [93].

The functional tests allowed the identification of pendrin

allelic variants with a reduction of loss of function respect

to WT; for these allelic variants a pathogenic potential

can likely be assumed, and they are thereafter referred

as “mutations”. In addition, allelic variants whose  function

is not significantly different from WT were found, and

are thereafter referred as “benign polymorphisms”.

Moreover, very recently, allelic variants showing a

moderate gain of function were identified [79].

Dossena/Nofziger/Tamma/Bernardinelli/Vanoni/Nowak/Grabmayer/

Kössler/Stephan/Patsch/Paulmichl

Table 1. Summary of all the pendrin allelic variants for which the functionality or the subcellular localization is known as of now.

For some mutants, the possibility to rescue the function with chemical or physical chaperones is reported. If the allelic variant is

reported in the single nucleotide polymorphisms (SNPs) database is also indicated. +, gain of function; -, reduction or loss of

function; =, benign polymorphisms; =?, controversial; the corresponding allelic variant may be hypofunctional; 1originally

reported as: Ser93ArgfsX3; 2acceptor splice site mutation; 3both mutations are present on the same chromosome; 4originally

reported as: Ile487TyrfsX39; 5mutations are present on different chromosomes; the respective mutated proteins were co-expressed;
6western blot; 7N-glycosylation; 8confocal microscopy, immunofluorescence; 9GFP-fusion protein; 10YFP-fusion protein; 11 36Cl-

uptake; 12fluorometric method; 13measure of the pH
i
 (BCECF); 14 125I- uptake; 15 125I- efflux; 16 36Cl- efflux (rate constant evaluation);

17low temperature; 1810 mM salicylate; 19Na-butyrate; 20http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?showRare=

on&chooseRs=all&locusId=5172&mrna=NM_000441.1&ctg=NT_007933.15&prot=NP_000432.1&orien=forward&refresh=refresh,

accessed on the 14th of September 2011; 21http://omim.org/entry/605646; del: deletion; ins: insertion; PS: Pendred syndrome; EVA:

enlarged vestibular aqueduct; NSHL: non-syndromic hearing loss; TPO: thyroperoxidase; PM: plasma membrane; ER: endoplasmic

reticulum; GFP: green fluorescent protein; YFP: yellow fluorescent protein; BCECF: 2’,7’-bis-(2- carboxyethyl)-5-(and-6)-

carboxyfluorescein acetoxymethyl ester.

Cell Physiol Biochem 2011;28:451-466
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Fig. 2. Topology of pendrin allelic variants that have been functionally characterized as of now; the putative model of pendrin

structure is taken from [87]. Amino acids that are affected by loss of function mutations are indicated in red, reduction of function

are indicated in orange. Light blue indicates amino acid substitutions without functional impact, i.e. those mutations for which

the activity is indistinguishable from WT (benign polymorphisms). Green indicates allelic variants with a modest gain of function.

The extension ‘X’ indicates the mutations leading to premature truncation of the protein. Asterisks denote those allelic variants

that are indicated as benign polymorphisms in this context, but with ambiguous function (they may be hypofunctional).

Intracellular localization

Localization studies revealed that mutated pendrin

proteins are often retained in intracellular compartments

and are unable to reach the plasma membrane [94-96];

as a consequence, the transport function is impaired [82,

85, 88-90, 92, 96]. These mutations most likely cause

misfolding of the protein, with defective trafficking and

subsequent degradation (“processing” defect). Some

mutated proteins, however, reach the plasma membrane

and show impaired transport function [32, 82, 89, 90].

These proteins are of particular interest, because the

mutations possibly change ion binding or regulatory

domains (Fig. 3). Several amino acid substitutions (F335L,

C565Y, L597S, M775T, R776C), most of which are located

in the C terminus of the transporter, do not affect the

targeting of the protein to the plasma membrane; their

function is only slightly impaired compared to WT. They

could, therefore, be classified as hypofunctional allelic

variants [89]. Moreover, the function of C565Y, L597S,

and R776C is controversial, as these allelic variants were

classified as benign polymorphisms by other Authors [83,

85, 86] (Fig. 3). We conclude that these mutations probably

do not affect important regions for ion binding or important

regulatory domains of the transporter. The G209V [82]

and E303Q [90] mutations also reach the plasma

membrane, however, their function is severely impaired,

indicating that these mutations do not impair trafficking,

but might alter binding of the transported ions [90].

Functionality of Pendrin Mutants Cell Physiol Biochem 2011;28:451-466
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Restoring transport function

Since the majority of pendrin mutants show a

“processing” defect (see above), it is plausible that

targeting of the mutants to the plasma membrane could

be assisted by physical or pharmacological chaperones.

Yoon et al. demonstrated that the plasma membrane

targeting of some such mutants (S28R, M147V, H723R)

(Table 1) could be rescued by growing the transfected

cells at low temperature; interestingly, the Cl-/HCO
3

-

exchange activity of the mutant H723R, which is the most

common disease-associated mutation in East Asians [97],

was also restored after low-temperature incubation or

Na+-butyrate treatment [88]. Furthermore, Ishihara et al.

demonstrated that 10 mM salicylate rescued the impaired

trafficking of pendrin mutants P123S, M147V, S657N and

H723R (Table 1) from the subcellular compartments to

the plasma membrane, and restored transport activity

(iodide efflux) [85]. Unfortunately, the response of the

different pendrin mutants to chaperons is not identical;

while some mutants are responsive to physical and

chemical chaperones (such as M147V, H723R), others,

such as L236P (the most common disease-associated

mutation in Caucasians), A372V, E384G, N392Y, E625X,

S666F and T712M, are not (Table 1) .

Benign polymorphisms

The functional characterization of pendrin mutants

led to the identification of allelic variants for which the

plasma membrane trafficking and transport function were

not significantly impaired compared to WT (Table 1 and

Fig. 2). At present, functional assays have shown that

the transport activity of the following allelic variants is

not significantly different compared to WT pendrin: L117F

[82], S166N [88], V250A, D266N [90], F354S [79],

K369E, C565Y [85], L597S [86] and R776C [83]. It is

reasonable to assume that these mutations are benign

polymorphisms, and that if they are found in patients with

deafness and goiter, other genetic or environmental

explanations should be considered in the diagnosis.

However, others suggest that F354S [90], C565Y, L597S,

R776C, despite retaining significant transport activity,

should be considered hypo-functional and, if present in

trans configuration (i.e. on a different allele of the pendrin

gene) with a mutation, could display pathogenicity [89].

Gain of function mutations

V88I and G740S are allelic variants whose function

is increased compared to WT [79, 86]. Given the

aforementioned possible role of pendrin in the pathogenesis

Dossena/Nofziger/Tamma/Bernardinelli/Vanoni/Nowak/Grabmayer/
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Fig. 3. Topology of the pendrin mutations with loss or reduction of function and normal trafficking to the plasma membrane; the

putative model of pendrin structure is taken from [87]. Asterisks indicate those allelic variants whose functional alteration

remains controversial. ° indicates a mutation for which the targeting to the plasma membrane is ambiguous.
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Fig. 4. Suggested algorithm for the

diagnosis of Pendred syndrome/ns-EVA

related to pendrin dysfunction. (a) if in a

patient with severe to profound

sensorineural deafness the computed

tomography (CT) or magnetic resonance

imaging (MRI) of the temporal bone disclose

malformations of the inner ear such as an

EVA or Mondini cochlea, with or without a

positive perchlorate discharge test, the

molecular screening (sequencing) of the

pendrin gene (b) is recommended. The

detection of a mutation in the SLC26A4 ORF

leading to a truncated protein or an amino

acid substitution involving a proline is a

strong indication that the allelic variant is a

pathogenic mutation. In all the other cases,

only a functional test could discriminate

between pathogenic mutations and allelic

variants that cannot be considered as genetic

determinants for Pendred syndrome/ns-EVA.

Monoallelic mutations with reduction or loss

of function are associated with ns-EVA.

Biallelic (homozygous, compound

heterozygous or double heterozygous, see

Fig. 1) mutations with reduction or loss of

function are associated with Pendred

syndrome or, occasionally, with ns-EVA. The

presence of a specific allelic variant in the

dbSNPs should not imply a benign

polymorphism; similarly, the low incidence

in the control population or the involvement

of a highly conserved amino acid should not

be considered as indications of impaired

function, and hence, pathogenicity. PS:

Pendred syndrome; ns-EVA: non-syndromic

enlarged vestibular aqueduct; ORF: open

reading frame.

of hypertension, COPD and asthma, these variants may

contribute to the severity of the phenotype and/or

exacerbations of compromised airway function. The

mechanism conferring a gain of function to the transporter

is not known: as the putative anion binding site was

postulated to be in a different region of the molecule [90],

these amino acid substitutions likely do not increase the

affinity of the transporter for its substrates. As WT pendrin

is a slow-folding protein [98], with substantial retention in

the intracellular compartments [32], there is the possibility

that amino acid substitutions V88I and G740S aid in folding

of the protein, consequently increasing its targeting to the

plasma membrane. Alternatively, these amino acid

substitutions could improve the affinity of the transporter

for not yet identified regulatory partners that may increase

pendrin activity.

Genotype-phenotype correlation

Considerable effort has been devoted to correlate

the type of mutation with the phenotype found in the

respective patient (age of onset and degree of deafness,

presence of goiter, etc.). It was previously proposed that

loss of function mutations could confer Pendred

syndrome, while mutations with residual transport could

be associated with ns-EVA [81]. However, the

identification of mutations common to both pathological

conditions led to the exclusion of this hypothesis [69].

The correlation between the specific pendrin mutation

and the clinical phenotype of the patient is difficult for

the following reasons: (i) for a significant number of

patients described in the literature, the perchlorate

discharge test has not been performed, so that no

discrimination between Pendred syndrome and ns-EVA

Functionality of Pendrin Mutants Cell Physiol Biochem 2011;28:451-466
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in the absence of overt goiter was possible, (ii) if the

mutation is found in compound heterozygosity, only rarely

have both detected alleles been characterized functionally,

and (iii) seldom have both the I-/Cl- and Cl-/HCO
3

-

exchange activities been determined. It is important to

note that I-/Cl- exchange, which is more relevant at the

level of the thyroid gland, may be less affected by

mutations when compared to Cl-/HCO
3

- exchange, that

is more relevant at the level of the inner ear [89, 90].

This fact could explain, at least in part, the lower

penetrance of thyroid abnormalities than of EVA and

hearing loss [90]. In addition, nutritional iodide intake [99]

and epigenetic factors, including individual variations in

WT or mutant pendrin expression levels, or proteins that

could partially substitute for pendrin function should be

considered.

The functional characterization of pendrin allelic

variants may be a valuable help in the diagnosis

of Pendred syndrome and ns-EVA due to pendrin

malfunction

The diagnosis of Pendred syndrome and ns-EVA

due to pendrin malfunction is challenging and may rely

on the following tools (Fig. 4a): (i) the audiological

examination, that should reveal severe to profound

sensorineural deafness; (ii) the imaging of the temporal

bone, that should reveal malformations of the inner ear,

such as an EVA or Mondini cochlea, and an enlarged

endolympatic sac when evaluated appropriately with MRI

[64]; (iii) the perchlorate discharge test, that discloses a

possible iodide organification defect and, in the absence

of overt goiter, is essential for discriminating between

Pendred syndrome and ns-EVA [65]. The existence of

phenocopies of Pendred syndrome (i.e. patients displaying

goiter and deafness unrelated to pendrin malfunction)

[100-102], and the fact that ns-EVA could also be unrelated

to pendrin mutations [65, 66], led to the conclusion that

molecular tests (i.e. the sequencing of pendrin gene, Fig.

4b) are essential for the diagnosis of Pendred syndrome/

ns-EVA due to pendrin malfunction [103]. However, the

identification of one or two mutations in the pendrin gene

is not sufficient to conclude that the detected mutation(s)

is (are) the genetic cause of the phenotype of the patient.

Indeed, the presence of functional, benign polymorphisms

in some populations (Table 1 and Fig. 2) and the

misclassification of these benign polymorphic variants as

pathogenic alleles [89] can lead to erroneous classification.

As a consequence, is essential that, whenever a mutation

in the pendrin gene is found, its pathogenic potential is

established.

Recently, we defined that the two parameters used

so far to assess the pathogenic potential of a mutation,

low incidence in the control population, and substitution

of evolutionary conserved amino acids, are not always

sufficient for defining the pathogenicity of pendrin allelic

variants [86]. Indeed, a pathogenic mutation is expected

to occur with lower frequency in the cohort of normal-

hearing individuals with respect to the hearing-impaired

cohort of patients. In contrast, in the Spanish population,

we unexpectedly identified mutations with impaired

function, hence most likely pathogenic, (E29Q, V609G,

D724G) occurring with the same frequency in the cohort

of hearing impaired patients and in the control group of

normal hearing individuals [79, 86]. Similarly, the amino

acid change F667C was identified in the control population

only and not in deaf patients; despite that, the functional

tests revealed that this allelic variant is a mutation with

reduced function, and not a benign polymorphism, as

expected from its incidence. In the same context, a

pathogenic mutation is expected to affect conserved

amino acids. However, we and other groups identified

functional, benign polymorphisms affecting residues highly

conserved among pendrin orthologs [93], such as F354S

[79], K369E [85], and L597S [86]. Identifying new criteria

for establishing the pathogenicity of an allelic variant is

therefore crucial. As a general rule in this complex

scenario, we previously observed a complete loss of

function for all truncation mutations and mutations

involving the substitution of a proline or a charged (acid

or basic) amino acid [86]. As the effort of the functional

characterization of pendrin allelic variants progressed, it

became obvious that the involvement of a charged amino

acid is not always sufficient to induce a detrimental effect

on the ion transport. Indeed, the functionality of pendrin

D266N and K369E is not reduced with respect to WT

(Table 1 and Fig. 2). However, (i) truncation mutations

and (ii) mutations involving the substitution of a proline

always showed a complete loss of function (Table 1, Fig.

2 and 4b). In all the other cases, only a functional test

allows for the discrimination between a pathogenic

mutation and a benign polymorphism (Fig. 4b).

Conclusions

The diagnosis and the discrimination between

Pendred syndrome and ns-EVA can be difficult because

of the existence of Pendred syndrome phenocopies; in

this view, clinical and radiological studies could be

corroborated by genetic and molecular studies. In

Dossena/Nofziger/Tamma/Bernardinelli/Vanoni/Nowak/Grabmayer/
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performing genetic studies, the possibility that the mutation

could affect the pendrin promoter, intronic regions or

coding regions of functionally related genes (FOXI1,

KCNJ10) should be taken into account. Of note, the high

incidence of benign polymorphisms in the population could

lead to false positive results. For this reason, genetic

studies should be implemented together with functional

studies, to unambiguously discriminate between pathogenic

mutations and allelic variants that cannot be considered

as genetic determinants for Pendred syndrome and ns-

EVA. Assessing the functionality of pendrin allelic variants,

the presence of hypo-functional variants and possible

differences between the I-/Cl- and Cl-/HCO
3

- exchange

activities should be carefully evaluated.
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